
Profit-Aware Server Allocation
for Green Internet Services

Michele Mazzucco∗‡, Dmytro Dyachuk† and Marios Dikaiakos∗
∗University of Cyprus, Cyprus

†University of Saskatchewan, Canada
‡University of Tartu, Estonia

Abstract—A server farm is examined, where a number of
servers are used to offer a service to impatient customers. Every
completed request generates a certain amount of profit, running
servers consume electricity for power and cooling, while waiting
customers might leave the system before receiving service if they
experience excessive delays. A dynamic allocation policy aiming
at satisfying the conflicting goals of maximizing the quality of
users’ experience while minimizing the cost for the provider is
introduced and evaluated. The results of several experiments are
described, showing that the proposed scheme performs well under
different traffic conditions.

I. INTRODUCTION

In recent years large investments have been made to build
data centers, or server farms, purpose-built facilities providing
storage and computing services within and across organiza-
tional boundaries. A typical server farm may contain thousands
of servers, which require large amounts of power to operate
and to keep cool, not to mention the hidden costs associated
with data centers’ carbon footprint and water consumption
for cooling purposes [1]. On the other hand, the increasing
use of the Internet as a provider of services and a major
information media have changed significantly, especially over
the last ten years. Expectations in terms of performance and
responsiveness have markedly grown. For example, Google
reports that an extra 0.5 seconds in search page generation
entails degraded user satisfaction, with a consequent 20%
traffic drop, while trimming the page size of Google Maps
by 30% resulted in a 30% traffic increase [2], [3]. Hence, the
development of ‘green’ data centers, i.e., data centers that are
energy efficient, is a challenging problem for service providers
as they operate under stringent performance requirements.
Consequently, it is very important to devise strategies aiming at
reducing the power consumption while maintaining acceptable
levels of performance.

Unfortunately, despite considerable effort in designing
servers whose power consumption is proportional to their uti-
lization [4], the reality is that the amount of power consumed
by an idle server is about 65% of its peak consumption [5], as
existing hardware components offer only limited controls for
trading power for performance. Thus, the only way to signifi-
cantly reduce data centers’ power consumption is to improve
the server farm’s utilization, e.g., by tearing down servers in
excess. Therefore, we propose and evaluate a strategy that
aims at maximizing the overall performance while minimizing
the number of required servers. Under suitable assumptions

about the nature of user demand, it is possible to explicitly
evaluate the effect of a particular server allocation on the
achievable revenue. Hence, we derive a numerical algorithm
for computing the optimal number of servers required for
handling a certain user demand. The model considers limited
user patience time and the fact that servers energy consumption
depends on servers’ utilization. The computational costs of the
decision making are extremely low and the algorithm can be
used on-line as a part of a dynamic allocation policy.

The problem of reducing energy consumption of server
farms can be approached from different angles. Improving
energy efficiency for servers by means of dynamic scaling
of the CPU frequency has been addressed in several papers,
e.g., [6], [7]. An alternative solution consists of switching off
servers in excess. The most closely related work can perhaps
be found in [8] and [9]. The former discusses a queuing model
for controlling the energy consumption of service provisioning
systems subject to Service Level Agreements. However, while
Chen et al. take into account the cost for smaller mean
time between failures (MTBF) when powering up/down some
servers, the cost function they propose does not consider the
time and energy wasted during state changes, nor the cost
for failing to meet the promised quality requirements. Hence,
the taken decisions could be either too performance oriented
or too energy-efficiency oriented. [9], instead, discusses a
problem similar to that we attack in this paper. However, in
that paper the authors assume that clients have no patience,
while they do not consider the fact that servers consume energy
without producing any revenue during system reconfigurations.
Finally, since running too many servers increases the electric-
ity consumption while having too few servers switched on
requires running those servers’ CPUs at higher frequencies,
some hybrid approaches have been proposed, e.g., [6].

The rest of the paper is structured in the following way. In
the next section we introduce the system model. Section III
contains the mathematical analysis. The model for power
consumption estimation is discussed in Section IV, while the
resulting policy is introduced in Section V. A number of
experiments are presented in Section VI. Finally, we conclude
the paper in Section VII with a summary and some remarks.

II. THE MODEL

A server farm is a collection of servers interconnected
by high-speed, switched LANs that hosts content and runs

applications (or services) accessed over the Internet. In this
paper we focus on server farms designed according to the
dedicated architecture, where a web application is hosted on a
set of physical servers (see, for example, [10]) and the provider
can change the number of servers allocated to run each service
in order to react to traffic changes. Once a decision about
how to partition the available servers has been made, it is
possible to treat each subsystem (i.e., service) in isolation of
each other. Therefore, in the following we tackle the problem
of maximizing the revenue of a single subsystem (service)
only.

