
Enabling Cloud Application Portability

Demetris Antoniades, Nicholas Loulloudes,
Athanasios Foudoulis, Chrystalla Sophokleous

Demetris Trihinas, George Pallis, Marios Dikaiakos
Department of Computer Science

University of Cyprus
Email: [danton,loulloudes.n,athafoud,

stalosof,trihinas,gpallis,mdd]@cs.ucy.ac.cy

Harald Kornmayer
Institut fur Informatik

Duale Hochschule Baden-Wuerttemberg
Mannheim, Germany

Email: harald.kornmayer@dhbw-mannheim.de

Abstract—The Cloud Application Management Framework
(CAMF) enables Cloud application developers to design, deploy
and manage their applications through an intuitive blueprint
design. In this paper we show how Cloud application developers
can utilize CAMF in order to have portable applications that can
be deployed on different IaaS with minimal effort. Towards this
goal, we introduce the Cloud Application Requirement Language
(CARL). CARL can be used for defining the application software
and hardware requirements, information that is then included
into the TOSCA description of the Cloud application, alongside
the application blueprint. CAMF’s Information Service utilizes
both these artifacts to provide IaaS specific configurations that
fulfill the user’s requirements.

I. INTRODUCTION

Cloud computing is in a constant advancing mode nowa-
days. It is the de facto deployment platform for Web appli-
cations (both desktop and mobile) with increasing adoption
trends in both corporate and scientific environments. It elim-
inates the need for owning any computing infrastructure at
all, thus cutting-down significantly operational expenses and
management efforts for applications of any scale.

However, in the current cloud computing landscape, ap-
plication developers are usually locked-in to a single cloud
provider. Moving an application as a whole, or even par-
tially, from one provider to another is a challenge since it
entails significant (re)configuration efforts to comply with the
technologies of the underlying platform. During this process
the developer has to first identify and then provision those
resources (machine images, flavor, network interfaces, storage
media, etc.) that accommodate best the application’s deploy-
ment requirements. Moreover, runtime requirements such as
software dependencies (system libraries and tools, runtime
archives, etc.) need to be satisfied and made available to the
newly provisioned resources.

In this paper we demonstrate how one can utilize the
Cloud Application Management Framework (CAMF) [8] in
order to automate and streamline application portability across
different Infrastructure as a Service (IaaS) providers with min-
imal effort. CAMF, uses OASIS TOSCA [2], the Technology
and Orchestration Specification for Cloud Applications, and
enables application developers to provide a generic blueprint of
their application without any consideration in the technological
specifications of the target platform. Application requirements
(hardware and/or software) are described in the form of
simple yet expressive directives using the newly introduced

Cloud Application Requirement Language (CARL). The set
of such directives is then processed by CAMF’s Information
System Service (CAMF-ISS), an intelligent online matching
service that ultimately results with an IaaS-specific applica-
tion description for the target platform. In that respect, the
cloud-agnostic blueprint describes all the necessary application
requirements (virtualized resources, os, libraries, etc.), the
application and its components need in order to be deployed,
like OS and server version. Additionally, the developer can
add custom configuration scripts or application binaries that
each of the modules need. Having this information, CAMF,
through CAMF-ISS, provides all the matching instances and
flavors a specific Cloud provider makes available that match
the generic description. The developer can then select the most
appropriate ones and deploy her applications.

Moving or trying out a different cloud provider can prove
quite beneficial in terms of application cost, performance or
both. Through CAMF-ISS, CAMF can provide all the matching
instances and flavors for the new cloud provider, while trans-
parently transferring all the user customized configurations and
binaries 1. This process limits down the developer actions for
moving her application to a new provider to only a few clicks.

