
BenchPilot: Repeatable & Reproducible
Benchmarking for Edge Micro-DCs

Joanna Georgiou∗, Moysis Symeonides∗, Michalis Kasioulis∗, Demetris Trihinas†,
George Pallis∗, Marios D. Dikaiakos∗

∗ Department of Computer Science
University of Cyprus

Email: { jgeorg02, msymeo03, mkasio01, gpallis, mdd }@cs.ucy.ac.cy

† Department of Computer Science
University of Nicosia

Email: trihinas.d@unic.ac.cy

Abstract—Micro-Datacenters (DCs) are emerging as key en-
ablers for Edge computing and 5G mobile networks by pro-
viding processing power closer to IoT devices to extract timely
analytic insights. However, the performance evaluation of data
stream processing on micro-DCs is a daunting task due to
difficulties raised by the time-consuming setup, configuration
and heterogeneity of the underlying environment. To address
these challenges, we introduce BenchPilot, a modular and highly
customizable benchmarking framework for edge micro-DCs.
BenchPilot provides a high-level declarative model for describing
experiment testbeds and scenarios that automates the bench-
marking process on Streaming Distributed Processing Engines
(SDPEs). The latter enables users to focus on performance
analysis instead of dealing with the complex and time-consuming
setup. BenchPilot instantiates the underlying cluster, performs
repeatable experimentation, and provides a unified monitoring
stack in heterogeneous Micro-DCs. To highlight the usability of
BenchPilot, we conduct experiments on two popular streaming
engines, namely Apache Storm and Flink. Our experiments
compare the engines based on performance, CPU utilization,
energy consumption, temperature, and network I/O.

Index Terms—Edge Computing, Internet of Things

I. INTRODUCTION
The number of interconnected embedded devices is rapidly

exploding and transforming our physical world into a cyber-
physical ecosystem, the Internet of Things (IoT), with reports
claiming the number of “things” will reach 41 billion by
2025 [1]. These devices generate a vast amount of data that
needs to be processed to produce useful insights. However,
processing on IoT devices is not always an option due to
their inherent limitations, such as poor reliability, restrictive
processing power and storage capacity [2]. On top of that,
the limited bandwidth and increased latency of IoT-to-Cloud
connections make the offloading of processing to centralized
Cloud data centers a sub-optimal solution.

Edge Computing is promoted as a reasonable alternative
for analyzing upstream and downstream IoT data, on behalf
of cloud services [3]. Micro-DCs are key enablers for IoT
data processing and analytic pipelines while also playing a
significant role in 5G deployments [4]. An Edge micro-DC
consists of a small cluster of co-located servers that create a
shareable pool of resources across different users and applica-
tions. In contrast to warehouse-scale cloud data centers, micro-
DCs are usually on-premise deployments assembling limited

computing resources with increased heterogeneity, e.g., farms
of single-board ARM-based micro-controllers with limited ca-
pabilities (1-4 cores @ 1.5GHz with 1-4GB RAM) and servers
with increased processing power (e.g., 2-8 cores @ 4GHz with
8-32 GB RAM) [2]. The emergence of micro-DCs as plat-
forms for deploying IoT-related applications raises the need to
evaluate platform and application performance under various
configurations and workload conditions. This is a challenging
task because of the large space of alternative configurations
that typically arise in such context and affect system and
application performance in distributed infrastructures [5].

Typically, the evaluation of a system is performed through
systematic benchmarking, which is a procedure that method-
ologically stresses a system under test, and, at the same
time, observes its reactions through a thorough analysis of
an expansive list of quantitative and qualitative performance
metrics [5], [6]. The well-established benchmarks from the
data management and cloud computing community [7]–[12]
usually provide only workloads and data generators. The latter
leads to the enforcement of end-users to manage burdens,
such as the management of pre-deployment dependencies,
hardware, and software configurations. Moreover, they do not
offer provisions for diverse hardware architectures, e.g., ARM
processors. Consequently, users have to rebuild the executables
to be compatible with the underlying infrastructure. Addition-
ally, state-of-the-art studies focus on application performance
metrics without taking into account infrastructure metrics, e.g.
energy consumption, while their metric collection processes
are not extensible. Thus, there is a need for understandable and
comparable performance indicators that capture both applica-
tion and edge-oriented metrics. The lack of a comprehensive
benchmarking suite becomes an extra pain for academic and
industrial researchers since they need to build ad-hoc tools for
quantifying the performance of their analytic tasks.