Now, assume that q (identical) servers have been allocated
to queue i. Among those q servers, h are running and capable
of serving incoming user demand (jobs, from now on), while
the remaining (q−h) are switched off in order to save energy.
In this context, the term ‘switched off’ means that the server
can not perform any useful work and it does not consume any
electricity. A maximum of m jobs can be processed in parallel
on each server without significant interference – this limit
being imposed by the number of available threads or processes.
This is modelled by assuming that there are m parallel servers
on each physical machine or core, and thus a total of S = qm
servers are available, while n = hm are running. If n jobs are
currently in execution, further requests are temporarily parked
into an external first-in-first-out (FIFO) queue whose size is
assumed to be infinite. If, once a server has finished processing
a request, the queue is empty, the server begins to idle (i.e.,
it consumes energy without generating any profit). Otherwise,
it removes the leading job from the waiting queue and starts
processing it. Every processed request generates some profit.
For example, it can be a profit coming from advertisements
or from sales (in case of online merchants, such as Amazon).
While in the first case advertising agencies usually pay for
each impression (i.e., display of an add), in the second case
the profit from each request can be estimated as follows.
Suppose that every 10,000 views generate 10$ of revenue
from sales. Hence, we can state that on average each request
brings 0.01 cents. It is worth stressing that companies like
eBay employ more complex revenue models. However, using
simple transformations such as dividing gross income over the
number of requests, one can easily estimate the average profit
brought by every request.

Since running servers consume electricity, which costs r$
per kWh, the provider dynamically decides how many servers
to run by means of a ‘resource allocation’ policy. The objective
is to find the optimal number of servers, n, that should be
switched on in order to optimize the provider’s profit. The
extreme values, n = 0 and n = S, correspond to switch
respectively off, or on, all available servers. Given that the
amount of running servers should change in response to
changes in the user demand, the problem is how to estimate
the best n. We assume that data is widely replicated, hence
switching some servers off does not affect service availability.
However, since lost jobs do not generate any revenue, the
provider should ensure that the time users wait for their
requests to be served does not exceed their patience. Otherwise

the clients will start aborting their requests, e.g., by clicking
a Stop button in their browsers, see Figure 1.

Off

On

µ

λ

µ

#{On} = n

#{Off} = S - n

θ

Lost traffic

Incoming
traffic

End of
service

Fig. 1. System model. Jobs whose average job size is 1/µ enter the system
at rate λ and abandon the system at rate θ while waiting.

During the intervals between consecutive policy invocations,
the number of running servers remains constant. Those inter-
vals, which will be referred to as ‘observation windows’, are
used by the controlling software to collect the traffic statistics
used by the allocation policy at the next decision epoch.

While different metrics can be used to measure the perfor-
mance of a computing system, as far as the service provider
is concerned, the performance of the server farm is measured
by the average revenue, R, earned per unit time. That value
can be estimated as

R = cT − rP , (1)

where c is the income generated by each completed job, T is
the system’s throughput, and P is the total average power
consumed by powered up servers. c is a parameter of the
model, while the formula for computing T and P are discussed
in Sections III and IV. For the following it will be convenient
to indicate explicitly the dependency of Equation (1) on the
parameter n by introducing the notation

R = r(n), (2)

where r(n) stands for the right-hand side of (1).
It is worth noting that although we do not make any

assumption about the relative magnitudes of charge and cost
parameters, the most challenging case is when they are close
to each other. If the charge for executing a job is much higher
than the provisioning cost, one could guarantee a positive, but
not optimal, revenue by switching on all servers, regardless of
the load. On the other hand, if the charge is smaller than the
cost, than it would be better to switch all servers off.

III. ANALYSIS

Suppose that n servers have been allocated to serve incom-
ing traffic. Jobs enter the system according to an independent
Poisson process with rate λ. Operating servers accept one
job at a time, with the service times, or ‘job size’, being

n-10 1 2 n n+1 n+2... ...

λλλ λ λ

μ 2μ nμ nμ+θ nμ+2θ

λ λ

3μ (n-1)μ

Fig. 2. State transition diagram.

exponentially distributed with mean 1/µ. Hence, one might
try to model the system as an M/M/n queue (see [11]
for more details) with the offered load being ρ = λ/µ and
with the stability condition being ρ < n. Unfortunately, this
system, also called Erlang-C (or delay), does not acknowledge
abandonment; thus it either distorts or completely fails to
provide important information.

