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Abstract—We present a query formulation language (called MashQL) in order to easily query and fuse structured data on the web.

The main novelty of MashQL is that it allows people with limited IT skills to explore and query one (or multiple) data sources without

prior knowledge about the schema, structure, vocabulary, or any technical details of these sources. More importantly, to be robust and

cover most cases in practice, we do not assume that a data source should have—an offline or inline—schema. This poses several

language-design and performance complexities that we fundamentally tackle. To illustrate the query formulation power of MashQL,

and without loss of generality, we chose the Data web scenario. We also chose querying RDF, as it is the most primitive data model;

hence, MashQL can be similarly used for querying relational databases and XML. We present two implementations of MashQL, an

online mashup editor, and a Firefox add on. The former illustrates how MashQL can be used to query and mash up the Data web as

simple as filtering and piping web feeds; and the Firefox add on illustrates using the browser as a web composer rather than only a

navigator. To end, we evaluate MashQL on querying two data sets, DBLP and DBPedia, and show that our indexing techniques allow

instant user interaction.

Index Terms—Query formulation, semantic\data web, RDF and SPARQL, indexing methods.
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1 INTRODUCTION AND MOTIVATION

ALLOWING end users to easily search and consume
structured data is a known challenge that receives

recently a great attention from the Web 2.0 and the Data
web communities. The rapid growth of structured data on
the web has created a high demand for making this
content more reusable and consumable. Companies are
competing not only on gathering structured content and
making it public, but also on encouraging people to reuse
and profit from this content. Many companies such as
Google Base, Yahoo Local, Freebase, Upcoming, Flicker,
eBay, Amazon, and LinkedIn have made their content
publicly accessible through APIs. In addition, companies
have also started to widely adopt web metadata standards.
For example, Yahoo started to support websites embed-
ding RDF and microformats, by better presenting them in
the search results; MySpace also started to adopt RDF for
profile and data portability; Google, Upcoming, Slideshare,
Digg, the Whitehouse, and many others started to publish
their content in RDFa, a forthcoming W3C standard for
embedding RDF inside webpages so that content can be
better understood, searched, and filtered.

This trend of structured data on the web (Data web) is

shifting the focus of web technologies toward new para-

digms of structured-data retrieval. Traditional search engines

cannot serve such data as the results of a keyword-based

query will not be precise or clean, because the query itself is
still ambiguous although the underlying data are struc-
tured. To expose the massive amount of structured data on
the web to its full potential, people should be able to query
these data easily and effectively. Formulating queries
should be fast and should not require programming skills.

1.1 Challenges

The main challenge is that, before formulating a query, one
has to know the structure of the data and the attribute labels
(i.e., the schema). End users are not expected to investigate
“what is the schema” each time they search or filter
information. In many cases, a data schema might be even
dynamic, i.e., many kinds of items with different attributes
are often being added and dropped. Other sources might be
schema free, or if it exists, the schema might be inline the
data (e.g., RDF). Allowing end users to query structured
data flexibly is a challenge, especially when a query
involves multiple sources.

Example. Fig. 1 shows two RDF sources,1 Example1.com
and Example2.com. Suppose a web user wants to
retrieve “Lara’s articles after 2007” from both sites.
These sources do not only disagree on property labels
(e.g., Year and PubYear), but also on data semantics. For
example, while the rdf:Type in Example1 tells us that A1
and A2 are Articles, we do not know whether B1 and B2
in Example2 are articles, books, or songs.

It is not necessary in RDF that data adhere to a certain
schema or ontology. RDF data are queried using SPARQL
[42]. The query in the right-hand side retrieves “the titles of
the items that are written by Lara after 2007.” Query
conditions in SPARQL are called triple patterns, and
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1. RDF represents data as a directed labeled graph. A graph is a set of
triples of the form <Subject, Predicate, Object>. Subjects and Predicates
must be URIs, an Object can be either a URI or a Literal.
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evaluated as pattern filling [41], rather than truth evaluation
if compared with SQL. This is a robust way for querying
schema-free data, as changes to data do not cause queries to
break; however, it poses hard query formulation challenges.
Before writing a query, one has to be fully aware of the
property labels and data structures. Unlike formulating
SQL, query requires one to manually investigate the data
itself before querying it. This issue becomes challenging in
the case of large data sets; and even more complex when
querying multiple sources, as predicates have to be
explicitly unioned (see Fig. 1).

As discussed in Section 2, allowing people to easily
query and consume structured data is a known challenge in
different areas. However, in an open environment, as the
Data web, for a query formulation language to be
practically sound, it should address the assumptions below:

1.2 Overview of Contributions

We propose an interactive query formulation language,
called MashQL. The novelty of MashQL (compared with
related work) is that it considers all of the above assump-
tions together. Being a language not merely an interface
and, at the same time, assuming data to be schema free is
one of the key challenges addressed in the context of
MashQL design and development. Without loss of general-
ity, this paper focuses on the Data web scenario. We regard
the web as a database, where each data source is seen as
table. In this view, a data mashup becomes a query involving
multiple data sources. To illustrate the power of MashQL,
we chose to focus on querying RDF, which is the most
primitive data model; hence, other models—as XML and
relational databases—can be easily mapped into it [4].

We give a bird’s-eye view of MashQL in Fig. 2 which
shows the same query as in Fig. 1 written in MashQL. The
first module specifies the query input, the second module
specifies the query body, and the output is piped into a
third module (not shown here) that renders the results into
HTML or XML, or as RDF input to other queries.

Each MashQL query is seen as a tree; the root is called
the query subject. Each branch is a restriction on a property of

the subject. Branches can be expanded to allow subtrees
(Fig. 4), called query paths, which allows one to navigate
through the underlying data set and build complex queries.
Formulating a query is an interactive process: first, the
editor queries a given data set (as a black box) to find the
main concepts, from which the query subject can be selected
(e.g., Anything, Article). The editor then finds the
possible properties for this subject (e.g., Title, Author,

Year). The user selects a property and restricts it using a
function (e.g., MoreThan) and value (e.g., 2007); and so on
(Section 4). In this way, users can navigate and query a data
source without any prior knowledge about it. The symbol
“�” indicates a projection, i.e., appear in the results. When
querying multiple sources, two properties (or two in-
stances) are considered the same if and only if they have
the same URI. To help end users not seeing cryptic URI, the
editor normalizes URIs by detecting different namespaces
of same properties and optionally combines them together
(Section 6). In case of different namespaces and property
labels (e.g., S1:Year and S2:PubYear), the user can choose
the union operator “\” to combine them.

Although MashQL can be used, in a sense, for data
integration, but this is not a goal per se. Data integration
requires not only syntax, but also semantic integration,
which is not supported in MashQL. MashQL allows people
to spot different labels of same properties (as they navigate
through data sets) and manually combine them, as shown
in the previous example.

Summary of Contributions:

. Query language (Section 3). The notational system
and constructs that make MashQL an expressive and
yet intuitive query language, supporting all con-
structs of SPARQL.

. Query formulation algorithm (Section 4). This
algorithm is used by the MashQL editor. Its novelty
is that it is one to navigate through and query a data
graph(s) without assuming the end user to know the
schema or the data to adhere to a schema.

. Graph-signature (GS) index (Section 5). Because of
assumption 2 (data are schema free), the previous
algorithm has to query the whole data set in real
time, which can be a performance bottleneck because
such queries may involve many self-joins. Hence, the
interactivity of MashQL might be unacceptable.
Thus, we propose a new way of indexing RDF,
which we call the Graph Signature. The size of a
Graph Signature is typically much smaller than the
original graph, yielding fast response-time queries.

2 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. X, XXXXXXX 2012

Fig. 1. SPARQL query over two RDF data sources.
Fig. 2. The same SPARQL query in Fig. 1, but in MashQL.



. Implementation and evaluation (Sections 7 and 6).
We present two implementations of MashQL: a
server-side mashup editor, and a Firefox add-on
extension. We evaluate the response time of MashQL
on two large data sets: DBLP and DBPedia; and
compare it with Oracle’s Semantic Technology. We
will show queries can be answered instantly,
regardless of the data size.

A preliminary version of MashQL appeared in [23], [24]
presenting only the general intuition of MashQL. This paper is
substantially different:

1. the intuition is revised; it also includes
2. the formal syntax and semantics of MashQL and its

mapping into SPARQL,
3. the query formulation algorithm,
4. the graph-signature index,
5. the evaluation, and
6. the implementation.

2 RELATED WORK

Query formulation is the art of allowing people to easily
query a data source (e.g., relational database, XML, or RDF).
In the background, queries are translated into formal
languages (e.g., SQL, XQuery, or SPARQL). This section
reviews the main approaches to query formulation and how
they relate to the novel contributions of MashQL.

