Co-evolutionary dynamics in social networks: A case study of Twitter

> Demetris Antoniades <u>danton@cs.ucy.ac.cy</u> Laboratory of Internet Computing Computer Science Department

University of Cyprus

joint: Constantine Dovrolis <u>constantine@gatech.edu</u> College of ComputingGeorgia Institute of Technology

Dynamics <u>on</u> networks

 Example: information diffusion with a threshold model (similar to Granovetter's)

Dynamics <u>of</u> networks

• Example: Preferential-attachment model

iSocial Workshop on Emerging Trends Online Social Networks: Demetris Antoniades - danton@cs.ucy.ac.cy

Co-evolutionary dynamics

• Coupled dynamics <u>ON and OF</u> networks

topology

"Adaptive Coevolutionary Networks: A Review", Thilo Gross and Bernd Blasius, Journal of the Royal Society: Interface 5, 259-271, 2008

7/10/14

iSocial Workshop on Emerging Trends Online Social Networks: Demetris Antoniades - danton@cs.ucy.ac.cy

Social networks are co-evolutionary

Outline

- Dynamics on/off networks
- Joint dynamics on and of networks:
 - Co-evolutionary network
- Case-study: co-evolutionary nature of Twitter
 - Tweet-Retweet-Follow (TRF) events
 - TRF events Vs. exogenous new followers
 - A data collection methodology for TRF events
 - A probabilistic model for TRF events
 - What are the long term implications of TRF events in the structure and function of social networks?
- Unfollow events
- Next steps

Outline

- Dynamics on/off networks
- Joint dynamics on and of networks:
 - Co-evolutionary network
- Case-study: co-evolutionary nature of Twitter
 - Tweet-Retweet-Follow (TRF) events
 - TRF events Vs. exogenous new followers
 - A data collection methodology for TRF events
 - A probabilistic model for TRF events
 - What are the long term implications of TRF events in the structure and function of social networks?
- Unfollow events
- Next steps

- Tweet-Retweet-Follow (TRF) events
 - Info diffusion (retweets) leads to new followers
- Clear case of co-evolutionary dynamics 7/10/14

Demetris Antoniades - danton@cs.ucy.ac.cy

Definition of TRF event

- A Tweet-Retweet-Follow event
 - Speaker S,
 - Repeater R,
 - Listener L
- Occurs when:
 - a) S tweets a message M at time t_0
 - b) R retweets M at some time $t_1 > t_0$
 - c) A follower L of R follows S within Δ hours from t_1

Outline

- Dynamics on/off networks
- Joint dynamics on and of networks:
 - Co-evolutionary network
- Case-study: co-evolutionary nature of Twitter
 - Tweet-Retweet-Follow (TRF) events
 - TRF events Vs. exogenous new followers
 - A data collection methodology for TRF events
 - A probabilistic model for TRF events
 - What are the long term implications of TRF events in the structure and function of social networks?
- Unfollow events
- Next steps:

Does receiving a retweet increase probability of a new follower link? (compared to not receiving a retweet)

- Control for local structure
- Examine the probability for a new follower in a time window Δ

Does receiving a retweet increase probability of a new follower link? (compared to not receiving a retweet)

- Continuously monitored 200 users for a period of 10 days
 - Periodically collecting F(S) every 30 minutes
 - Also collecting F(F(S)) for each follower of S
 - 4,945 new follow relationships observed during this period
 - 42% of which were Endogenous followers

Effect of receiving (or not receiving) a retweet

 TRF events 3 orders of magnitude more likely than TF events

> iSocial Workshop on Emerging Trends Online Social Networks: Demetris Antoniades - danton@cs.ucy.ac.cy

Outline

- Dynamics on/off networks
- Joint dynamics on and of networks:
 - Co-evolutionary network
- Case-study: co-evolutionary nature of Twitter
 - Tweet-Retweet-Follow (TRF) events
 - TRF events Vs. exogenous new followers
 - A data collection methodology for TRF events
 - A probabilistic model for TRF events
 - What are the long term implications of TRF events in the structure and function of social networks?
- Unfollow events
- Next steps:

Data collection methodology

7/10/14

iSocial Workshop on Emerging Trends Online Social Networks: Demetris Antoniades - danton@cs.ucy.ac.cy

Selection of Speaker S

- Obtain a number of active Twitter users
 - Get 20 most recent tweets as returned from <u>http://www.twitter.com/search</u>
- Mark as Speaker if:
 - Tweet during last 24 hours
 - At least one retweet during last 2 hours
- Collect
 - F(S, t), F'(S, t), F(R, t), F'(R, t)
 - Creation time, location information, number of statuses for both S and R

Monitoring of Speakers

- Periodically update F(S) and F'(S)
 Every 5 minutes
- Log a TRF event if
 - S has additional followers
 - These followers where in F(R) of at least one Repeater of S