In this work we do allow customers abandonment by as-
suming that a time-out policy is in operation: if a job entering
the system does not acquire a server before its time-out period
expires, the job is terminated and leaves the system without
generating any revenue. This can be used to model HTTP time-
outs, as well as impatient customers. Impatient customers are
of particular importance, as [12] reports that 75% of people
would not go back to a web site that took more than 4 seconds
to load. HTTP time-outs are in practice of fixed length,
while users’ patience is not. For the purposes of analytical
tractability, we assume that both the user’s patience and HTTP
time-outs are i.i.d random variables distributed exponentially
with mean 1/θ, with θ being referred to as the abandonment
rate. The extreme values, θ = 0 and θ =∞, correspond to jobs
with no, or infinite patience. Hence, the appropriate queueing
models would be M/M/n/n and M/M/n respectively [11].
Also, we assume that the patience variables are independent
of all other model elements, namely arrival and service rates.

The first step to computing Equation (1) is the steady
state analysis of the Markov chain associated with the model
sketched in Figure 1, see Figure 2. A tractable way to model
this system is the M/M/n+M queue, also known as Erlang-
A (where the ‘A’ stands for ‘Abandonment’) [13]. The main
difference between the Erlang-A and Erlang-C models is
that the queue never grows unbound in the Erlang-A model,
as jobs are allowed to leave. Moreover, jobs abandonment
reduces workload only when needed, i.e., when the load is
high. The implication is that fewer servers are needed to
guarantee the same level of performance under Erlang-A,
compared to the traditional Erlang-C. This observation is very
important because in this paper we focus on highly loaded (and
potentially overloaded) systems, as our goal is to switch off
servers in excess while serving as many customers as possible.

Now, let Lt be the total number of jobs inside the system
at time t, including both queueing and executing requests.
Then, L = {Lt : t ≥ 0} is a state-dependent Birth-and-Death
process [11]. The instantaneous transition rate from state j to
state (j + 1) is equal to the arrival rate, λj = λ, j = 0, 1,
The conditional departure rate, i.e., the transition rate from
state j to state (j − 1), depends instead on the number of
operating servers as well as on the number of jobs present.

Hence, we should distinguish between two cases:
Case 1: j ≤ n. The system behaves like an M/M/∞ queue:

all jobs in the system are being served without queueing, jobs
leave the system at rate µj = jµ, and (n− j) servers are idle.

Case 2: j > n. All servers are busy and (j − n) jobs are
queueing. The instantaneous completion rate does not depend
on j anymore, while the abandonment rate depends on the
current number of jobs in the queue.

Hence, the balance equations can be expressed in terms of
p0, i.e., the probability of the system being empty

pj =

ρj

j!
p0 if j ≤ n

ρn

n!
p0

[
j∏

k=n+1

λ

nµ+ θ(k − n)

]
if j > n

. (3)

The only unknown probability is p0. Steady state for this
process exists only if Equation (3) can be normalized, i.e.,
if
∑∞

j=0 pj = 1. From the normalization condition and from
Equation (3) we obtain

p0 =

 n∑
j=0

ρj

j!
+
ρn

n!

∞∑
j=n+1

j∏
k=n+1

(
λ

nµ+ θ(k − n)

)−1

.

(4)
Thus, steady state for this Birth-and-Death process always

exists, as jobs in excess eventually abandon, ensuring that
the queue never grows unbound. To handle the series in
Equation (4) it is convenient to introduce the function [13]

g(x, y) = 1 +
∞∑

j=1

yj

j∏
k=1

(x+ k)

. (5)

Thus, by means of Equation (5) and the formula for com-
puting the blocking probability in an Erlang-B system with n
trunks and traffic intensity ρ, B(n, ρ) [11], [14], after some
algebraic manipulations we obtain

p0 =
n!
ρn

B(n, ρ)

1 +B(n, ρ)
[
g

(
nµ

θ
,
λ

θ

)
− 1
] . (6)

Having computed the steady state probability of the number
of jobs present, it is possible to estimate the probability of
abandonment, P (Ab). Denote by Pj(S) the probability that a
job finding j other jobs inside the system will eventually get

served. Hence, the probability of abandonment of a job finding
j other jobs ahead of it is simply 1 − Pj(S). Therefore, we
can write

Pj(Ab) =

{
0 if j < n

(j + 1− n)θ
nµ+ (j + 1− n)θ if j ≥ n . (7)

Using Equation (7) and the PASTA property (Poisson ar-
rivals see time averages, see [11] for more details), P (Ab)
yields to

P (Ab) =
∞∑

j=0

pjPj−n(Ab). (8)

Computing Equation (8) from its right-hand side is chal-
lenging. However, using Bayes’ formula [15] we obtain

P (Ab) = P (W > 0)P (Ab|W > 0), (9)

where P (W > 0) is the delay probability, while P (Ab|W >
0) is the conditional abandonment probability.