Query-by-form. It is the simplest querying method, but it
is neither flexible nor expressive. For each query, a form
needs to be developed; and changes to a query imply
changing its form. Although some methods have been
proposed to semiautomate form generation [28] and mod-
ification [29] but they generally fail with assumptions 2-4.

Query-by-example. A known approach in databases,
where users formulate queries as filling tables [50].
However, it requires the data be schematized and the users
to be aware of the schema (fails with assumptions 1 and 2).

Conceptual queries. As many databases are modeled at
the conceptual level using EER, ORM, or UML diagrams,
one can query these databases starting from their diagrams.
Users can select part of a given diagram, and their selection
is translated into SQL (ECR [14], [41], RIDL [16], LISA [21],
ConQuer [11], and Mquery [17]). These approaches assume
that data have a schema and users have a good knowledge
of the conceptual schema (fail with assumptions 1, 2, 3, and
some with 4).

Natural language queries. They allow people to write
their queries as natural language sentences, and then
translate these sentences into a formal language (e.g., SQL
[44], XQuery [33]). Hence, people are not required to know
the schema in advance. The main problem is that this
approach is fundamentally bounded with the language
ambiguity—multiple meanings of terms and the mapping
between these terms and the elements of a data schema
(fails with assumptions 2, 3, and relatively 4).

Visualize queries. Several Semantic Web approaches
(Isparql [2], RDFAuthor [46], GRQL [9], and Nitelight [45])
propose to formulate an SPARQL query by visualizing its
triple patterns as ellipses connected with arrows, so that one
would need less technical skills to formulate a query.
Similarly, some tools had been also proposed to assist
formulating XQueries graphically (Altova XMLSpy [1],

Stylus Studio [2], Bea XQuery Builder [10], XML-GL [12],
and QURSED [42]). Although these approaches vary in their
intuitiveness they all intend to assist developers—rather
than end users, as they require technical knowledge about
the queried sources and their Schemas/DTDs (fail with
assumptions 1 and relatively with 2 and 4). In fact, they are
close to the query-by-example approaches as they are
studio-based query builders, but for semistructured data.

Mashup editors and visual scripting. Some mashup
editors (e.g., Yahoo Pipes [7], Popfly [19], and sMash [15])
allow people to write query scripts inside a module, and
visualize these modules and their inputs and outputs as
boxes connected with lines. However, when a user needs to
express a query over structured data, she has to use the
formal language of that editor (e.g., YQL for Yahoo). Two
approaches in the Semantic Web community (SparqlMotion
[6] and DeriPipes [48]) are inspired by this visual scripting.
For example, Tummarello et al. [48] allow people to write
their SPARQL queries (in a textual form) inside a box and
link this box to another, in order to form a pipeline of
queries. All of these visual scripting approaches are not
comparable with MashQL, as they do not provide query
formulation guide in any sense. They are included here,
because MashQL is also inspired by the way Yahoo Pipes
visualizes query modules. However, the main purpose of
MashQL is not to visualize such boxes and links, but rather,
to help formulating what is inside these boxes (Section 6).
Hence, it is worth noting that the examples of this paper
cannot be built using Yahoo pipes. Yahoo allows a limited
support of XML mashups, using scripts in YQL.

Interactive queries. The closest approach to MashQL is
Lorel [18], which was developed for querying schema-free
XML, and without assuming a user’s knowledge about a
schema. The difference between them: first, Lorel partially
handles schema-free queries. Like using the Graph Signa-
ture in MashQL, Lorel uses a summary of the data (called
DataGuide). However, unlike the Graph Signature, the
DataGuide groups unrelated items as they extrinsically use
same property labels, which lead to incorrect query
formulation. In authors’ words, “we have no way of knowing
whether O is a publication, book, play, or song. Therefore, a
DataGuide may group unrelated objects together.” To resolve
this issue, the authors proposed the notion of Strong
DataGuide; but the problem is that the size of a Strong
DataGuide can grow exponentially in case the data is graph
shaped (rather than tree shaped), thus can be larger than the
original graph: “the worst case running time is exponential in the
size of the database, and for a large database, even linear running
time would be too slow for an interactive session.” Second, Lorel
does not support querying multiple sources (assumption 3)
and third, its expressivity is basic (assumption 4). MashQL
supports path conjunctions, disjunctions, and negation,
variables, union, reverse properties, among many others.

Another related approach suggests a highly user inter-
active searching box [37]: a user can write a keyword, the
system then smartly and quickly suggests to autocomplete
this keyword. We found this approach intuitive as it is
simple and does not assume any prior knowledge about the
schema indeed (assumption 1). However, unlike MashQL,
the existence of a data schema is fundamental to this
approach, and this is what makes it highly interactive. The
problem also is that this approach cannot play the role of a
query language (fails with assumptions 2-4). Being, at the
same time, expressive, intuitive, and highly interactive
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query language (over multiple, large, and schema-free data
sources) is a very difficult challenge indeed. We refer to a
recent usability study [30] that investigated several query
formulation scenarios that the casual users prefer. It
concluded that a query language should be close to natural
language, it should be graphically intuitive, and should not
assume prior knowledge about the data. Another recent
study [26] has specified similar querying challenges and
requirements for making relational database systems usable
for web-based applications.

3 THE DEFINITION OF MASHQL

This section defines the data model, the syntax, and the
semantics of MashQL. The discussion on how to formulate
a query follows in the next section.

3.1 The Data Model

MashQL assumes the queried data set is structured as (or
mapped into) a directed labeled graph, similar to but not
necessarily the exact RDF syntax. A data set G is a set of
triples <Subject, Predicate, Object>. A subject and a
predicate can only be a unique identifier I (URL or a
key). An object can be a unique identifier I or a literal L.

Definition 1 (Data Set). A data set G is a set of triples, each triple
t is formed as <S, P, O>, where S 2 II, P 2 II, and O 2 I [ LL.

The only difference with the RDF model is that we allow
an identifier to be any form of a key (i.e., weaker than a
URI). Allowing this would simplify the use of MashQL for
querying databases. Relational databases (or XML) can be
mapped easily to this primitive data model. Fig. 3 shows a
simple example of mapping (or viewing) a database into a
graph. The primary key of a table is seen as a subject, a
column label as a predicate, and the data entry in that
column as an object. Foreign keys represent relationships
between data elements across tables. Mapping from
relational database and XML into RDF is a mature topic
and is entering a standardization phase [4].

We assume each object literal to have a datatype. If an
object value does not have an explicit datatype, it can be
implicitly assumed, by taking advantage of XML conven-
tions: the syntax for literals is a String, enclosed in double or
single quotes; Integers are written without quotes; Booleans
are written as true or false; and so on. Stating a datatype
explicitly is done using namespaces, such as: “1”
^̂xsd:integer; “2004-12-06” ^̂xsd:date.

Definition 2 (Typed Literals). A typed literal is a literal object
with a tag specifying its Datatype D. Every object literal must
have a datatype D: If O 2 LL, then O 2 DD.

Object literals may also have a language tag Lt (e.g., En,
Gr). In the RDF best practice, this is expressed using @

followed by the tag, such as “Person”@En, “A�o�o”@Gr.

Definition 3 (Language Tags). A language tag Lt is tag

optionally associated with a typed literal, to denote to which

human language this literal belongs.

3.2 The Intuition of MashQL

A MashQL query Q is seen as a tree. The root tree is called

the query subject Q(S), which is the subject matter being
inquired (see Definition 4 in Table 1). A subject can be a
particular instance I or a user variable V (see Definition 5).

Each branch is a restriction R, on a property of the subject.
Branches can be expanded to allow subtrees, called query

paths. In this case, the value of a property is the subject of

subquery. This allows one to navigate through the under-
lying data set and build complex queries. As will be
explained later, each level a query is expanded, it costs a

join when this query is executed; thus, the deeper the query
path is, the execution complexity increases.

Example 2. To illustrate query paths, we use the data in Fig. 3
and seek to retrieve the recent articles from Malta. That is,
we retrieve the title of every article that has an author, this

author has an affiliation, this affiliation has a country, this
country has a name Malta, and the article is published
after 2007. This query path can be easily formed and

understood in MashQL, as shown in Fig. 4.

3.3 The Syntax and Semantics of MashQL

MashQL queries are not executed directly; instead, they are
translated into SPARQL queries, which are submitted for
execution. Hence, the semantics of MashQL follow the
semantics of SPARQL [43]. Table 1 presents the formal
definition of the MashQL constructs, and Table 2 presents
their SPARQL interpretation.