Collected data

- September 19 to September 25 2012
 - 4746 Speakers monitored
 - Posted 386,980 tweets
 - 83860 Repeaters
 - 146,867 Retweets
 - 120 milion RT events
 - 7451 TRF events (17% of observed follow relationships)
- Bot-filtering
 - Remove all bot accounts
 - Accounts suspended by Twitter
 - 1% of collected accounts
 - Similar percentage for Speakers, Repeaters and Listeners
 - 10% of identified TRF events

Number of TRF events increases with Δ

Most of the events occur within 24 hours from the retweet

7/10/14

iSocial Workshop on Emerging Trends Online Social Networks: Demetris Antoniades - danton@cs.ucy.ac.cy

Temporal aspects of TRF events

 Retweet latency: time between the time Speaker posted the tweet and the Repeater retweeted

 TRF latency: time between the time the Repeater retweeted and the Listener followed the Speaker

Temporal aspects of TRF events (cont.)

- Most retweets in first hour from tweet
 - Users tend to act soon after information becomes available
- Users follow mostly during the same day
 - Also may follow after several days

Outline

- Dynamics on/off networks
- Joint dynamics on and of networks:
 - Co-evolutionary network
- Case-study: co-evolutionary nature of Twitter
 - Tweet-Retweet-Follow (TRF) events
 - A data collection methodology for TRF events
 - TRF events Vs. exogenous new followers
 - A probabilistic model for TRF events
 - What are the long term implications of TRF events in the structure and function of social networks?
- Unfollow events
- Next steps:

TRF probability

• Single events: Tweet-Retweet (TR) – L received M from S through R at t_r – $TR(S,R,L,t_r,ID_t,ID_r,I_\Delta)$

$$-I_{\Delta} = 1 \text{ if } L \rightarrow S$$

Do not account for multiple retweets of S received by L

TRF probability (cont.)

- Retweet Groups (RG)
 - User's read their inbox periodically
 - And have limited attention span $RG(S, L, t, n, I_{\Delta})$
 - -t: time of first retweet of S in L's inbox
 - -n: number of retweets of S in L's inbox during $< t, t + \Delta >$

$$P_{TRF} = \frac{RG(S, L, t, n, 1)}{RG(S, L, t, n, *)}$$

iSocial Workshop on Emerging Trends Online Social Networks: Demetris Antoniades - danton@cs.ucy.ac.cy

What factors affect TRF probability?

Factor	Description		
Structural Features			
F(S)	Number of followers of <i>S</i>		
F'(S)	Number of followees of <i>S</i>		
AGE(S)	Number of days since S joined Twitter		
$S \rightarrow L$	Reciprocity: whether the Speaker was		
	following the Listener at the time of the		
	TR event		
Informational Features			
ST(S)	Total number of tweets of S		
$A_{rate}(S)$	Rate of S tweets per day		
$Tweets(S, L, \Delta)$	Number of distinct tweets of <i>S</i> received		
	by L during period Δ		
$Retweets(S,L,\Delta)$	Number of distinct retweets of S re-		
	ceived by L during period Δ		
$Repeaters(S, L, \Delta)$	Number of Repeaters <i>R</i> that <i>L</i> received		
	tweets of S from during period Δ		

Logistic Regression

Used logistic regression to examine which of the features significantly affect the TRF probability

$$ln\left(\frac{P_{TRF}}{1-P_{TRF}}\right) = \kappa_0 + \sum_{i=1}^n \kappa_i X_i$$

κ_i denotes the effect of feature X_i to odds of TRF events

What factors affect TRF probability?

Factor	Description	Odds ratio	95% CI
Structural Features			
F(S)	Number of followers of <i>S</i>	1.000***	[1.000, 1.000]
F'(S)	Number of followees of <i>S</i>	0.999***	[0.999, 0.999]
AGE(S)	Number of days since S joined Twitter	0.998***	[0.998, 0.998]
$S \rightarrow L$	Reciprocity: whether the Speaker was following the Lis-	27.344***	[25.663, 29.136]
	tener at the time of the TR event		
Informational Features			
ST(S)	Total number of tweets of S	1.000***	[1.000, 1.000]
$A_{rate}(S)$	Rate of S tweets per day	0.989***	[0.988, 0.991]
Tweets (S, L, Δ)	Number of distinct tweets of S received by L during pe-	2.010***	[1.781,2.270]
	riod Δ		
$Retweets(S,L,\Delta)$	Number of distinct retweets of S received by L during	1.603***	[1.371, 1.873]
	period Δ		
$Repeaters(S,L,\Delta)$	Number of Repeaters R that L received tweets of S from	2.076***	[1.889, 2.282]
	during period Δ		

 Reciprocity: Speaker already follows Listener (about half of TRF events)

2. Number of retweets of S received by L: how many times does S appear in L's timeline?

Reciprocity

 In 44% of the observed TRF events the Speaker was already following the Listener.