Additionally, CAMF comes with a number of integrated
modules that enable the cloud developer to monitor and ana-
lyze her application performance and cost over any provider,
pinpointing in this way the best deployment option. JCatas-
copia, CAMF’s integrated interoperable monitoring system,
collects measurements for a number of system and application
metrics. CAMF-ISS collects all the monitoring information
from JCatascopia and enables application topology specific
analysis. Using the generic blueprint of the application CAMF-
ISS shows both generic and per module performance and cost
analysis, correlating also the behavior and trend of different
modules. In addition, CAMF-ISS can be used for comparisons
between different application version and deployments, within
and among cloud providers, thereby giving the application
developer insights towards a more optimized configuration for
her application. The contributions of this study are:

1) We enrich the TOSCA cloud application description with
the user requirements by introducing CARL, the Cloud
Application Requirement Language

2) We introduce CAMF’s Information System Service, an

1In spite of its significant importance, the scope of this article is not (live)
application migration across providers.

Fig. 1. CAMF’s extensible architecture

online system that periodically indexes IaaS hardware and
software resources and matches them to the developer
requirements, transforming a generic application blueprint
to an IaaS specific configuration.

3) Through three heterogeneous applications, we demon-
strate how CAMF enables Cloud application portability.

The rest of this article is organized as follows: Section II
provides an overview of CAMF’s Architecture and discusses
the different functional components. Section III discusses
CAMF’s portability enhancing qualities. In Section IV we in-
troduce and describe three heterogeneous applications through
which we demonstrate the portability functionality of CAMF
during the challenge. Section V presents the different stages in
the application portability process. Finally, Section VI presents
the Related Work, and Section VII provides conclusive remarks
about our work.

II. CAMF

The Cloud Application Management Framework (CAMF) 2

is a newly established open source technology project under
the Eclipse Foundation. CAMF aims to provide extensible
graphical tools over the Eclipse Rich Client Platform (RCP)
that facilitate lifecycle management operations for Cloud ap-
plications, in a vendor neutral manner. To this end, CAMF
focuses on three core operations:

Application Description
interoperable representation of cloud application’s
structure (blueprints) with high-level depiction of
service components, management operations, and
interrelationships.

Application Deployment
preparation and submission of descriptions to any
cloud infrastructure of preference, while enabling
seamless and repeatable contextualization work-
flows.

2http://www.eclipse.org/camf

Application Monitoring
realtime data from the underlying platform and
the application itself for fine-grained operational
and performance monitoring.

The Eclipse platform provides a strong foundation for
CAMF primarily because it retains a dominant position in
the worldwide IDE market 3. Its OSGi plug-in-based software
architecture enables tight integration of language-specific IDEs
with a plethora of supporting suits providing code testing,
analysis and profiling, code management ans so on. Through
CAMF, an IT expert can empower her day-to-day develop-
ment processes with cloud application management operations.
Eclipse will not only function as a Web development environ-
ment, but also facilitate the preparation, migration, and mon-
itoring of her applications to the cloud. Furthermore, build-in
collaboration support can assist when participating in large
development teams wherein group members can effortlessly
share application description, deployment information artifacts
or even complete cloud project with just a few clicks. Notable,
all these activities can take place withing a unified and intuitive
graphical workspace.

Figure 1 depicts the extensible architecture of CAMF. We
briefly describe the most important components of CAMF, in
regard to application portability in the next paragraphs. For
more information about the complete architecture we refer the
interested reader to [15].

A. Application Description

1) Generic description: Through CAMF’s graphical en-
vironment the application developer’s first task it to pro-
vide a generic description of her application. These topology
blueprints specify a different structure and management oper-
ations for the application at hand. However, each blueprint is
generic in that it does not contain any IaaS-specific informa-
tion. In this basic form, application descriptions are portable
templates, which upon IaaS selection can be enriched with par-
ticular metadata that materialize a component or operation(s)
for the target IaaS.