Similar to SPARQL, when evaluating a query Q(S), only
the triples that satisfy all restrictions (see Definition 6) are
retrieved, such that: 1) If a restriction is not prefixed with a
modal operator, (R :¼ <empty; P ;Of>), the truth evaluation
of the restriction is considered true if the subject S, the
predicate P , and the object filterOf are matched (see the first
two restrictions in Fig. 5). This case is mapped into a normal
graph pattern in SPARQL (see rule 3). 2) If a restriction is
prefixed with the modality “maybe” (R :¼ <maybe; P ;Of>),
its truth evaluation is always true (see the third restriction in
Fig. 5). This case is mapped into an optional graph pattern in
SPARQL (see rule 4). 3) If a restriction is prefixed with the
modality “without” (R :¼ <without; P ;Of>), its truth eva-
luation is considered true if the subject S and the predicate P
do not appear together in a triple (see the last restriction in
Fig. 5). Notice that there is no such a construct in SPARQL,
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Fig. 3. Mapping a relational database to RDF.

Fig. 4. Query paths in MashQL and their mappings into SPARQL.



but in MashQL, we emulate it with an optional pattern and
the object O should not be bound (see rule 5).

Example. The query in Fig. 5 means: retrieve everything
(call this thing a Song) that: has a title, has the artist
Shakera, possibly has an Album, and does not have a
Copyright. In other words, when evaluating this query,
we retrieve all triples that have same subject and:

1. with a predicate Title,
2. with a predicate Artist and the object identifier is

Shakera,
3. maybe with a predicate Album, and
4. should not have the predicate Copyright.

As shown in Definition 7, MashQL supports nine forms
of object filters: Equals, Contains, MoreThan, LessThan,
Between, OneOf, Not, and query paths. Not all of these
functions have a direct support in SPARQL but we emulate
them (see rules 6-13). MashQL also supports a union
between objects, properties, subjects, and queries (see
Definition 8, and rules 14-17). In addition, to allow people
formulate queries at the type level, the construct “Any”
before a subject or object retrieves the instances of this
subject/object instead of the subject/object itself (see Fig. 4).
Furthermore, since RDF is a directed graph, it is helpful for a
user to explore this graph backward. This is supported by
the Reverse construct (see Definition 10 and rule 20).
MashQL also support functions for datatypes, and language

tags, sorting, some grouping, which are not presented here
for brevity. MashQL support of sorting, distinct, offset, and
limit is moved to the query property window, which appears
by clicking on the top left icon above the query.

To conclude, MashQL is not merely a single-purpose
interface, but rather, a general query formulation language,

with the four assumptions—introduced earlier—in mind. It
is as expressive as SPARQL. Like querying RDF, MashQL
can be easily adapted to query XML and relational databases.

This can be done by either mapping XML (or RDB) into RDF,
or by translating MashQL into XQuery (or SQL).

The design challenge of keeping MashQL an expressive
and yet a simple query language is mainly achieved by
making technical variables and namespaces to be implicit, and
especially through the tree structure of MashQL queries that
hides joins, which is close to the intuition people use in their
natural language communication. For example, the query in
Fig. 4 means, retrieve the article that has an Author x1, x1 has
an affiliation x2, and so on. Because the query is represented
as a tree, these variables are implicit for end users. Suppose
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TABLE 1
The Formal Definition of MashQL

Def. 4 (Query): A Query Q with a subject S, denoted as Q(S), is a set of 
restrictions on S. Q(S) ≔ R1 ∧ … ∧ Rn. 
Def. 5 (Subject): A subject S ∈ (I ∪ V), I is an identifier, V is a variable. 
Def. 6 (Restriction): A restriction R ≔ <Rx , P, Of>, Rx is a modal operator, Rx 
∈ {empty, maybe, without}; P is a predicate (P ∈ I ∪ V); Of is an object filter. 
Def.7 (Object Filter): An object filter Of ≔ <O, f>, O is an object, f is a 
filtering function. f can have one of the following nine forms: 

1. Of ≔ <O>, where O is an object, O ∈ V ∪ I. This object filter does 
not add any restriction on the object value as shown in Figure 5. 

2. Of ≔ <O, Equals(X, D, Lt)>, where X can be a variable or a constant, 
D is a datatype, and Lt is a language tag. See rule-6. 

3. Of ≔ <O, Contains(X, D, Lt)>, O is an object variable, X a regex literal, 
D a datatype, and Lt a language. O should be equal to regex(X). 

4. Of ≔ <O, MoreThan(X, D)>, where O is an object variable, X is a 
variable or a constant, D is a datatype.  

5. Of ≔ <O, LessThan(X, D)>, where O is an object variable, X is a 
variable or a constant, D is a datatype identifier.  

6. Of ≔ <O, Between(X, Y, D)>, where X and Y are variables or 
constants, D is a datatype identifier.  

7. Of ≔ <O, OneOf(V)>, where O is an object variable, and V is a set of 
values {v1, ... , vn}, vi is a variable or constant. 

8. Of ≔ <O, Not(f)>, where f is one of the functions defined above. This 
filter extends all of the above functions with simple negation. 

9. Of ≔ <O, Qi(O)>, where O is an object (O ∈ V ∪ I), and Qi(O) is a 
sub-query with O being the query subject. The restrictions defined in 
the sub-query Qi(O) should be satisfied as well. 

Def.8 (Union): A union can be declared between objects, predicates, 
subjects and/or queries, in the following forms: 

1. On = <O1\O2 \ . . . \On>, to indicate unions between objects, Oi ∈ I. 

2. Pn = <P1\P2 \ . . . \Pn>, to indicate unions between predicates, Pi ∈ I. 

3. Sn = <S1\S2 \ . . . \Sn>, to indicate unions between subjects, where Si ∈ I.  

4. Qn = <Q1\Q2 \ . . . \Qn>, to indicate unions between queries,  

Def.9 (Types): A subject (S ∈ I) or an object (O ∈ I) can be prefixed with 
“Any” to mean the instances of this subject/object type.  
Def.10 (Reverse): <~P> indicates the reverse of the predicate P. Let R1 be a 
restriction on S s.t. <S P O>, R2 be <O ~P S>, R1 and R2 have the same meaning. 

 

TABLE 2
MashQL-to-SPARQL Mapping Rules



you would like to ask; “Give me the list of all stores that sell
parts of the iPhone mobile, and that are located in Rome”; or
“Which cinemas are located in San Francisco, offer a movie
called Avatar and will be played between 20:00 and 23:00.”
Notice that apart from some terms (such as give me the list of
all, which, that are), all of these inquiries can be directly
converted into MashQL queries.

4 QUERY FORMULATION ALGORITHM

We present a novel query formulation algorithm, by which
the complexity and the responsibility of understanding a
data source (even if it is schema free) are moved from the
user to the query editor. It allows end users to easily navigate
and query an unknown data graph(s). That is, people learn
the content and the structure of a data set while navigating it.
The algorithm does not require the data to contain specific
information or tags, except being syntactically correct RDF,
as discussed in the query model (Section 3.1). Fig. 6 shows
screenshots of a query formulation scenario.

Begin

Step 0. Specify the data set G in the Input module. G can be

one or a merge2 of multiple data graphs.
Step 1. Select the query subject S, where S 2 ST [ SI [ V .

That is, after specifying the data set, users can select S from
a drop-down list (Fig. 6A) that contains, either 1) ST : the set
of the subject types in G, such as Article; or 2) SI : the
union of all subject and object identifiers (i.e., all indivi-
duals) in the data set; or 3) a user-defined subject label. In the
latter case, the subject is seen as a variable (S 2 V ) and
displayed in italics; the default subject is the variable label
Anything. These three options are formalized, respec-
tively, in relational algebra and SPARQL, as follows:

Users can union the selected subject with another

subject(s), e.g., Author\Person. After selecting a subject,

and then typing the “\” operator, the subject list appears

again to select another one(s). The union of all subjects is seen

as one subject in the next steps. A union is only possible either

between subject types or individuals, but not a mix of both.
Repeat Steps 2-3 (until the user stops).
Step 2. Select a property P. Depending on the chosen

subject(s) in step 1, a list of the possible properties for this
subject is generated (Fig. 6B). There are four possibilities:

1. If (S 2 ST ), such as Article, the list will be the set
of all properties that the instances of this subject type
have (e.g., Title, Author, Year).