7/10/14

iSocial Workshop on Emerging Trends Online Social Networks: Demetris Antoniades - danton@cs.ucy.ac.cy

Received information

- The number of times L sees S in her inbox affects the probability for L to follow S
 - This number aggregates
 - Number of unique tweets of S seen by L
 - Number of unique retweets of S seen by L
 - Number of unique Repeaters forwarding tweets of S to L
 - All features seen to affect $\mathsf{P}_{\mathsf{TRF}}$

A simple model of TRF events

- Suppose each retweet leads to TRF event independently with probability q
- After receiving *n* retweets, probability of TRF = $1 (1 q)^n$
- But, Listener does not read all tweets/retweets
 "Observation" probability p

$$P_{TRF}(n) = p \times (1 - (1 - q)^n)$$

- Reciprocity increases product p×q by a factor of 100
- Time window \varDelta affects mostly probability p
 - With reciprocity, $p \approx 25 \times 10^{-4}$ and $p \times q \approx 10^{-3}$ ($\Delta = 24$ hours)

7/10/14

TRF model evaluation

Outline

- Dynamics on/off networks
- Joint dynamics on and of networks:
 - Co-evolutionary network
- Case-study: co-evolutionary nature of Twitter
 - Tweet-Retweet-Follow (TRF) events
 - A data collection methodology for TRF events
 - TRF events Vs. exogenous new followers
 - A probabilistic model for TRF events
 - What are the implications of TRF events in the structure and function of social networks?
- Unfollow events
- Next steps:

What is the effect of TRF events on the structure of the network

- Consider two scenarios:
 - A network with a pre-existing cycle
 - A hierarchical network
- How may TRF events change the network in the long-term?

Does sub-network form a Stronaly-Connected Component?

(b) Final network topology

- It will evolve to fully connected network
- TRF events create cliques (strong communities)

Does sub-network have hierarchical structure (no directed cycles)?

- Network evolves to a two-level hierarchy
- In each "sphere of influence", an influencer is directly connected to her followers

How common are directed cycles in connected sub-graphs of the Twitter topology?

- Analyzed an older measured Twitter topology (41.7M nodes)
 - Sampling using "forest-fire" and "snowball" methods
 - Each sampled sub-network is weakly connected
 - Samples of different sizes
- Use Tarjan's algorithm to identify longest cycle (largest SCC) in sampled sub-network

For sub-graphs with more than 500 nodes, about 90% of nodes belong in SCC component

38

Outline

- Dynamics on/off networks
- Joint dynamics on and of networks:
 - Co-evolutionary network
- Case-study: co-evolutionary nature of Twitter
 - Tweet-Retweet-Follow (TRF) events
 - A data collection methodology for TRF events
 - TRF events Vs. exogenous new followers
 - A probabilistic model for TRF events
 - What are the long term implications of TRF events in the structure and function of social networks?
- Unfollow events
- Next steps

Unfollow Events

- A sequence of one or more tweets of Speaker S received by a follower L may cause L to remove the link to S
- Unfollow dataset: Monitored follower lists and activity for 3,648 Speakers for 1 week
 - -4,055,327 total followers

- 5,325 unfollow events for 983 Speakers

 60% of unfollow events in the first hour after S posted some content

Unfollow Probability

- How likely is for a Listener L to unfollow Speaker S during a time period Δ after receiving a tweet from S
- Activity Groups

 $AG(S,L,t_a,n,n_t,n_r,I_{\Delta})$

 Similar to RG: capturing activity of S seen by L

$$P_{UNF} = \frac{AG(S, L, t, n, n_t, n_r, 1)}{AG(S, L, t, n, n_t, n_r, 1)}$$
iSocial Workshop on Emerging Trends Online Social Networks:
Demetris Antoniades - danton@cs.ucv.ac.cv

7/10/14

Unfollow Probability

• 60% less likely to unfollow when relationship is reciprocal

Outline

- Dynamics on/off networks
- Joint dynamics on and of networks:
 - Co-evolutionary network
- Case-study: co-evolutionary nature of Twitter
 - Tweet-Retweet-Follow (TRF) events
 - A data collection methodology for TRF events
 - TRF events Vs. exogenous new followers
 - A probabilistic model for TRF events
 - What are the long term implications of TRF events in the structure and function of social networks?
- Unfollow events
- Next steps

Conclusions

- Examined co-evolutionary dynamics on Twitter
 Tweet-Retweet-Follow events
- TRF events are responsible for 20% of the new edges on Twitter
 - 80% occur in 1 day after the retweet
- Proposed a probabilistic model for TRF events
- TRF events tend to transform cycles topologies to cliques
 - 80-90% of the nodes in weakly-connected groups sampled from Twitter showed to belong to a directed cycle
- Unfollow events are also co-evolutionary
 - 60% in the first hour after Speaker's activity

Future work

- Simulate a Twitter like network considering TRF and Unfollow events

 How does the network change?
 How is information diffusion affected?
 - How is information diffusion affected?
- Further examination of co-evolutionary dynamics on social networks

 What other types of such dynamics are present?

Thank you!