In order to compute the above probabilities it is useful
to express the balance equations in terms of pn, i.e., the
probability that all servers are busy and the queue is empty.
Using Equations (3) and (6), pn yields to

pn =
B(n, ρ)

1 +B(n, ρ)
[
g

(
nµ

θ
,
λ

θ

)
− 1
] . (10)

Hence, Equation (3) can now be written as

pj =

n!
j!ρn−j

pn if j ≤ n

(λ/θ)j−n

j−n∏
k=1

(nµ
θ

+ k
)pn if j > n . (11)

By means of Equation (11) and the PASTA property, it is
now possible to estimate the delay probability

P (W > 0) =
∞∑

j=n

pj = pn +
∞∑

j=n+1

pj . (12)

Thus, using Equations (5), (11) and (12) we obtain

P (W > 0) = A

(
nµ

θ
,
λ

θ

)
pn, (13)

while, after some manipulations, P (Ab|W > 0) yields to

P (Ab|W > 0) =
1

ρg

(
nµ

θ
,
λ

θ

) + 1− 1
ρ

. (14)

N.B. As the size of the server farms grows, the system
achieves economies of scale that make it more robust against
traffic variability. Hence, while violating the Markovian as-
sumptions about the arrival, patience and service processes

affects the average queue length, it does not substantially
change the abandonment rate [16].

Having computed the stationary distribution of jobs present
and the corresponding probability of abandonment, we can
now compute the average number of requests served per unit
time. That value can be expressed as

T = min(nµ, λ[1− P (Ab)]). (15)

N.B. The above expression successfully deals with two
special cases, i.e., θ = 0, and thus the system would behave
as an M/M/n queue, and ρ > n.

IV. POWER USAGE ESTIMATION

A number of factors affect the amount of energy consumed
by a server. However, the change in the power consumption
of a server is mainly due to changes in the CPU utilization. In
order to establish and quantify this relation we have measured
the amount of energy drawn by a server in the presence of
an increasing load. As for an application we have used Word-
press1, a popular open source application implementing a blog
and running on top of the LAMP2 stack. The server had two
Xeon Dual Core CPUs (2.8 Ghz) equipped with 2 Gb of RAM,
7200 RPM hard drive and 1 Gbps network card, while user
demand was generated by Tsung3. The workload consisted of
clients arriving over time, with each client simulating a typical
behavior of a blog reader, such as checking the front page,
navigating through the blog, searching for entries containing
certain keywords, etc. The load was increased by reducing the
interarrival intervals, which were generated according to an
independent Poisson process. The measurements reported in

 50

 100

 150

 200

 250

 0 50 100 150 200 250 300 350 400

P
o
w

er
 C

o
n
su

m
p
ti

o
n
,
W

CPU Utilization, % (4 cores)

Fig. 3. Measured energy consumption.

Figure 3 show a linear dependency between the CPU utiliza-
tion and power consumption. The experiment also confirms
that idle servers consume a substantial amount of energy (140

1http://wordpress.org/.
2Linux, Apache, MySQL and PHP.
3http://tsung.erlang-projects.org/.

Watts in our case). Hence, the average power consumed by a
data center per unit time, P , can be estimated as

P = ne1 + τ(e2 − e1), (16)

where e1 is the energy consumed per unit time by idle servers,
e2 is the energy drawn by each busy server, and τ is the
occupancy of the system (τ ≤ n)

τ =
⌈
T

µ

⌉
. (17)

V. ALLOCATION POLICY

Consider now an allocation decision epoch. The state of the
subsystem at that instant is defined by the number of servers
which are not powered down and by the potential offered load.
If the allocation does not change, the expected revenue for the
next configuration interval is simply r(n). The alternative is
to power on/off some servers. Denote by n′ the new number
of servers allocated to the queue after reallocation:

Case 1: n′ > n. Such a decision would increase the system
throughput, thus increasing the potential revenue, but it would
also increase the amount of energy consumed by the server
farm.

Case 2: n′ < n. Such a decision would decrease the expen-
diture for electricity, as (n − n′) servers would be switched
off. However, it would also decrease the overall throughput,
thus increasing the probability of jobs abandonment.

Powering servers on/off is not instantaneous, but takes on
average k units time. Hence, at every state change there is
some waste of time and money because servers changing their
state can not serve user demand, but do consume electricity.
Also, system’s reliability is affected by state changes, as
hardware components tend to degrade faster with frequent
power on/off cycles than with continuous operation. For
example, hard disks have an average lifetime of 40/50,000
on/off cycles [17]. Therefore, each state change involves the
following cost

Q =
|∆n|
t

(
l∑

i=1

di + kremax), (18)

where t is the length of the observation windows, |∆n| is the
number of servers that are switched on/off, emax is the power
consumed per unit time during state changes, k is the average
time required to switch a server on/off, di is the cost for a
hardware component’s state change, and l is the number of
components.