2. If (S 2 SI), such as A1, the list will be the set of all
properties that this particular instance(s) has.

3. If the subject is a variable (S 2 V Þ, the list will be the
set of all properties in the data set.

4. Users can also choose the property to be a variable
by introducing their own label.

The formalization of these four options are:

(4)   (S ∈ ST) → P ∈ππ P2 (σP1=:Type ∧ O1=Subject (G) ⋊S1=S2σ (G)) 
(4’)  P2:{(?S1 <:Type> <S>)(?S2 ?P2 ?O2)} 
(5)   (S ∈ SI) → P ∈ π P (σS=Subject (G)) 
(5’)  P1:{(<S> ?P1 ?O1)} 
(6)   (S ∈ V) → P ∈ π P (σ (G)) 
(6’)  P1:{(?S1 ?P1 ?O1)}
(7)   P ∈ V 

Users can also manually union between properties, in the

same way subjects are unioned, such as Year\PubYear.
Step 3. Add an object filter on P. There are three types of

filters the user can use to restrict P : a filtering function, an

object identifier, or a query path. 1) A filtering function can

be selected from a list (e.g., Equals, MoreThan, one of,

not); see Fig. 6H. 2) If a user wants to add an object

identifier as a filter, a list of the possible objects will be

generated. For example, if a user previously chose Any

Article as a subject, and Author as a property, the list of

the object identifiers would be {A1,A2}. The following

formalizations specify what the list of object identifiers may

contain. Users can also union between objects in the same

way subjects and properties are unioned, e.g., A1\A2.

(8) (S ∈ SI) ∧∧ (P ∈ V) → O ∈ πO1 (σS1=S ∧O1∈URI (G))
(8’)  O1:{(<S> ?P1 ?O1) Filter isURI(?O1)} 
(9) (S ∈ SI) ∧ (P∉ V) → O ∈ πO1 (σS1=S∧P1=P∧O1∈URI (G))
(9’)  O1:{(<S> <P> ?O1) Filter isURI(?O1)} 
(10)  (S ∈ ST) ∧ (P ∈ V) → O ∈ πO2 (σP1=:Type ∧ O1=S (G) ⋊S1=S2 σ (G))
(10’) O1:{(?S1 <:Type> <S>)(?S1 ?P2 ?O2)} 
(11) (S ∈ ST) ∧ (P∉ V) → O ∈πO2 (σP1=:Type ∧ O1=S (G) ⋊S1=S2 σP2=P (G))
(11’) O:{(?S <rdf:Type> <S>)(?S <P> ?O)}
(12) (S ∈ V) ∧ (P ∈ V) → O ∈ πO (σ (G))
(12’) O1:{(?S1 ?P1 ?O1)} 
(13) (S ∈ V) ∧ (P ∉ V) → O ∈πO (σP=P (G))
(13’) O1:{(?S1 <P> ?O1)}
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2. Merging RDF graphs is straightforward as specified in the W3C
standard [42]: all triples are put together; two nodes or two edges are
exactly the same iff they have the same labels (i.e., URI).

Fig. 5. A MashQL query and its mapping into SPARQL.

Fig. 6. A query formulation demo.



Further, 3) users can also choose to expand the property P
to declare a path on it (as Author in Fig. 6D). In this case,
the value X of the property Author, which is a variable,
will be the subject of the subquery, i.e., a left join. The
possible properties of this subject in the second level will
be determined as described in step 2, taking into account
all previous selections. The general case of an n-level
property and n-level object (i.e., n� 1 joins) are presented
below (14-17) for the cases where the root is a subject type
or a certain instance.

General Cases 
The n-level paths properties and objects, in case (S ∈ ST)�

((14)  P ∈π Pn (σP1=:Type  ∧ O1=S  (G) ⋊S1=S2 (σC2(G) ⋊O2=S3 (σC3(G) … ⋊On-1=Sn (σCn(G))))) 
(14’) �������	�
����������	���� ������������������� �	����������  

(15)  O ∈π On (σP1=:Type  ∧ O1=S  (G) ⋊S1=S2 (σC2(G) ⋊O2=S3 (σC3(G) … ⋊On-1=Sn (σCn(G))))) 
(15’) �������	�
����������	��� ������������������ �	��������� �

The n-level paths properties and objects, in case (S ∈ SI) 

(16)  P ∈πPn (σC1 (G) ⋊O1=S2 (σC2 (G) ⋊O2=S3 (σC3 (G) … ⋊On-1=Sn (σCn (G))))) 
(16’) ������	��	��	���	������������ �	��������������������� ∈���  

(17)  O ∈πOn (σC1 (G) ⋊O1=S2 (σC2 (G) ⋊O2=S3 (σC3 (G) … ⋊On-1=Sn (σCn (G))))) 
(17’) ������	��	��	���	���� ����������������� �	��������� �

Step 4. The symbol � before a variable is used to indicate
that it will be returned in the results (i.e., projection).

End
This algorithm illustrates how users interact with the

MashQL editor and formalizes the “background queries”
that need to be executed in each interaction. In this way,
users can navigate and query a data graph without prior
knowledge about it, even if it is schema free. Section 6
implements this algorithm in two different editors, and
discusses implementation issues to further enhance the
query formulation process in the case of large and cryptic
data. Next, we focus on the performance of this algorithm.

5 GRAPH INDEXING: THE GRAPH SIGNATURE

One of our key assumptions for querying the Data web is
that data are schema free. This is indeed a challenging
requirement for query formulation as the editor’s back-
ground queries need to be executed on the whole data set
and in real time, because there is no offline schema that can
be used instead. In such a user-interaction setting, the
response time is an important factor that needs to be taken
into consideration and which should be small, preferably
within 100 ms [35]. Achieving such a short interaction time
for background queries with graph-shaped data is even more
challenging, because the exploration of a graph stored in a
relational table G(S,P,O) can be expensive as this table needs
to be self-joined many times [8]. A query with n levels
involves n� 1 joins. Precomputing and materializing all
possible MashQL’s background queries is not an option
since the space requirements are too high; thus, an efficient
RDF indexing is needed. Several approaches have been
proposed to index RDF, such as Oracle3 [13], C-Store4 [8],

and RDF3X5 [39]. Although these approaches have shown
good performance—a query with a medium complexity
costs some seconds—however, this performance is unac-
ceptable for an interactive query formulation session,
especially in the case of large graphs.

In this section, we present the Graph Signature, a novel
approach for indexing RDF graphs, which is a complemen-
tary rather than an alternative to the approaches mentioned
above. Our goal is not to optimize any arbitrary RDF query,
but rather to enhance the performance of the background
queries presented in the previous section. Next, before
presenting the Graph Signature, we generalize the back-
ground queries into one query model. The rest of the section
shows how this query model is significantly optimized
using the Graph Signature.

5.1 The Query Model

As one may notice, each of the 17 background queries
formalized earlier is a query path, i.e., a linear-shaped
query. Star-shaped and tree-shaped queries are not needed
in query formulation. We define a query path as an
expression of the form: fO1 P1 O2 P2: . . .Pn Ong, where Oi

is a node, and Pi is an edge. Both nodes and edges can be
variables. A variable node is denoted as ?Oi and a variable
edge as ?Pi. A query can return either a node or an edge.
For query formulation, we only need to retrieve the last
node/edge in the path; that is, we need to retrieve either the
edge Pn or the node On. Hence, the query model is formed as:
OnjPn : fO1 P1 O2 P2: . . .Pn Ong. For example, the query
P:{B2 Author ?O1 ?P ?O2} retrieves the properties of the
authors of B2; and O:{B2 Author ?O1 Affiliation ?O} retrieves
the affiliations of the authors of B2. Each of the 17
background queries in the previous section is a special case
of this query model; hence, optimizing the query model is
an optimization of all background queries.

5.2 The Intuition of the Graph Signature

The idea of the Graph Signature is to summarize a given
RDF graph, so that the background queries can be answered
from this summary. Because the size of the summary is
smaller than the original graph, queries can be faster. Given
an RDF graph G, its Graph Signature S is a twofold
summary: the O-Signature SO and the I-Signature SI. SO is a
summary of the original graph such that nodes that have the
same outgoing paths are grouped together. SI summarizes a
graph by grouping nodes that have the same incoming paths,
which is analogous to the 1-index [36].

Example. Fig. 7 provides an example of an RDF graph and
its O/I-signatures. In this example, {A2, A3} are grouped
in the SO because they have the same outgoing paths
until the end. A1 is not part of this grouping as it does
not have the path Affiliation.Student. In the I-Signature,
A4 is not grouped with {A1, A2, A3} as it has different
incoming paths, e.g., Student. Each of the two
summaries is computed and stored separately, but they
are jointly used to produce precise answers, as will be
discussed shortly.
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3. Oracle suggested in [13] to build a subject-property matrix
materialized join views on the RDF table, such that all direct and nested
properties for a group of subjects are materialized. This approach (called
Semantic Technology) has been released as part of Oracle 10g and 11g.