To tackle all these difficulties, we introduce BenchPilot, an
open-source auto-benchmarking framework focusing on Edge
micro-DCs. BenchPilot simplifies and accelerates the setup
and evaluation of experiments that target edge infrastructures.
It performs repeatable studies, captures hardware and software
measurements, and, in general, allows users to focus on ana-
lyzing the monitoring data without dealing with complex and

978-1-6654-9792-3/22/$31.00 ©2022 IEEE

time-consuming setups. Even though, for now, BenchPilot’s
workloads focus on the evaluation of streaming distributed
processing engines (SDPEs), anyone can easily extend it to
support other kinds of workloads as well. For this work, we
perform an extensive evaluation study on two state-of-the-art
SDPEs on a micro-DC to highlight BenchPilot’s applicability.
Utilizing well-known streaming workloads [10], we reveal
hidden insights for SDPEs performance, latency, resources’
utilization, and energy consumption. In a nutshell, the main
contributions of this paper are:

• An open-source and extensible benchmarking frame-
work1 that facilitates automated instantiation, repeatable
benchmarking, monitoring of performance and infrastruc-
ture, post-experimentation analysis, and generally every
barrier that a researcher faces during the performance
evaluation. BenchPilot utilizes cloud technologies, like
infrastructure-as-a-code and containerization, to alleviate
difficulties that are raised from benchmark setup, and to
abstract the micro-DCs hardware’s heterogeneity.

• A publicly available repository of a containerized
streaming workload2, which is used by the framework
out-of-the-box to evaluate the performance of micro-DCs.
This workload is based on the widely-used Yahoo Stream-
ing Workload [10]. Since the workloads are decoupled
from the BenchPilot framework, researchers are able to
use, extend, or update them according to their needs.

• A comprehensive analysis of state-of-the-art SDPEs
deployed on a micro-DC. Our study compares the
performance of Apache Storm & Flink, and edge nodes’
utilization metrics, like CPU utilization, network traffic,
etc., using as a testbed of 5 heterogeneous nodes.

The rest of the paper is structured as follows: Section II
presents the related work, Section III introduces the Bench-
Pilot Framework, and describes its implementation aspects. A
comprehensive experimentation is illustrated in Section IV,
and finally, Section V concludes the paper.

II. RELATED WORK

Edge Computing engineers usually utilize experimentation
tools to compare different frameworks, applications, and edge
infrastructures. For instance, Fog and 5G emulators [2], [4]
provide toolsets for topology emulation, application deploy-
ment, and extracting monitoring metrics from applications
and emulated infrastructures. FlockAI [13] introduces an ML
testing suite with a designing interface that enables creating
custom algorithms, evaluating their performance and energy
footprint via simulation. DeFog [12], which was one of the first
Fog-oriented benchmarking projects, offers a methodology for
benchmarking on Fog deployments by examining applications,
including object classification, text-to-speech conversion, and
online gaming. However, these tools do not provide deploy-
ment on physical nodes or they are only focused on micro-
services or ML applications.

Other than the evaluation tools described above, there
are plenty of benchmarking studies in the data management
1 https://github.com/UCY-LINC-LAB/BenchPilot
2 https://hub.docker.com/repository/docker/benchpilot/benchpilot

community. For instance, HiBench [7] introduces big data
workloads for ML, batch processing, and graph analytics,
while Yahoo YCSB [8] offers a set of artifacts for DBMS
benchmarking. Additionally, SparkBench [9] offers ML, graph
computation, SQL queries, and streaming workloads for Spark,
while a streaming comparison in latency and throughput
between engines was presented in [10], in which the authors
implemented a full data pipeline to reproduce real-world
scenarios with high realism. Karimov et al. [11] gave a strict
definition for the latency of stateful operators and a method to
measure it. To have fair results, they decoupled the underlying
systems from the driver controlling the experiments. Despite
the plethora of benchmarking studies, little or no provision
is made in containerization, automation of deployment, and
infrastructure monitoring in these efforts.