2) Requirement description: After describing the generic
blueprint of her application, the cloud application developer
moves on into describing the application requirements. CAMF
introduces CARL, the Cloud Application Requirement Lan-
guage, that enables the programmer to give abstract descrip-
tions of the application requirements. CAMF exports the
generic (topology and custom software) and CARL require-
ments into a TOSCA [2] specification file. This file is then send
to CAMF-ISS, for it to provide IaaS specific configurations,
that better match the requirements.

a) CARL: The Cloud Application Requirement Lan-
guage (CARL) aims at facilitating users to specify the re-
quirements (hardware and software) of their applications in
a generic and provider-agnostic manner. It includes a set of
simple yet expressive directives that enable a cloud developer
to define the requirements of its application at different levels
of the virtualization stack. As depicted by the EBNF repre-
sentation in Grammar 1, CARL’s grammar supports three
top-level application requirements, namely System, Operating

3http://goo.gl/m0G2u3

s y s : cpu =[2−4]; s y s :mem>=8G;
s y s : d i sk >20G; s y s : n e t =1000M;

os =" Ubuntu " ; os : a r c h =" x86_64 " ;

sw=" j a v a " : ver > 1 . 6 ; sw=" to mc a t " : ver > = 6 . 0 ;

Listing 1. Cloud Application Requirments Example

System and Software. Listing 1 provides an example of re-
quirements specified via CARL.

At the System level, the user can define application re-
quirements in terms of cpu, storage, memory and network and
assign value constraints through standard arithmetic operators.
At the same time the user can further define units of measure-
ment for some constraints, for example Kilo (K), Mega (M),
Giga (G) or Tera(T).

〈requirements〉 ::= 〈reqs_list〉

〈reqs_list〉 ::= {〈req〉}

〈req〉 ::= 〈sys_reqs〉 | 〈os_reqs〉 | 〈sw_reqs〉

〈sw_version〉 ::= 〈INT〉 [(’.’ 〈INT〉)][(’.’ 〈INT〉)][(’.’ 〈INT〉)]

〈sys_reqs〉 ::= {(〈sys_field〉 〈DELIMIT〉)}

〈sys_field〉 ::= 〈sys〉 : 〈sys_type〉

〈sys_type〉 ::= 〈cpu〉 | 〈disk〉 | 〈mem〉 | 〈net〉

〈cpu〉 ::= cpu 〈operator〉 (value | 〈range〉)

〈disk〉 ::= disk 〈operator〉 (value | 〈range〉) UNITS

〈mem〉 ::= mem 〈operator〉 (value | 〈range〉) UNITS

〈net〉 ::= net 〈operator〉 (value | 〈range〉) UNITS

〈os_reqs〉 ::= (〈os_field〉 〈DELIMIT〉)

〈os_field〉 ::= ((os = STRING) | (os : 〈os_type〉))

〈os_type〉 ::= 〈ver〉 | 〈arch〉

〈sw_reqs〉 ::= (〈sw_field〉 〈DELIMIT〉)

〈sw_field〉 ::= 〈SW〉 = 〈sw_type〉

〈sw_type〉 ::= 〈STRING〉 (= 〈sw_version〉)

〈ver〉 ::= ver 〈operator〉 〈sw_version〉

〈arch〉 ::= arch = 〈STRING〉

〈SYS〉 ::= sys

〈OS〉 ::= os

〈SW〉 ::= sw

Grammar 1. CARL grammar in EBNF notation

B. CAMF’s Information System Service

CAMF’s Information System (Fig. 1), is the component
responsible for the communication with CAMF’s Information
System Service (generic and specific TOSCA file exchange).
CAMF-ISS handles both the resources each IaaS makes avail-
able to the developer and also keeps up-to date information on

Fig. 2. CAMF’s Information System Service (ISS)

how the resources of each application are utilized. The internal
architecture of CAMF-ISS is depicted in Figure 2.

1) Resources: CAMF-ISS communicates via IaaS specific
connectors, accessed through a connector pool interface, and
retrieves information for both virtualized hardware and any
available software resources. All these remote resources, (i.e.
virtual images, networks, storage media, key pairs and so
on), available by one or more IaaS, are indexed and saved to
the Indexed Resource Catalog (IRC) using a Cloud Resource
Model representation.

a) Hardware: CAMF-ISS indexes virtualized hardware
resources as those are made available in the involved IaaS
“marketplaces”. The needed resource metadata, as name, type,
description or relevant task published by the provider are stored
by IRC and periodically refreshed.