4. C-Store [8] suggested partitioning the RDF table vertically, into n two-
column tables, where n is the number of unique properties in the data.

5. RDF3X [39] to only build many Bþ-Tree indexes, and a “careful
optimization of complex join queries.”



Let us now query these signatures, and compare their
results with the results obtained from the original graph G.
We call the answer of G, the target answer. Fig. 8 shows
examples of queries and their answers.

As shown in Fig. 8, each part of the Graph Signature
produces the correct answer and some more results, called
false positives. That is, the target answer is equal to or a
subset of the answer of each part. Hence, the intersection of
the SO and SI answers equals or is a small superset of the
target answer. We shall show in Section 5.8 how false
positives (if any) are eliminated, in order to always achieve
precise answers. Hence, instead of evaluating the background
queries on the original graph, we evaluate them on the
Graph Signature. Because the size of the graph signature is
much smaller than the original graph, querying it is much
faster. Section 5.9 positions the novelties of the Graph
Signature w.r.t. related work. In Section 7, we present an
evaluation of MashQL’s background queries over the Graph
Signature of large data sets (DBLP and DBPedia), and show
that it yields to an instant user interaction, regardless of the
complexity of the background queries.

In the next sections, we turn our focus to formally define
the Graph Signature and its construction and storage. We
shall come back again (Section 5.8) to discuss how the
background queries are evaluated on the Graph Signature.

5.3 The Notion of Bisimilarity

Since each node in the Graph Signature is in fact an
equivalent class of some nodes in G, one way to compute the
Graph Signature is a full traversal of G. For example, we
take every node in G, compute all outgoing paths from this
node, and compute all incoming paths into this node. Then,
we construct the O-Signature by grouping the nodes having
the same outgoing paths; and similarly the I-Signature. This
way is called trace equivalence [20]. Unfortunately, this way
is computationally expensive and known to be PSPACE-
complete [46]. The solution (as suggested in [32]) is to use
the notion of bisimilarity, which is extensively discussed in
the literature of process algebra [20], [40] and which implies
trace equivalence. The idea of bisimilarity, in RDF terms, is to
group nodes having the same properties, and then iterate; at

each iteration step, we split a group of nodes if it violates
bisimilarity. We repeat until our groupings are stable. Next,
we adopt the typical definition of bisimilarity [40] and
modify it to suite RDF graphs.

Definition ðO-Bisimilarity �OÞ. O-Bisimilarity is a symmetric
binary relation �O on G. Two nodes S1 and S2 are O-
bisimilar (S1 �O S2), if and only if:

1. The set of the property labels of S1 equals the set of
the property labels of S2. In RDF terms, there exists
ðS1 P1 OÞ . . . ðS1 PmOÞ, and ðS2 P1 OÞ . . . ðS2 Pn OÞ,
such that, the distinct set of properties of
S1fP1 . . . ; Pmg equals the distinct set of properties
of S2fP1; ::; Png.

2. If S01 is a successor of S1 through a property
PiðS1

Pi! S01Þ, and S02 is a successor of S2 through a
property PiðS2

Pi! S02Þ, then S01 �O S02, and S02 �O S01.

Definition (I-Bisimilarity �I). I-Bisimilarity is a symmetric
binary relation �I on G. Two nodes S1 and S2 are I-bisimilar
(S1 �I S2), if and only if:

1. The set of the property labels into S1 equals the set of
the property labels into S2. That is, there exist
ðO P1 S1Þ . . . ðO Pm S1Þ, and ðO P1 S2Þ . . . ðO Pn S2Þ,
such that, the set of properties into S1fP1::; Pmg
equals the set of properties into S2fP1; ::; Png.

2. If S01 is a predecessor of S1 through a property
PiðS0 Pi1 ! S1Þ and S02 is a predecessor of S2 through a
property PiðS0 Pi2 ! S2Þ, then S01 �I S02, and S02 �I S01.

5.4 The Definition of the Graph Signature

Definition (Graph Signature). Given an RDF graph G, its
Graph Signature S is comprised of two summaries: O-
Signature SO and I-Signature SI. In short, S ¼ <SO; SI>.

Definition (O-Signature). Given an RDF graph G, its SO is a
directed labeled graph, such that, each node in SO is an
equivalent class (�O ) of some nodes in G; and each edge p in
SO from u to vðuP! vÞ iff G contains an edge p from a to
bðaP! bÞ and a 2 u; b 2 v.

Definition (I-Signature). Given an RDF graph G, its SI is a
directed labeled graph, such that, each node in SI is an
equivalent class (�I ) of some nodes in G; and each edge p in
SI from u to v (uP! v) iff G contains an edge p from a to
b ðaP! bÞ and a 2 u; b 2 v.

5.5 Construction of the Graph Signature

To compute the Graph Signature, we use the standard
algorithm for computing bisimilarity [40]. We modify this
algorithm to suit RDF graphs, for computing both the O-
Signature and the I-Signature (see Fig. 9). The input in each
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Fig. 7. An RDF data graph and its O/I-Signatures.

Fig. 8. GS answers compared with the target answers.



algorithm is a data graph and the output is the O/I-
Signature. As mentioned earlier, to compute the O-
Signature, first, we group nodes having the same immedi-
ate properties; then we iterate—to split groupings that are
not O-bisimilar—until all groupings are stable. As shown in
steps 5-7, an equivalent class A is stable iff for every path P
from A into another group node B, each instance of A has a
successor in B. In other words, let X be the predecessors of
B through P , in G; then A should be a subset of or equal to
X. Otherwise, A should be split into two nodes: (A \X) and
(A�X). The same (but the opposite) way is used to
compute the I-Signature. As discussed in [40], the maximal
time needed to compute bisimilarity for this algorithm is
Oðm log nÞ, where m is the number of nodes and n is the
number of edges. Hence, the time complexity of computing
the overall Graph Signature is Oðm log nÞ.

5.6 Storage of the Graph Signature

Since each part of the Graph Signature is a directed labeled
graph, it is convenient to store them in the same way the
data graph is stored. In our implementation, a data graph
and its O/I-signatures are stored and queried in the same
way, using the Oracle Semantic Technology (see Section 6).
To store the extent of the O/I-signature, each node in SO

and SI is given an identifier, and this id is used in a lookup
table to store the nodes in G belonging to their equivalent
classes in SO and SI, ext(SoID, SiID, Node). This table is
called the extent of the graph signature. A full-text index can
be built on this table for keyword search, and statistics can
be maintained for query optimization purposes. For query
formulation, we only store node labels and their group ids
in a table as specified above.

5.7 The Size of the Graph Signature

The space cost to store each part of the Graph Signature
consists of the space of the signature and the space of its
extent. The size of each part of the Graph Signature is at most
as large as the data graph; but in practice, it is much less, as
our evaluations show. The size of the extent is exactly the
number of unique nodes in the data graphs. In the following,
we present some techniques that yield a significant reduc-
tion of the overall size of the Graph Signature:

1. Literal nodes can be excluded, as they are not used in
query formulation. We assign literal nodes to null
before computing the Graph Signature.

2. Annotation properties can be excluded. There are
several types of properties in RDF that are not
intended to represent data, but rather, to describe
data, such as rdf:Description, rdf:comment, rdf:label,
rdf:about, or rdfs:seeAlso.

3. Synonym properties can be joined. Because of different
namespaces and conventions, it is likely that
different properties have the same semantics (e.g.,
foaf:FirstName and foaf:GivenName, foaf:mbox and
:email). Such properties can be joined by replacing
them with a chosen label.

4. Equivalence properties can be normalized. Certain
properties indicate that the subject and object in a
triple are equal, such as rdf:SameAs and rdf:Redir-
ect. Normalizing these properties can be done by
assigning the subject and the object the same URI.

5. Certain properties can be excluded. We may wish to
exclude some properties that are not likely to be
queried, such as LongAbstract in DBPedia.

Before computing the graph signature, we process a
configuration file, which we have built for the properties to
be excluded, joined, or normalized.

A special case property is the rdf:Type. As this property
is likely to be used in query formulation, it should be well
indexed. For this, we extend the lookup table, which we use
to store the extents. Instead of having the lookup table as
ext(SoID, SiID, Node), we have ext(Type, SoID, SiID, Node).
Hence, we can look up not only the group of a node, but
also the node(s) and the group(s) of a certain type.