N.B. One can easily relax the assumption that powering
a server up and down takes the same amount of time and
consume the same amount of energy.

The expected change in revenue resulting from a decision
to change the number of running servers can be expressed as

∆r(n′, n) = r(n′)− r(n)−Q. (19)

When R is computed for different values of n, it becomes
clear that the revenue is a unimodal function of n, i.e., it

has a single maximum. That observation implies that one can
search for the optimal number of servers to run by evaluating
R for consecutive values of n, stopping either when R starts
decreasing or, if that does not happen, when the increase
becomes smaller than some value ε. This can be justified
arguing that R is a concave function with respect to n.
Intuitively, the economic benefits of powering more servers on
become less and less significant as n increases, while the loss
of potential revenues gets bigger and bigger as n decreases.
Such a behavior is an indication of concavity. Thus, a fast
algorithm of the binary search variety suggested by the above
observations works as follows:

1) Set with nl = 0 and nu = S;
2) Set n′ = dλ/µe. If n′ = 0, set n′ = 1. Similarly, if

n′ = S, set n′ = S − 1.
3) While nl < nu

a) Calculate ∆r(n′ − 1, n), ∆r(n′, n) and ∆r(n′ +
1, n).

b) If ∆r(n′ − 1, n) ≤ ∆r(n′, n) ≥ ∆r(n′ + 1, n),
then n′ is the best solution. Hence, go to 4.

c) If ∆r(n′−1, n) ≤ ∆r(n′, n) ≤ ∆r(n′+1, n), then
the optimal n is in the interval n′, . . . , nu. Hence,
set nl = n′ + 1 and go to 3e.

d) We have ∆r(n′ − 1, n) ≥ ∆r(n′, n) ≥ ∆r(n′ +
1, n). Hence, the search has to be carried out in
the interval nl, . . . , n

′, so set nu = n′ − 1 and go
to 3e.

e) Set n′ = dnl + (nu − nl)/2e.
4) If ∆r(n′, n) > 0, then set n = n′. Otherwise, leave the

allocation as it is .
Since at every iteration the state space is reduced by a factor

of two, log(S) iterations are required in order to find the ‘best’
n, i.e., the number of servers that maximizes the profit. We
have put quotation marks around the word ‘best’ because such
choice might be slightly sub-optimal when the exponential
assumptions are violated and S is small (see the remarks at
the end of Section III). This policy will be referred to as the
‘Adaptive’ allocation policy.

Finally, since the state change is not instantaneous, the
current window ends immediately if some of the servers are
to be switched off (e.g., if n′ < n) or after all the servers are
powered up if n′ > n.

VI. RESULTS

Several experiments were carried out, with the aim of
evaluating the effects of proposed scheme on the maximum
achievable revenues. We assume the server farm has a Power
Usage Effectiveness (PUE), the main metric used to evaluate
the efficiency of data centers, of 1.7. That value is computed as
the ratio between the total facility power and the IT equipment
power. Also, we take indirect costs into account. These include
the cost for capital as well as the amortization of the equipment
such as servers, power generators or transformers, and account
for twice the cost of consumed electricity. Finally, in order to
reduce the number of variables, when not specified otherwise,
the following features were held fixed:

• 250 servers, configured as described in Section IV, i.e.,
S = 1, 000.

• The power consumption of each four core server machine
ranges between 140 and 220 W, see Figure 3. In other
words, each core from now on server consumes between
35 and 55 W. Since the server farm has a PUE factor of
1.7, the minimum and maximum power consumption are
approximately e1 = 59 and e2 = 94 W per server.

• The cost for electricity, r, is 0.1 $ per kWh4.
• The average job size, 1/µ, is 0.1 seconds.
• Jobs are not completely CPU bound. Instead, when a

server is busy, the average CPU utilization is 70%. In
other words, busy servers draw 69.58 Wh, and thus each
job costs, for electricity, 2× 10−7$ on average.

• Each successfully completed job generates, on average,
6.2× 10−6$.

It is worth noting that while the size of the server farm might
look small, the application logic of the 10th busiest web site
in the world, Wikipedia, is hosted on 350 servers having 856
cores, spread across three data centers [18].