b) Software: Collecting software resources from the
IaaS provided instances is a more challenging task. Most
providers do not directly disclose the already installed re-
sources through the desciptive metadata that usually accom-
pany a VM image. Therefore, the user has to manually check if
any resources are available and if necessary download the ones
she requests for her application. To provide a more complete
view of the available resources to the user and also enable
automatic application portability, CAMF-ISS incorporates an
IaaS Resource Scavenger pool. Each scavenger communicates
with an IaaS and connects to each available instance in order to
retrieve a list of the available software resources (as those are
listed in apt and/or yam repositories). The scavenger runs in
a similar manner as Minersoft [4]. Specifically, it periodically
initiates all the newly available instances from each IaaS and
harvest the software files available on them. It then provides
CAMF-ISS with an enriched software list that includes all the
available software components.

2) Analytics: CAMF-ISS is capable of providing, per
Cloud application, usage analytics by processing information
regarding resource utilization and cost-enriched monitoring
data, collected during the lifecycle of an (elastic) cloud service
deployment. Moreover, it enables application users to query,
explore, compare, and visualize historic data collected from
past deployments and previous versions of a cloud service.

a) Resource monitoring: Currently CAMF is fully in-
tegrated with JCatascopia [16], an automated, multilayer in-

teroperable monitoring system for elastic cloud environments.
JCatascopia follows an agent-based approach, and can be
utilized to collect monitoring metrics from multiple layers of
the underlying infrastructure, as well as performance metrics
from the deployed cloud services. JCatascopia is platform
independent and during the metric collection process it takes
into consideration the rapid changes that occur due to the
enforcement of elasticity actions on the application execution
environment and the cloud infrastructure. JCatascopia comes
with a standard probe suite that allows the user to monitor
basic metrics. CAMF allows application developers to also
define and implement custom metrics collectors that adhere
to JCatasopia’s modular architecture. These probes can be
placed anywhere on the application stack, ranging from the
virtualization layer, upwards to the application itself, to obtain
meaningful metrics that report the runtime health and applica-
tion performance.

C. Requirement matching

When CAMF’s Information System component sends the
requirement enhanced TOSCA file, the CARL parser, in
CAMF-ISS, extracts the developer requirements and transmits
them to the Requirement Matcher. This module runs a keyword
based search against the Indexed Resource Catalog, to find
the components (software and hardware) that better match
the application requirements. When done, the information
is passed to the TOSCA Generator to create the different
IaaS specific configurations and return them to CAMF. The
configurations are now ready for deployment.

D. Application Deployment

The enhanced TOSCA file, including IaaS specific con-
figurations, returned by CAMF-ISS, can now be used for
application deployment. At this point, the TOSCA file is
translated by the IaaS specific connector to IaaS API calls
and deployed to the provider infrastructure.

III. PORTABILITY QUALITIES

To hide any inherent complexity and support cloud porta-
bility for any of the three management operations, listed in
the previous section, CAMF relies on abstract models for
interacting with cloud resources as well as various open source
specifications and toolkits.

A. IaaS Cloud Abstractions

Building on top of facilities provided by the Apache jclouds
toolkit 4, the cloud resource model lays the groundwork to-
wards portability by establishing a common way of interfacing
with different cloud vendors. In particular, it defines a common
set of abstraction for virtualized resources (server images,
network, security, monitor probes, and elasticity policies and
actions) and artifacts (executables, libraries, and configura-
tions) that are key to any applications deployment, irrespective
of the underlying cloud environment. In addition, it defines a
common set of actions on these abstractions (authentication,
resource listing, monitor metric listing, configuration, and
deployment) that are necessary to complete a management

4http://jclouds.apache.org

operation. This layer of abstraction is responsible for providing
basic interfaces and classes that may be extended by IaaS-
specific connectors, enabling CAMF to satisfy application
transition in any cloud vendor.