5.8 Evaluating Queries with the Graph Signature

As discussed earlier, the answer obtained from the O-
Signature—and similarly the I-Signature—is always a
superset or equals the target answer (the answer obtained
from the data graph). In case the answer of the O/I-
signature equals the target answer, we call it a precise
answer; otherwise, it is called a safe answer, since it equals the
target answer and some false positives. The intersection of
the answers of both the O-Signature and the I-Signature is a
smaller superset or equals the target answer. The following
theorems state when the Graph Signature produces precise
and safe answers; the proofs are sketched in the Appendix.

Theorem 1. Given a query, the answer of the O-Signature is
always safe; and similarly the answer of the I-Signature.

Theorem 2. Given any query retrieving edge labels, the answer of
the O-Signature is always precise.

Theorem 3. Given a query, with all nodes variables, the answer
of the I-Signature is always precise.

Theorem 4. Given a query, if the answer of the O/I-Signature is
empty or the intersection of both is empty, then this answer is
always precise.

Based on these theorems, the flowchart in Fig. 10 depicts
the evaluation scenario. Given a background query Q, if Pn
is projected (i.e., the last edge label is retrieved), it can be
precisely answered from the O-Signature, as stated in
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Theorem 2. Examples of such queries follow: P:{?O ?P
?O1}; P:{?O Author ?O1 ?P ?O2}; and P:{?O Author ?O1
Affiliation ?O2 ?P ?O3}. This case represents the majority of
the background queries in query formulation, as it allow
one to navigate through and understand the structure of a
data graph.

In case a background query projects On (i.e., the last node
label is retrieved), and all node labels (O1 . . .On) in the
query are variables, such as O:{?O1 Author ?O2 Affiliation
?O}, the answer of the I-Signature is precise (see Theorem
3). However, if some nodes in the query are not variables,
such as B2 in the query O:{B2 Author ?O1 Affiliation ?O}, the
answer of the O-Signature—and the answer of the I-
Signature—is safe. In fact, the more variable nodes a query
contains, the less false positives are produced. To reduce the
number of false positives in this case, we evaluate the query
on the O-Signature and the I-Signature separately, and we
intersect both results. If the intersection is empty (or one of
the answers is empty), then the answer is precise (see
Theorem 4). Otherwise, the intersection of both answers is a
small superset or equals of the target answer. Such results
might be sufficient indeed in the query formulation
practice; otherwise, to eliminate the false answers, we
evaluate the query on the data graph, and optimize it using
the intersection of both answers. The idea of this optimiza-
tion is to simply join the results of the intersection with the
data graph, and execute the query on this join. That is, the
false results are eliminated as they do not satisfy the query
on the data graph.

We have implemented the query evaluation scenario
described above (i.e., execution plan) in a table function in
Oracle 11g. This function takes a query as input and
produces precise results as output. The function first parses
the query to find the constant node labels—that are not
variables—and replace them with their group IDs. For
example, the query P:{B2 Author ?O1 ?P ?O2} is rewritten
as P:{123 Author ?O1 ?P ?O2}, where 123 is the group id of
the B2. The function then checks whether the query is
retrieving edges or has all nodes as variables, if so, the
function then executes it on the O-Signature or I-Signature,
respectively. Otherwise, it executes it on the O-Signature
and I-Signature in parallel, and intersects both results. If the
result is not empty, the function eliminates the possible
false positives by executing the query on the join of the data
graph and the intersection, as described earlier.

Because the time complexity of evaluating a query is
preoperational to the size of the graph [36], evaluating
queries on the Graph Index yields a better performance,
since its size is likely to be much smaller than the data
graph. See our evaluation is Section 7.

5.9 Related Work to the Graph Signature

The notion of structural summaries has been proposed to
summarize XML data, for XQuery optimization. The
DataGuide [38] was the first to suggest summarizing
XML by grouping nodes reachable by any incoming path.
The problem with this way is that, because nodes that
extrinsically have some similar property labels are grouped
together, many false positives are generated. The Strong

DataGuide [18] proposed to solve this issue by grouping
nodes reachable by simple paths, as the DataGuide; but, it
allows a node to exist in multiple groups. As pointed by the
authors, this approach is efficient for tree-shaped data, but
the size of the summary grows exponentially the more the
data are graph shaped (and can be larger than the original
graph). The 1-index [36] proposed to group nodes reachable
by all incoming paths (which is analogous to our I-
Signature), but it does not consider the outgoing paths (as
our O-Signature) that yields an efficient reduction of false
positives. A similar approach to the 1-index (called A(kk)
index [32]) suggested to also group nodes reachable by all
incoming paths (but up to k levels); thus, it can only answer
queries with k levels. Since this approach generates many
false positives, the same authors of the A(k) suggested later
another approach called F&B index [31]. This approach
groups nodes reachable by both all incoming and all
outgoing paths, i.e., forward and backward at the same
time. This approach produces much less false positives
indeed, but its size is not much less than the original. For
example, the size of the F&B index for the Xmark data set is
only 10 percent less than the original [31]. As such, the time
needed to query the F&B summary is close to querying the
original graph. Furthermore, all of the above approaches
cannot be applied for RDF because 1) RDF is graph shaped
rather than tree shaped; hence applying them produces
large-sized indexes; and 2) XML queries are not the same as
RDF queries (i.e., different query models). For example, in
XML, we typically retrieve node labels, but in RDF, we also
need to retrieve property labels.

The novelty of our graph index is: 1) the bisimilarity
algorithm is adapted to suite RDF graphs, s.t. it is not
necessary for a node to have unique outgoing edges, as in
XML; 2) unlike the F&B approach that generates one large
incoming-and-outgoing index in order to generate less false
positives, we store the incoming-and-outgoing indexes
separately, but they are jointly used, thus achieving small
indexes and less false positives at the same time; and 3) a
query model and an evaluation scenario for RDF query
paths is proposed, which is different from XML paths, as
property labels, not only node labels, can be retrieved.

6 IMPLEMENTATION

We implemented MashQL in two scenarios: an online
server-side query and mashup editor, and a browser-side
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Fig. 10. Depiction of the execution plan.



Firefox add-on editor. The former is illustrated in Figs. 11
and 12. Its functionality comprises:

1. the MashQL language components;
2. the user interface;
3. a state machine dispatching the “background

queries” in order to support query formulation
during the interactive exploration of RDF data sets;

4. a module that translates a formulated MashQL
query into SPARQL and submits this for execution
or debugging; the formulated MashQL query is
serialized and stored in XML;

5. a module that retrieves, merges, and presents the
results of the submitted SPARQL query.

MashQL queries can be materialized and published if
needed. Each published query is given a URL, and its
output is seen as a concrete RDF source.

When a user specifies an RDF data source(s) as input, it is
bulk loaded into an Oracle 11g, and its Graph Signature is
constructed. Subsequently, the MashQL Editor uses AJAX to
dispatch background queries and the SPARQL translation of
formulated MashQL queries for execution by the Oracle 11g.
We chose Oracle 11g because of its support for native RDF
queries and storage.

As one may notice, MashQL’s GUI follows the style Yahoo
Pipes visualizes feed mashups, and uses the Yahoo Pipes’s
open-source Java-Script libraries. Our choice of following
this style is to illustrate that MashQL can be used to query and
mash up the Data web as simple as filtering and piping web
feeds. It is worth noting also that the examples of this paper
cannot be built using Yahoo pipes, as it does support
querying structured data. Yahoo allows a limited support of
XML mashups, but this is neither graphical nor intuitive; as
one have to write complex scripts in YQL, the Yahoo Pipes’
query language. In fact, Yahoo Pipes, as well as Popfly and
sMash, is motivating for—rather than solving—the problem
of structured-data retrieval.

In an alternative implementation, we developed the
MashQL editor as an add on to the Firefox browser. This
extension has the same functionalities of the online editor.
However, no databases or RDF indexing are used for
storing, indexing, and querying the data sources, but rather,
the SPARQL queries are executed inside the browser, using
the JENA SPARQL query libraries. Hence, the size of the
input sources is limited to the client’s memory. The goal of
this Firefox extension is to allow querying and fusing websites

that embed RDFa. In this way, the browser is used as a web
composer rather than only a navigator.

We refer the reader to technical report [25] for more
technical details and MashQL use cases.