A. Stationary Traffic

The first experiment, see Figure 4, is purely numerical.
It shows how the number of running servers affects the
average earned revenue under different loading conditions.
The potential offered load is increased from 30% to 90% by
increasing the rate at which new jobs enter the system, from
3,000 to 9,000 jobs per second.

0

20

40

60

80

100

120

140

160

180

200

0 200 400 600 800 1k

$
/h

o
u
r,

 R

Running servers, n

ρ=300

ρ=600

ρ=900

Fig. 4. Revenue as a function of the running servers.

Figure 4 shows that (i) in each case there is an optimal
number of servers that should be switched on; (ii) the heavier
is the load, the higher is the optimal number of servers to
run, but higher is also the maximum achievable revenue; (iii)
when n > nopt, the system under-performs because the cost of
running idle servers erodes revenues, while when n < nopt, the
system under-performs because it misses potential revenues.

4http://www.neo.ne.gov/statshtml/115.htm.

Next, we evaluate the effectiveness of the dynamic alloca-
tion scheme via computer simulation. For comparison reasons,
two versions of the ‘Static’ policy, a policy which runs always
the same amount of servers, are also displayed. One runs
n = S/2 = 500 servers, while the other n = S = 1, 000. We
vary the load between 10% and 110% (i.e., the system would
be over-saturated without job abandonment) by varying the
arrival rate, i.e., λ = 1, 000, . . . , 11, 000 jobs/second. Each
point in the figure represents one run lasting 16.5 hours,
while servers are reallocated every hour, e.g., the policy
described in Section V is invoked every hour. During each
run, approximately between 119 (low load) and 653 (high
load) million jobs enter the system, while samples of achieved
revenues are collected every 1.5 hours and are used at the end
of each run to compute the corresponding 95% confidence
interval, which is calculated using the Student’s t-distribution.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

0 2k 4k 6k 8k 10k 12k

$
/h

o
u
r,

 R

Arrival rate (req./sec.)

Adaptive
Static (n=S)

Static (n=S/2)

Fig. 5. Observed revenues for different policies.

The most notable feature of the graph plotted in Figure 5
is that the ‘Static’ policies do not perform well under light
load (because of the servers running idle), while the one
with parameter n = S/2 can not cope with high traffic,
thus missing income opportunities. On the other hand, the
‘Adaptive’ heuristic produces revenues that grow with the
offered load. Next, we report the average power consumption.
Figure 6 shows that the ‘Adaptive’ heuristic runs servers only
when necessary, thus reducing its carbon footprint as well as
the provider’s electricity bill.

In the next experiment we evaluate the effects of increased
variability on the performance of the ‘Adaptive’ heuristic by
departing from the assumption that the interarrival and pa-
tience times are exponentially distributed. Now those parame-
ters are Log-Normally distributed, with the squared coefficient
of variation, i.e., the variance divided by the square of the
mean, of 2 (interarrival intervals on YouTube have a squared
coefficient of variation of 1.7 [19]) and 5, respectively. These
changes increase the variances of the interarrival and patience
times while preserving the averages, thus making the system
less predictable and allocation decisions more challenging.

In Table I we compare the achieved revenue (R), average

 0

 20

 40

 60

 80

 100

 120

 140

0 2k 4k 6k 8k 10k 12k

P
o
w

er
 c

o
n
su

m
p
ti

o
n
,
K

W
 h

o
u
r

Arrival rate (req./sec.)

Adaptive
Static (n=S)

Static (n=S/2)

Fig. 6. Observed energy consumption for different policies.

scv(λ) = scv(θ) = 1 scv(λ) = 2, scv(θ) = 5
S R L % Ab R L % Ab

10 1.45 4.636 1.136 1.44 6.216 1.398
20 2.91 4.602 0.572 2.91 7.040 0.614
50 7.35 11.034 0.547 7.35 17.374 0.514

100 14.75 14.371 0.359 14.76 24.007 0.268
500 74.06 28.467 0.142 74.11 53.349 0.055

1000 148.26 40.651 0.101 148.38 82.370 0.033

TABLE I
PERFORMANCE OF THE ‘ADAPTIVE’ HEURISTIC FOR DIFFERENT

PARAMETERS.

queue length (L) and the percentage of jobs abandoning the
system under the ‘Adaptive’ policy for different values of S.
The system is always loaded at 80% by scaling the arrival
rate in proportion to S. From the experiment we observe that
while L depends on the variability of the traffic parameters,
the achieved revenue and the percentage of jobs leaving do
not. Moreover, the system becomes less and less sensible to
the distribution of the interarrival intervals and patience times
as S increases. This can be explained by observing that large
systems can achieve economies of scale which are simply not
possible when the number of servers is small. In particular,
the behavior of large server farms under heavy load differs
from that of Kingman’s Law (i.e., delays/job losses are very
common under heavy load) in that service quality is carefully
balanced with server efficiency.