B. Interoperable Application Descriptions

CAMF adopts the Organization for the Advancement of
Structured Information Standards (OASIS) Topology and Or-
chestration Specification for Cloud Applications (TOSCA)
specification for blueprinting and packaging cloud applications
in a standardized manner. TOSCA provides a vendor-neutral
language for describing the topology of cloud applications,
along with their management operations. TOSCA adopts a
graph-based topology representation, which includes hardware
(virtual) and software components involved and their inter-
relationships. Components implemented by means of nodes
signify executing entities in a deployment with semantics such
as requirements against the hosting environment, capabilities,
and policies that govern the execution aspects like resource
security or elasticity.

C. Automatic and Streamlined Application Configuration

TOSCA provides the necessary grammar to describe man-
agement aspects of an application by means of lifecycle oper-
ation or by more complex management plans. For each node,
we can explicitly define its lifecycle operations (for example,
deploy, configure, or start an instance of the corresponding
types). Currently, CAMF supports lifecycle operation and par-
ticularly node configuration through native shell scripts. In the
near future, we’ll incorporate new tools in the framework that
allow developers to import third party, or compile their own,
open source Chef cookbooks that automate and streamline
application configuration processes.

D. Vendor-Neutral Elasticity Specification

Granted that resource autoscaling is widely regarded as
one of the key ingredients of future Web applications, CAMF
supports the Simple-Yet-Beautiful Language (SYBL) [3], an
open source, directive-based, elasticity requirements specifica-
tion. SYBL enables developers to define fine-grained scaling
policies and corresponding enforcement actions, by leveraging
monitoring metrics placed at different levels of the applica-
tion stack. Metrics can be obtained either from native IaaS
monitoring systems or from custom metric collectors (probes)
provided by the user during deployment. SYBL elasticity
policies are mapped to TOSCA node policies and provide two
variances: Constrains and Strategies. The former express the
constraints of an application related to cost, performances, and
other quality metrics and allows the underlying infrastructure
to decide the appropriate scaling action to be taken, if such
intelligence is available. The later variance lets developers take
full control of elasticity management by specifying explicit
scaling actions.

IV. DEMO APPLICATIONS

In this section we describe the three heterogeneous ap-
plications that we will use to demonstrate the portability
functionality of CAMF during the challenge.

A. Three tier video application

We start with an intuitive three-tier online video streaming
service [17]. Such an application combines three basic compo-
nents every Web application needs. The service is comprised
of: (i) an HAProxy 5 load balanced which distributes requests
(i.e. download, upload video) across multiple application
servers. (ii) An application server tier, where each instance is
an Apache Tomcat 6 server containing the video streaming web
service. Aggregated tier metrics such as the average number of
connections and/or request throughput can be used to evaluate
the application performance. (iii) a Cassandra 7 NoSQL dis-
tributed data storage backend. Similarly, aggregated metrics
such as the average CPU utilization and/or query latency can
be used to evaluate the Cassandra ring performance.

B. SCAN

As a second application we use SCAN [14] a framework
for running batch scientific workloads in a cloud environment.
SCAN enables executing biological applications into elastic
cloud environments. In this version of SCAN we run the
Genome Analysis Toolkit (GATK) [10], a collection of tools
for the analysis of genetic sequencing information, with a
particular focus on discovering differences between the genetic
samples taken from a particular individual and the “standard”
reference genome. SCAN provides one or more work queues
and manages a pool of worker machines per queue, dispatching
tasks to the workers as they become available. Tasks may come
from users, or be generated by a previous task.

C. ScienStore

The third application is a scientific workbench and mar-
ket place for scientific applications, called “ScienStore”, that
enables scientist to concentrate on their scientific questions
instead of dealing with the details of their IT system. [6]
ScienStore is build as an OSGi component, enabling the
delivery of software on the scientist Cloud resources.

V. PORTABILITY PROCESS

This section describes the process a Cloud application
developer follows to describe and deploy her application using
CAMF. We showcase the process using the ScienStore applica-
tion, since it’s simpler and more intuitive. However, the process
is identical for any cloud application. The challenge demo will
also showcase the process for the other two applications.