6.1 Implementation Issues

6.1.1 URI Normalization

As RDF data may contain unwieldy URIs, MashQL queries
might be inelegant. Thus, the editor normalizes URIs and
displays the normalization instead; for example, Type instead
of http://www.w3.org/1999/02/22-rdf-syntax-ns#type. In
addition, if one moves over Type, its URI is displayed as a
“tip.” Internally, the editor uses only the long URIs. In case of
different URIs leading to the same normalization, we add a
gray prefix to distinguish them (e.g., 1:Type, 2:Type). The
normalization is based on a repository that we built for the
common namespaces (e.g., rdf, rdfs, WOL, and FOAF). In
case a URI does not belong to these namespaces, the editor
uses heuristics. For example, takes the last part after “#.” If “#”
does not exist, then the part after “/.” The result should be at
least three characters and start with a letter; otherwise, we
take the last two parts of the URL, and so on. We have
evaluated this on many data sets and found it covering the
extreme majority of cases. However, there is no guarantee to
always produce elegant normalization.

6.1.2 Verbalization

To further improve the elegancy of MashQL, we use a
verbalize/edit modes. When a user moves the mouse over a
restriction, it gets the edit mode and all other restrictions get
the verbalize mode. That is, all boxes and lists are made
invisible, but their content is verbalized and displayed
instead (see Fig. 6). This makes the queries readability closer
to natural language, and guides users to validate whether
what they see is what they intended.

6.1.3 Scalable Lists

In case of querying large data sets, the usual drop-down list
becomes unscalable. We have developed a scalable and
friendly list that supports search, autocomplete, and sorting
based on Rank and Asc/Desc. If Rank is selected, we order
items/nodes based on how many nodes point to them. This
knowledge is precomputed, from the Graph Signature. Our
list supports also scalable scrolling. The first 50 results are
displayed first, but one can scroll to go to the next,
arbitrarily middle, or last 50. Each time, the editor sends
an AJAX query to fetch only those 50.

7 EVALUATION

This section presents three types of evaluations: 1) the
scalability of the Graph Signature, 2) the time cost of
formulating a MashQL query using the Graph Signature,
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Fig. 11. Screenshot of the online MashQL editor.

Fig. 12. System model.



and compare it with using the Oracle Semantic Technology;
and 3) the usability of the MashQL editors.

7.1 Data Sets and Experimental Settings

Our evaluation is based on two public data sets: 1) DBLP
and 2) DBPedia. The DBLP (700 MB size) is a graph of eight
million edges. We partitioned this graph into three parts:
A8 is the whole DBLP; A4 is four million triples from A8;
and A2 is two millions. No sorting is used before the
partitioning. Fig. 13 shows some statistics. The DBPedia
(6.7 GB) is a graph of 32 million edges, which is an RDF
version of the Wikipedia. Similarly, DBPedia is partitioned
into three parts. We choose these data sets in order to
illustrate the scalability of our Graph Index in case of
homogenously and heterogeneously structured graphs.
DBLP is more homogenous, as most of its nodes have
similar paths. However, DBPedia is known to be a noisy
collection of RDF triples. Each of the six partitions is loaded
into a separate RDF model in Oracle 11g, which was
installed on an server with 2 GHz dual CPU, 2 GB RAM,
500 GB HHD, and 32-bit Unix OS.

7.2 Scalability Evaluation

We built an O-signature and I-Signature for each partition
(see Fig. 14). As one can see, the time cost to build the SO
and SI is linear with respect to the data size. For example,
for SO, B2 (2M triples) costs 48 seconds, the time is almost
doubled when the data size is doubled.

What is more scalable is the behavior of the index with
respect to the number of the triples. For example, the whole
DBLP A8 (8M triples) is summarized in SO by only 34K
triples; this number is larger when the data are smaller,
190K for A4. This is because (although we did not apply
any sorting before partitioning the data, but) more simila-
rities were found when the whole data are put together. In
other words, some nodes in A4 are grouped in several
equivalence classes (instead of one) as they have different
paths, while when all data are put together in A4, it is
found that these nodes have the same paths. This implies
that the size of the Graph Signature does not necessarily
increase if more triples are added to the data graph. The
size of the O-Signature reflects the homogeneity of a graph.
For example, the O-Signature for A8 (34K) is smaller than
the O-Signature for B8 (244K), as DBLP is more homo-
genous. Nevertheless, for both data sets, the generated O/I-
signatures fit in a small memory, thus joining it many times
still yields fast querying as we show next.

The I-Signature happens here to be smaller than the O-
Signature. The reason is that root nodes (which are many in
DBLP and DBPedia) are all grouped together in one
equivalent class.

7.3 Response-Time Evaluation

This section evaluates the response time of the MashQL
editor’s user interaction. In other words, we are not interested
to evaluate the execution of a MashQL query itself, as this is
not the purpose of this paper; but rather, the execution of the
queries that the editor performs in the background to
generate the “next” drop-down list (see Section 4). In the
following, we present three MashQL queries. We identify the
set of background queries, and evaluate them on both: 1)
Oracle’s Semantic Technology, which is the native RDF
index6 in Oracle 11g [13]; and 2) the Graph Signature index
(as described in Section 5.8). We also store the Graph
Signature in Oracle 11g as described in Section 5.6.

Experiment 1. To formulate the query in Fig. 15 on DBLP,
the user first selects the query subject from a list. The
query that produces this list is annotated by �. The
user then selects a property of this subject from a list.
The query that produces this list is annotated by �,
and so on. These queries are executed on each partition
of the DBLP, using both: the Graph Signature and
Oracle Semantic Technology. The cost7 (in seconds) is
shown in Fig. 16.

As shown by this experiment, the time cost for each
query remains within few milliseconds using the Graph
Signature, regardless of the data size and complexity of the
query. This is because the size of the Graph Signature is
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6. As described earlier, Oracle [13] stores RDF triples in one table
G(s,p,o); thus, a query with n-levels implies joining the table n� 1 times. To
improve the querying performance, Oracle proposed to build several B-tree
indexes on G, as well as to build subject-property materialized views on G,
such as V1ðs;p1, p2; . . . pn). A tuple in V1 is a subject identifier x, and the
value of the column pi is an object y. In this way, data are transformed—-
somehow—from a graph form into a relational form; thus, less number of
joins when executing a query. These subject-property views are seen as
auxiliary, rather than core, indexes. This is because there are no general
criteria to know which subjects and which properties to group. Oracle uses
statistics to find possibly good groupings (i.e., views); otherwise, queries are
executed on the original G data graph; hence, queries with many joins
remain a challenge.

7. To avoid the I/O dominance, we did not include GROUB-BY and
ORDER-BY, and only the top 10,000 rows are retrieved.

Fig. 13. Statistics about the experimental data.

Fig. 14. The O-Signature for all partitions.

Fig. 15. Four queries are needed to formulate this MashQL query.

Fig. 16. Time cost (in seconds) of background queries.



small, if compared with the Oracle’s Semantic Technology
that scans the whole data set.

Experiment 2. Here, we show a similar evaluation on
DBPedia, but with longer queries (see Fig. 17).

This experiment also shows that the time cost for all
queries remains very small indeed, although the data set is
larger, more heterogeneous, and the queries involve longer
join-path expressions.

Experiment 3 (Extreme). This experiment might not be faced
in practice; but its goal is to expose the limits of both our
Graph Signature and Oracle’s index. Fig. 19 shows a query
where all nodes and properties are variables. It means, what
are the properties of the properties of . . . (at ninth level) of
properties of anything. After selecting the query subject as
the variable Anything, and then move to select from the list
of its properties, the user decides to make the property as a
variable, at each level. The query editor, at each level,
generates the list of the possible properties depending on
the previous selections. For example, at the second level,
the editor’s query �: P:(?Anything ?RelatedTo1

?O1)(?O1 ?P ?O2); at the third level �: P:(?Anything
?RelatedTo1 ?O1)(?O1 ?RelatedTo2 ?O2)(?O2 ?P

?O4); and so on. Notice that executing such queries is very
expensive as the whole index must be scanned and joined
with itself i� 1 times, at level i.

This is indeed the worst case scenario for both indexes.
As shown in Fig. 20, the response of the Oracle’s Semantic
Technology after the fourth level was larger than 5,000 s;
thus, we terminated the queries. On the other side, although
the execution time using our index increases at each level,
the important thing is that this increase remains fairly
acceptable, for such type of extreme queries. The GS index
results to faster background queries because the graph
signature fits in a small memory, even with some
magnitudes of self-joins. Oracle’s Semantic Technology, on
the other hand, performs the self-joins on the whole data
set, which is too large. In other words, the GS index joins
only the Graph Signature, which is 1M edges, whereas
Oracle’s joins the whole data graph, which is 32M edges.

To conclude, as shown by these three experiments,
because the size of the graph-signature index is small, long
join-path queries can be executed very fast. This speed
enables the MashQL editor to perform its background
queries instantly, regardless of the data set’s size.