B. Sensitivity Analysis

The previous experiments investigated how server alloca-
tion decisions and other parameters can affect the revenue.
However, in real world scenarios the chances that service
providers would have to deal with stationary traffic are ex-
tremely rare. In fact, studies of the Wikipedia traces show
that throughout the day the incoming traffic can change by as
much as 70% [21]. A logical solution to this problem would
be reconfiguring the servers pool (by switching servers on/off)
according the changes in the load, as we propose in Section V.

However, service providers need to estimate the arrival rate
for the next configuration interval. Such a prediction might
be hard to make if the load is non stationary, and even
good forecasting tools might produce results which sometimes
differ from the observed values. Forecasting tools range from
simply using the last observed value of λ to very complex
algorithms requiring significant periods of time for training
and considering seasonal and trend components. Instead of
benchmarking the proposed approach with various forecasting
tools, which would lead to an explosion of the experimental
space, in the following we investigate its sensitivity in respect
to an error in load prediction. This also can help in choosing
the right prediction mechanism in real-world scenarios, as the
deployment of certain forecasters may require long training,
while simpler ones might exhibit slightly worse prediction
quality, while having little or no effect on the ultimate result.

In order to see how various error rates affect the revenue,
we introduce an Oracle forecaster which tells the exact arrival
rate for the next configuration interval. Then we introduce an
error, first 5%, then 10% and finally 20%. Please note that
the forecasting values are distributed according to a Laplace
distribution with the mean value equal to the actual λ. Thus,
for example 5% represents the mean of the absolute differences
between actual and predicted values of λ. We have chosen a
Laplace distribution because we have observed such a behavior
when trying to predict the Wikipedia workload using the
double exponential smoothing method. Unfortunately, due to
the lack of space we cannot present this data. Also, it is
important to note that by combining Oracle with the binary
search from section V we obtain the optimal solution in terms
of profit maximization.

In the next set of experiments we contrast five different
cases: static policy (all servers are switched on), Adaptive
heuristic (see Section V) with Oracle forecasting, and Adaptive
heuristic with Oracle forecasting making a systematic error of
5%,10% and 20%. In the simulation, a workload which rep-
resents a scaled version of the Wikipedia traces is employed.
The arrival rate ranges between 2,688 and 5,729 jobs/second,
while each simulation run lasts 240 hours (e.g., 10 days).

TABLE II
PERCENTAGE OF LOST JOBS WITH RESPECT TO ERROR IN THE PREDICTION

Error 0% 5% 10% 20%
Lost jobs, % 0.01 2.19 4.46 10.54

As shown in Table II, the error in the forecasting has a
significant impact on the number of lost jobs. The Oracle
behaves almost as good as the static policy which massively
over-provisions the system, which in its turn negatively re-
flects on the amount of consumed energy, see Figure 7, and
consequently the revenue, see Figure 8.

At the same time 5% error in the prediction affects the
number of lost jobs without significant impact on the other
metrics. An increase of the error from 5% to 10% markedly
reflects on the number of lost jobs, while the revenue values
still stay very close. A jump of the error from 10% to 20%

 0

 5

 10

 15

 20

 25

 0 50 100 150 200

C
u
m

u
la

ti
v
e

co
n
su

m
ed

 e
n
er

g
y
,
M

W
at

th

Time, hours

Adaptive with Oracle
Adaptive with 5% error

Adaptive with 10% error
Adaptive with 20% error

Static n=1000

Fig. 7. Cumulative energy consumption.

not only increases the number of lost jobs more than twice
due to frequent mistakes causing under-provisioning and thus
adversely affecting the revenue. Despite the obvious advantage
in the power consumption, using forecasting with 20% error
is unacceptable due to its low revenue and high percentage
of the lost jobs. From the above experiment we can conclude
that 5% error in forecasting does not have significant impact
on the revenue and energy consumption, while a 10% error
still exhibits results which are markedly superior to the Static
allocation policy.

0

2k

4k

6k

8k

10k

12k

14k

16k

18k

20k

 0 50 100 150 200

C
u
m

u
la

ti
v
e

R
,
$

Time, hours

Adaptive with Oracle
Adaptive with 5% error

Adaptive with 10% error
Adaptive with 20% error

Static n=1000

Fig. 8. Cumulative revenue.

VII. CONCLUSIONS

In this paper we have introduced and evaluated an eas-
ily implementable policy for dynamically adaptable Internet
services. Under some simplifying assumptions, the numerical
algorithm we propose can find the best trade off between
consumed power and delivered service quality. We have
demonstrated that the number of running servers can have a
significant effect on the revenue earned by the provider. The
experiments we have conducted show that our approach works

well under different traffic conditions, and that our policy is
not very sensitive to errors in parameters estimation.