A. Generic Application Description

As described in the previous section the ScienStore applica-
tion is composed by one basic component. To better illustrate
the use of CAMF, we split this component into to two dif-
ferent components based on their resource demands. The first
component can be used for memory intense calculations while
the second one can be used for CPU demanding calculations.
The first step for the application developer is to graphically
describe these components using CAMF. For each component
the developer includes any artifacts that should be included

5http://haproxy.lwt.eu
6http://tomcat.apache.org
7http://cassandra.apache.org

Fig. 4. ScienStore proposed configurations ready for application development

with her applications. These artifacts include any custom
source code, configuration scripts, executable files and data
files the developer wants to include in her project. In the case
of ScienStore we include the OSGI bundle that implements
the scientific application offered by the soter.

B. Requirement specification

The second step is the description of the software and hard-
ware requirements for the application to be deployed. Through
an intuitive graphical environment, the cloud developer can
provide the requirements for each specific component. Figure 3
shows how the generic description of our sample application
looks like. The component on the left, represents the memory
intense component. For this, the application developer requires
8GB of memory. The right component is configured for more
CPU intensive calculations. For this reason the developer
requires a 3.2GHz CPU. All other requirements are the same
and include OS selection and installed software requirements.

C. Provider Selection

When the developer has completed the above steps, the
generic configuration and requirements is send to CAMF-
ISS, as a TOSCA description, through CAMF’s Information
System component. After the matching procedure, CAMF-ISS,
returns the IaaS specific descriptions that are presented to the
application developer through a table, as shown in Figure 4.
The table includes a matching score, denoting the amount of
requirement with an exact match. Also it provides an estimate
of cost per hour of usage for the components used (inferred by
the IaaS pricing scheme), and the option to get more details
on the configuration. The selected deployment is ready to be
deployed to the IaaS, an one-click step performed through
CAMF.

VI. RELATED WORK

Portability, along interoperability, are considered two of
the major challenges in cloud computing today, topped only
by trust and security issues. Petcu [11] gives a thorough
review of portability and interoperability challenges. Petcu et
al. proposed mOSAIC an open-source platform based on a
stack of existing Cloud technologies that allows the develop-
ment of Cloud application on top of Private of Public Cloud
resources [12]. The PaaS Semantic Interoperability Framework
(PSIF), aims at modeling semantic interoperability conflicts
that may occur during the migration of an application on a
cloud platform [9]. CSAL provides a storage abstraction layer
to enable applications to both utilize the highly-available and
scalable storage services provided by cloud vendors and be
portable across platforms [5]. Ranabahu et al [13] present an
abstraction-driven approach, where cloud service consumers
use abstract languages to specify their programs. A software
infrastructure transforms the user program specifications to

Fig. 3. ScienStore generic application description including application requirements

the required, provider specific software components. Kostoska
et al. proposes a PaaS platform solution that acts as an
intermediate between SaaS applications and services and the
IaaS [7]. Their solution relies on TOSCA for the application
description and installation requirements. CAMF’s approach
uses TOSCA [1], the de facto standard for cloud portability,
to describe the application and resources. Additionally, our
approach provides detailed indexing of the available hardware
and software resources of the Cloud provider, and through
CARL, the requirement specification language, enables devel-
opers to describe and move their applications in different IaaS,
with the minimal effort required.

VII. CONCLUSIONS

Through three heterogeneous applications we demonstrate
how CAMF, a cloud application monitoring framework, en-
ables Cloud application portability. We introduce CARL, a re-
quirement description language that enables Cloud application
developers to generically, non-IaaS specific, describe the hard-
ware and software requirements of their applications. CAMF’s
Information System Service uses these generic descriptions to
provide, ready to deploy, IaaS specific configurations.

VIII. ACKNOWLEDGMENTS

This work was supported by an AWS in Education Re-
search Grant award and the European Commission in terms of
the CELAR 317790 FP7 project (FP7-ICT-2011-8).

REFERENCES

[1] T. Binz, G. Breiter, F. Leyman, and T. Spatzier. Portable cloud services
using tosca. IEEE Internet Computing, (3):80–85, 2012.