7.4 Usability Evaluation

To evaluate how easy it is to use MashQL, we invited
40 people to use the MashQL editor to formulate basic and
advanced queries over RDF data sets found at http://
data.semanticweb.org, which contains over 80k triples
about articles, people, organizations, conferences, and
workshops. Twenty five participants were non-IT skilled
(i.e., had only basic skills for web browsing); and other 15
were IT-skilled people—but none of them was familiar with
RDF or SPARQL. A 10-min tutorial about MashQL was
given before the evaluation started, illustrating examples of
MashQL queries but no hands-on exercises or examples
from the data sets used.

Each of the 40 participants was given six queries to
formulate (listed in Fig. 21). After formulating each query
in MashQL, each person was asked to manually browse
the queried page(s) and compose the answer. The average
time needed to formulate each query in MashQL (versus
the manual navigation) was recorded and is presented in
Fig. 22b.

After finishing all queries, each person was asked to fill
in a questionnaire that evaluated the main features of
MashQL. The results are summarized in Fig. 23.

This evaluation included the MashQL editor and the
Firefox add on. The evaluation conclusions for each case
were almost the same; thus, they are merged here for
the sake of brevity. We refer to [49] for more details
about each evaluation.

We found that most of the people were generally happy
and the core ideas of MashQL were appreciated. People
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Fig. 17. Nine queries are needed to formulate this MashQL query.

Fig. 18. Time cost of the background queries in Fig. 17. Queries taking
more than 5,000 s were terminated and their time is not reported.

Fig. 19. A query with all predicates are variables.

Fig. 20. A query involving many background joins.



were able to learn MashQL quickly by practicing it; if they
were to perform similar queries on other data sets, they
would do it much faster next time. It is worth noting that
none of the 40 people failed to formulate the given queries.
We also observed that people are still not used with the
Data web paradigm (i.e., dealing with structured data and
the difficulty of querying it). They are used to “google”
information and then manually navigate to compose
answers, without noticing how much time they consume
or the impreciseness of the results.

Since MashQL is not intended to be used by developers
(e.g., SPARQL and RDF experts), but rather, by people who
are unfamiliar with these technologies, our usability study
did not compare MashQL usability with SPARQL usability.
However, it is worth noting that some users of the MashQL
editors have used it to learn SPARQL. The tool supports a
debugging functionality that displays the generated
SPARQL script, and allows one to directly change this
script, and then look back to these changes in MashQL. This
indicates that the MashQL’s intuition is easier to learn for
SPARQL beginners.

8 CONCLUSIONS AND FUTURE WORK

We proposed a query formulation language, called
MashQL. We have specified four assumptions that a Data
web query language should have, and shown how
MashQL implements all of them. The language-design
and the performance complexities of MashQL are funda-
mentally tackled. We have designed and formally specified
the syntax and the semantics of MashQL, as a language,
not merely a single-purpose interface. We have also
specified the query formulation algorithm, by which the

complexity of understanding a data source (even it is
schema free) is moved to the query editor. We addressed
the challenge of achieving interactive performance during
query formulation by introducing a new approach for
indexing RDF data. We presented two different imple-
mentation scenarios of MashQL and evaluated our
implementation on two large data sets.

We plan to extend this work in several directions. We
will introduce a search box on top of MashQL to allow
keyword search and then use MashQL to filter the retrieved
results. To allow people use MashQL in a typical data
integration scenario, several reasoning services will be
supported, including SameAs, Subtype, Subproperty, and
Part-of. Furthermore, we are collaborating with colleagues
to use MashQL as a business rules language, thus include
several reaction and production operators. We plan to also
support aggregation functions, as soon as their semantics
are defined and standardized in SPARQL. Supporting such
functions in MashQL is not difficult since we only need to
allow the user to select a function (e.g., sum, avg, max, etc.)
before a subject, property, or object. Last but not least, we
are currently extending the Graph Signature approach for
general-purpose query optimization. In particular, we are
seeking to extend the Graph Signature to optimize arbitrary
SPARQL queries; for this, we need to extend our query
model to retrieve not only the last node/edge, but any
node/edge, as well as star-shaped queries. This is not
difficult, because a query path is the building block for star-
shaped queries. Furthermore, we plan to use our approach
on keyword search. In such a scenario, we expect to have
fast responses, because false positives are less important.
Last but not least, we need to develop a maintenance
strategy to support querying dynamic data sets.

APPENDIX

Proof of Theorem 1. Given a query Qðon:fo1 p1 o2 p2 . . .
pn�1 on�1pn ongÞ. Evaluating this query safely means the
results set ox when evaluating Q on a data graph G, is a
subset of the results Ox of evaluating it on the O-
Signature ðoox 2 OOxÞ. Let p1 be an edge from o1 to o2 in G,
then (by definition), its O-Signature SO must contain p1

from O1 to O2, and for pn from on�1 to on there is pn from
On�1 to On (where o1 2 O1 . . . on 2 OnÞ. Thus for every
path ðo1

p1! o2
p2!� � � on�1

pn!Þ in G there is exactly the
path ðO1

p1! O2
p2!� � �On�1

pn!Þ in SO. When evaluating
Q on G we retrieve OOx the set of nodes having this path
into them, and similarly OOx when evaluating Q on SO.
Since each oi 2 Oi, then ðOOx 2 OOxÞ. tu

Proof of Theorem 2. Given a query Qðpn : fo1 p1 o2 p2. . .
pn�1 on�1 pn ongÞ. Evaluating this query precisely means
that the results set ppx when evaluating Q on G, is exactly
the same results PP x when evaluating it on the
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Q1. “Find the titles of the articles presented at the 4th European Semantic 
Web Conference”. This is a simple query and helps to get familiar with 
the MashQL editor.
Q2. “To learn more about these articles, find the titles, authors, and 
abstracts of the articles presented at the 4th European Semantic Web 
Conference”. This extends Q1, but this time the participants have to 
compare the easiness of the web navigation with the use of MashQL.
Q3. “Retrieve all the titles, authors, and abstracts of the articles presented 
at the 4th European Semantic Web Conference that have a title that 
contains the word Semantic”. A more difficult query, to show the 
querying efficiency of the two methods.
Q4. “Update the previous query by retrieving also and the homepages of the 
authors, and order the results”. This scenario emphasizes the ordering 
functionality of the editor compared to the manual ordering of the 
information, after gathering them in a file.
Q5. “Retrieve the names of all authors of papers that contain the word 
‘Semantic’ and presented in the 4th European Semantic Web Conference”. 
In the previous queries one should start with “Article”, here it 
should start with “Person”.
Q6. “Retrieve the names and homepages of the authors that attended the
4th European Semantic Web Conference or the 16th International World 
Wide Web Conference, and the authors’ names contain the word Thomas’. 
This query is a mashup involving multiple pages/sources, and 
contains the “OneOf” operator.

Fig. 21. List of queries used in the evaluation.

Fig. 22. (a) Manual Navigation versus MashQL. (b) IT versus non-IT.

Fig. 23. Evaluation of the editor interface and features.



Soðppx ¼ PP xÞ. Now, let p1 be an edge from o1 to o2 in G,
then (by definition) its O-Signature SO must contain p1

from O1 to O2, and so for pn from on�1 to on there is pn

from On�1 to On (where o1 2 O1 . . . on 2 OnÞ. Hence for
every path ðo1

p1! o2
p2!� � � on�1

pn! onÞ in G there is
exactly the path in SO ðO1

p1! O2
p2! . . .On�1

pn!OnÞ;
and since the path ðp1! p2!� � � pn!Þ from o1 to on�1, is
(by definition) the same path from O1 to On�1. Then, the
set of edges ppx from on�1 to on is exactly the same set of
edges PP x from O1 to On. tu

Proof of Theorem 3. Given query Qðon:fo1 p1 o2 p2. . .
pn�1 on�1 pn ongÞ where every node o is a variable.
Evaluating this query precisely means retrieving all
nodes OOx having the path ðp1! p2!� � � pn!Þ into them,
i.e., regardless of which previous nodes this path follows
to reach them, as all previous nodes are variables. Hence,
by definition, for every node in OOx having the path
ðp1!p2!� � � pn!Þ into it in G, there is the same path
ðp1! p2!� � � pn!Þ into OOx in SI. Since, also by definition,
the nodes in OOx are exactly the nodes in OOx that have the
same paths, then OOx ¼ OOx. tu

Proof of Theorem 4. Because (as proven in theorem 1) the
answer of the O/I-Signature is safe, i.e., a superset of the
target answer, then if this superset is empty the target
answer is empty. tu
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