There are only a few attempts to build a framework that
automates the evaluation process. One example is Plug and
Play Bench (PAPB) [14], which tries to facilitate big data
benchmarking by utilizing containers to run on the under-
lying execution environment. PAPB proof-of-concept imple-
mentation uses batch and ML workloads of the HiBench
benchmark suite, deployed on public cloud providers. More-
over, Frisbee [15] performs chaos engineering experiments on
Kubernetes-deployed containerized applications. It provides
a declarative language for failure injection and deployment,
while also captures measurements from running services.
These systems are promising but focus only on Cloud without
considering the heterogeneity raised by Edge clusters, and do
not provide data-intensive streaming workloads.

III. THE BENCHPILOT FRAMEWORK

A. System Overview

To date, operators and researchers need to evaluate the
performance of their Edge infrastructures by performing
repeatable studies with representative workloads. For that
reason, users either need to build these workloads, which
could be extremely time-consuming, or utilize already created
benchmarking suites. Following the second approach, users
must setup a batch of software dependencies, configure the
underlying hardware and software infrastructure, and install
monitoring tools that may yield unnecessary pain, turning
the user’s concentration away from the actual purpose of
performance evaluation. BenchPilot helps users conduct per-
formance evaluation studies by automating the benchmarking
process, capturing performance, infrastructure, and application
measurements, and facilitating the analysis of the captured
metrics. The framework aids both experienced and amateur
users to rigorously evaluate their micro-DCs, without dealing
with the complex and time-consuming benchmarking.

To ease understanding, let us consider a scenario where
an operator wants to analyze streaming data on a self-hosted
micro-DC. The user does not know which Streaming Dis-
tributed Processing Engine (SDPE) is the most efficient for the
micro-DC’s underlying hardware, so it is necessary to make
multiple deployments, perform repeatable trials, and analyze
the generated results. Contrary to this approach, the user can

Edge Node N

Centralized Server

Benchmarking
Repository

Yahoo-
Bench

Hi-Bench

System Under Test

Benchmarking Suite

C
on

ta
in

er
 O

rc
he

st
ra

to
r

SDPE
Manager

Data
Generator

Edge Node 1 Edge Node 2

Monitoring
Agent

Monitoring
Agent

Monitoring
Agent

SDPE
Worker

SDPE
Worker

SDPE
Worker

Monitoring
Storage

Parser Container
Orchestrator's

Templates
Deployment Template

Generator

Deployment
Coordinator

Analyze
Results

Deploy/
Undeploy

Performance
Stats

Analysis Trigger

Infrastructure
Metrics

Performance
Metrics

Preferences

.yaml

Performance
Report

Fig. 1: The Overview of BenchPilot Framework

follow the BenchPilot benchmarking procedure. Starting from
the micro-DC bootstrapping, the BenchPilot user only needs
to execute a parameterizable installation script of Benchpilot
on every DC node. The script installs all necessary software
dependencies across the micro-DC and downloads the required
workload docker images. This step is required only for the first
time of the BenchPilot installation or in case of a hardware
update, e.g., introducing a new device.

Then, the user initiates the BenchPilot benchmarking pro-
cedure, as depicted in Figure 1. The pipeline starts with the
user submitting a set of experiments described in Bench-
Pilot’s high-level descriptive language for experimentation
scenarios. Through the declarative specification, the user is
able to describe the experimentation’s parameters, including
specific workload parameters, such as the application under
test, data injection rate, etc., and infrastructure parameters,
like placement preferences, parallelization, etc. The framework
parses and evaluates the user’s preferences, and propagates
them to the Deployment Template Generator. The respon-
sibility of the Deployment Template Generator is to construct
an in-memory data structure that keeps a set of deployment
elements, where each element is a materialized view of the
user’s preferences. To do that, the Deployment Template Gen-
erator invokes the container orchestrator’s templates, which
can be parameterized accordingly for the SDPE’s services, and
combines them with the containerized streaming workloads
from the BenchPilot’s repository, that came from open-source
benchmarking suites. The output is a list of ready-to-use ex-
periment descriptions, which will be used by the Deployment
Coordinator for driving the execution on the micro-DC.

Specifically, for each experiment description, the Deploy-
ment Coordinator generates a deployment description and
transports it to the Container Orchestrator, which is respon-
sible for managing the deployment, scaling, and networking

of containerized services, and is materialized by orchestration
frameworks, such as Docker Swarm or Kubernetes. When all
services are running, the Deployment Coordinator submits the
respective executable to the underlying SDPE manager, e.g.
Spark Master, initiates the data generator to start producing
data that engine workers will consume, and observes the
experiment execution. Afterward, it records the starting and
ending experiment’s timestamps, and propagates a new de-
ployment to the Container Orchestrator. When all experiments
are over, users can start the Post-Experimentation Analysis,
in which the user requests the monitored metrics of each
execution from the monitoring storage based on the provided
experiments’ starting/ending timestamps. Users are able to
apply high-level analytic models to the retrieved metrics of
each experiment. With the performance measurements and
the generated model-based metrics, users can have a clear
overview of their deployments.