Possible directions for future research include taking into
account the trade offs between the number of running servers,
the frequency of the CPUs and the maximum achievable
performance, as well as fault tolerance issues.

ACKNOWLEDGEMENTS

The authors would like to thank the European Commission
(Marie Curie Action, contract number FP6-042467), the EU
Cost Action IC0804, and the EUREKA Project 4989 (SITIO).

REFERENCES

[1] J. Hamilton, “Data Center Efficiency Best Practices,” Amazon Web
Services, April 2009. [Online]. Available: www.mvdirona.com/jrh/
TalksAndPapers/JamesHamilton Google2009.pdf

[2] G. Linden, “Marissa mayer at web 2.0
- http://glinden.blogspot.com/2006/11/marissa-mayer-at-web-20.html,”
November 2006. [Online]. Available: http://glinden.blogspot.com/2006/
11/marissa-mayer-at-web-20.html

[3] S. Shankland, “We’re all guinea pigs in Google’s search experiment,”
May 2008. [Online]. Available: http://news.cnet.com/8301-10784
3-9954972-7.html

[4] L. A. Barroso and U. Hölzle, “The case for energy-proportional com-
puting,” Computer, vol. 40, no. 12, pp. 33–37, 2007.

[5] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, “The Cost of
a Cloud: Research Problems in Data Center Networks,” SIGCOMM
Comput. Commun. Rev., vol. 39, no. 1, pp. 68–73, January 2009.

[6] E. M. Elnozahy, M. Kistler, and R. Rajamony, “Energy-efficient server
clusters,” in In Proceedings of the 2nd Workshop on Power-Aware
Computing Systems, 2002, pp. 179–196.

[7] V. Sharma, A. Thomas, T. Abdelzaher, K. Skadron, and Z. Lu, “Power-
aware qos management in web servers,” in Proceedings of the 24th IEEE
International Real-Time Systems Symposium (RTSS ’03), 2003, p. 63.

[8] Y. Chen, A. Das, W. Qin, A. Sivasubramaniam, Q. Wang, and N. Gau-
tam, “Managing server energy and operational costs in hosting centers,”
SIGMETRICS Perform. Eval. Rev., vol. 33, no. 1, pp. 303–314, 2005.

[9] M. Mazzucco, D. Dyachuk, and R. Deters, “Maximizing Cloud
Providers Revenues via Energy Aware Allocation Policies,” in Proceed-
ings of the 3rd IEEE International Conference on Cloud Computing
(IEEE Cloud 2010), July 2010.

[10] M. Mazzucco, “Towards Autonomic Service Provisioning Systems,” in
Proceedings of the 10th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGrid 2010), May 2010.

[11] I. Mitrani, Probabilistic Modelling. Cambridge University Press, 1998.
[12] J. McGovern, “Selfish, Mean, Impatient Customers,” July

2008. [Online]. Available: http://www.cmswire.com/cms/web-content/
selfish-mean-impatient-customers-002891.php

[13] C. Palm, “Research on Telephone Traffic Carried by Full Availability
Groups,” Tele (English Edition), vol. 1, 1957.

[14] O. Hudousek, “Evaluation of the Erlang-B formula,” in Proceedings of
RTT 2003, 2003.

[15] S. M. Ross, Introduction to Probability Models. Academic Press, 2000.
[16] W. Whitt, “Efficiency-Driven Heavy-Traffic Approximations for Many-

Server Queues with Abandonments,” Management Science, October
2004.

[17] P. M. Greenawalt, “Modeling Power Management for Hard Disks,” in
In Proceedings of 2nd IEEE MASCOTS, 1994, pp. 62–66.

[18] M. Bergsma, “Wikimedia Architecture,” Wikimedia Foundation
Inc., 2007. [Online]. Available: http://www.nedworks.org/∼mark/
presentations/san/Wikimedia%20architecture.pdf

[19] P. Gill, M. Arlitt, Z. Li, and A. Mahanti, “Youtube traffic characteriza-
tion: a view from the edge,” in Proceedings of the 7th ACM SIGCOMM
conference on Internet measurement (IMC ’07), 2007, pp. 15–28.

[20] W. Whitt, Stochastic-Process Limits. Springer-Verlag, 2002.
[21] G. Urdaneta, G. Pierre, and M. van Steen, “Wikipedia workload analysis

for decentralized hosting,” Comput. Netw., vol. 53, no. 11, pp. 1830–
1845, 2009.