[2] T. T. Committee et al. Topology and orchestration specification for
cloud applications (tosca)–committee specification 01. Technical re-
port, Technischer Bericht, OASIS, 2013. URL http://docs.oasis-open.org/
tosca/TOSCA/v1.0/cs01/TOSCA-v1.0-cs01.pdf. Abgerufen am 2013-04-
26.

[3] G. Copil, D. Moldovan, H.-L. Truong, and S. Dustdar. Sybl: An
extensible language for controlling elasticity in cloud applications. In

Cluster, Cloud and Grid Computing (CCGrid), 2013 13th IEEE/ACM
International Symposium on, pages 112–119. IEEE, 2013.

[4] M. D. Dikaiakos, A. Katsifodimos, and G. Pallis. Minersoft: Software
retrieval in grid and cloud computing infrastructures. ACM Transactions
on Internet Technology, 12(1), 2012.

[5] Z. Hill and M. Humphrey. Csal: A cloud storage abstraction layer to
enable portable cloud applications. In Cloud Computing Technology and
Science (CloudCom), 2010 IEEE Second International Conference on,
pages 504–511. IEEE, 2010.

[6] H. Kornmayer. Towards the scientific workbench and sciencestore
for astroparticle physics. In Parallel and Distributed Processing with
Applications (ISPA), 2012 IEEE 10th International Symposium on, pages
540–544. IEEE, 2012.

[7] M. Kostoska, M. Gusev, and S. Ristov. A new cloud services portability
platform. Procedia Engineering, 69:1268–1275, 2014.

[8] N. Loulloudes, C. Sofokleous, D. Trihinas, M. Dikaiakos, and G. Pallis.
Enabling interoperable cloud application management through an open
source ecosystem. Internet Computing, IEEE, 19(3):54–59, May 2015.

[9] N. Loutas, E. Kamateri, and K. Tarabanis. A semantic interoperability
framework for cloud platform as a service. In Cloud Computing
Technology and Science (CloudCom), 2011 IEEE Third International
Conference on, pages 280–287. IEEE, 2011.

[10] A. McKenna, M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis,
A. Kernytsky, K. Garimella, D. Altshuler, S. Gabriel, M. Daly, et al. The
genome analysis toolkit: a mapreduce framework for analyzing next-
generation dna sequencing data. Genome research, 20(9):1297–1303,
2010.

[11] D. Petcu. Portability and interoperability between clouds: Challenges
and case study. In Proceedings of the 4th European Conference on
Towards a Service-based Internet, ServiceWave’11, pages 62–74, Berlin,
Heidelberg, 2011. Springer-Verlag.

[12] D. Petcu, G. Macariu, S. Panica, and C. Crciun. Portable cloud
applications-from theory to practice. Future Gener. Comput. Syst.,
29(6):1417–1430, Aug. 2013.

[13] A. Ranabahu, E. M. Maximilien, A. Sheth, and K. Thirunarayan. Appli-
cation portability in cloud computing: An abstraction driven perspective.
2013.

[14] C. Smowton, C. Miller, W. Xing, A. Balla, D. Antoniades, G. Pallis, and
M. D. Dikaiakos. Analysing Cancer Genomics in the Elastic Cloud. In
Workshop on Clusters, Clouds and Grids for Life Sciences In conjunction
with CCGrid 2015 - 15th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing, 2015.

[15] C. Sofokleous, N. Loulloudes, D. Trihinas, G. Pallis, and M. Dikaiakos.
c-Eclipse: An Open-Source Management Framework for Cloud Appli-
cations. EuroPar 2014, 2014.

[16] D. Trihinas, G. Pallis, and M. D. Dikaiakos. JCatascopia: Monitoring
Elastically Adaptive Applications in the Cloud . In 14th IEEE/ACM In-

ternational Symposium on Cluster, Cloud and Grid Computing, CCGRID
2014, 2014.

[17] D. Trihinas, C. Sofokleous, N. Loulloudes, A. Foudoulis, G. Pallis, and
M. D. Dikaiakos. Managing and Monitoring Elastic Cloud Applications
[Demo Paper]. In 14th International Conference on Web Engineering,
ICWE 2014, 2014. Demo Paper.