B. Implementation Aspects

This subsection provides the implementation aspects about
the workload containerization, the experimentation modeling,
the benchmarking execution, and the monitoring stack.
Workload Containerization: is a virtualization technique that
abstracts the bare-metal infrastructure and enables rapid appli-
cation development with negligible performance impact [16].
BenchPilot utilizes Docker and its ecosystem as a container-
ization engine. In the Docker ecosystem, users describe their
services through Dockerfiles, which contain every required in-
struction and environment variable for the service’s execution.
Users need to compile their Dockerfiles to create the respective
Docker images and then execute them on the host machine
as Docker Containers. Analogous to inheritance in OOP, a
Docker image can inherit another Docker image if the user
specifies the latter as the base image in the Dockerfile. Taking
advantage of this functionality, BenchPilot introduces the
BenchPilot base image, which includes all necessary packages
and dependencies required by other BenchPilot images. Then,
for each encapsulated workload and SDPE, BenchPilot creates
specific images. In order to cope with hardware heterogeneity,
arising for instance in micro-DC that comprise both x64 and
ARM architectures, BenchPilot provides compiled images for
both architectures and consequently its Dockerfile compila-
tion can generate images compatible to the target hardware.
Furthermore, to facilitate the dissemination of the images, the
Docker ecosystem introduces Docker image registries, public
or private, capable of hosting, indexing, and managing Docker
images. The most popular public registry is the DockerHub, so
we upload every image artifact there to be publicly available
to the research and industry community.
Experimentation Modeling: BenchPilot provides users a
high-level model description that follows YAML representa-
tion to describe multiple and repeatable experiments. Descrip-
tion 1 depicts an example of a modeling specification. Users
start the modeling by providing a set of experiment objects ex-
isting under the experiments YAML section. Each experiment
is separated into three subsections, namely, (i) the workload,

1 experiments:
2 - workload:
3 name: "marketing-campaign"
4 repetition: 1
5 duration: "600s"
6 parameters:
7 campaigns: 100
8 tuples_per_second: 1000
9 capacity_per_window: 10

10 time_divisor: 10000
11 cluster:
12 nodes: ["nc1","rpi0","rpi1","rpi2","rpi3"]
13 engine:
14 name: "spark"
15 parameters:
16 batchtime: 1000ms
17 executor_cores: 1
18 executor_memory: 1G
19 partitions: 5
20 - workload:
21 name: "marketing-campaign"
22

Description 1: Example Experiment Modeling

(ii) the cluster, and (iii) the engine. Into the workload sub-
section, users select the workload of their choice through the
name property (e.g., marketing-campaign), the repetition that
indicates how many times the workload will be executed, the
duration that the workload will run at each execution, and a set
of parameters, which are provided by the respective workload.
For instance, the marketing-campaign workload parameters
include the number of stored campaigns, how many tuples
will be produced per second (tuples per second), and so on.
Then, the user defines the cluster that describes a subset of the
micro-DC nodes. The modeling materializes the definition of
the nodes via a list of their hostnames. Engine workers will be
deployed during the experiment on these nodes. Then, users
specify the engine, which represents the SDPE along with
the framework’s parameters. For instance, the first experiment
of Description 1 will be running on a spark cluster with the
streaming analytic job batchtime to be 1000ms, the workers
will start executors equipped with 1 core (executor cores) and
1G memory (executor memory), and the incoming data stream
will be re-partitioned into 5 executors (partitions). Finally,
users similarly define all the experiments of their interest.
Benchmarking Execution: Template Generator and Deploy-
ment Coordinator subcomponents are responsible for the trans-
lation of experiment description to sequential containerized
workload executions. Specifically, Template Generator creates
a deployable template for the underlying Container Orches-
trator. State-of-the-art container orchestrator frameworks, e.g.,
Docker Swarm or Kubernetes, allow users to define the
placement policies of their services. Taking advantage of this,
BenchPilot defines the placement of benchmark services and
the worker’s node of the SDPE based on the given hostnames
of the DC nodes. For our prototype, we use Docker Swarm as
the underlying container orchestrator. However, it is possible
to integrate other docker orchestrators (like Kubernetes) by
extending the placement policy interface of the BenchPilot
platform. Furthermore, Template Generator passes SDPE’s
parameters through in-line configurations and container envi-

ronmental variables to the containerized benchmark services.
Then, the Deployment Coordinator submits one by one the
descriptions to the underlying container orchestrator, records
the timestamps of starting and finishing points of each exper-
iment, and destroys the deployment when all the experiments
are finalized. Finally, the Deployment Coordinator outputs the
starting and finishing points of each experiment to the user,
and can perform time range queries on the monitoring stack.
Monitoring Stack: BenchPilot offers a transparent, from the
application under test, monitoring stack capable of extract-
ing various infrastructure utilization metrics, including CPU,
Memory, and Network Utilization. To achieve this, BenchPilot
instantiates a containerized monitoring agent on every node.
The agent inspects system information (e.g., performance
pseudofiles and cgroup files) and extracts the required metrics
in a non-intrusive way. The agent starts various probes, one
for each sub-component (e.g., cgroup probe, OS probe, etc.),
and exposes an API through which a centralized monitoring
server retrieves the data periodically and stores them to the
monitoring storage. Furthermore, the monitoring agent offers
probes for external resources as well. For instance, in our
testbed, we expose energy measurements to the monitoring
agent through SNMP protocol, while we also configure the
extraction of workload and SDPE specific metrics. From
the implementation perspective, we have selected Netdata3 a
widely known and used monitoring tool, and Prometheus4,
an open-source and popular monitoring server, for our stack.
By default, Prometheus uses indexed files to store its data
but also offers a list of possible pluggable backends. We
choose InfluxDB5 as the monitoring storage backend because
it minimizes the data retrieval time by applying index-based
optimizations on time-series datasets.

IV. EXPERIMENTATION

This section showcases the utility of BenchPilot through
repeatable experiments that adopt an open, popular and real-
istic workload to compare the performance and utilization of
two state-of-the-art Streaming Distributed Processing Engines,
Storm and Flink, on a representative micro-DC testbed.

A. Experiment Setup
Testbed. The testbed consists of the SDPE worker nodes
and the BenchPilot client. The worker nodes include a Dell
PowerEdge R610 server (nc1) featuring 12cores@2.4GHz
with 12GB RAM and four Raspberry Pi 4 Model B (rpi0-
rpi3) devices, equipped with a quad core ARM Cortex-
A72@1.5GHz and 4GB RAM. The nc1 server is connected
to a Smart Power Distribution Unit (SPDU) and rpi0-rpi3 to
Meross Wi-Fi Smart Plugs6, so that the BenchPilot monitoring
tool can retrieve power and energy consumption data every 5s
via the SNMP protocol. In turn, the BenchPilot client resides
on a VM with 16 vCPUs and 16GB RAM, alongside the
Prometheus server and the data generator.
Workload. For this evaluation experiment, we adopt the
open and popular Yahoo Streaming Benchmark [10] that has
3 https://www.netdata.cloud/ 4 https://www.prometheus.io/
5 https://www.influxdata.com/ 6 https://www.meross.com/product/3/article/

Processing Pipeline

Data
Parsing Filtering Projection Join Time-range

Aggregation Store

Message Queue (Apache Kafka) Data Storage (Redis)

System Under Test

Client

Fig. 2: Overview of Yahoo Streaming Workload

been containerized and extended to support parameterization
through BenchPilot experiment templates and thus, without the
need to change and re-compile coded artifacts. In particular,
the workload features an application as a data processing
pipeline with multiple and diverse steps that emulate insight
extraction from marketing campaigns. Figure 2 depicts the
workload pipeline that includes: (i) incoming advertising traf-
fic data, (ii) filtering, (iii) projection of unnecessary values, (iv)
combination with existing information, and (v) storing of the
results. All data generated by the data generator are extracted
from the pipeline through a message queue (Apache Kafka),
while an in-memory database (Redis) stores intermediate data
and the generated results. The workload supports execution
on the examined SDPEs, while the data rate and number of
campaigns are parameterizable. To evaluate performance, a
post-experiment script is made available that computes the
processing latency based on the campaign event timestamps.
With this, latency is automatically computed for each batch of
events and timestamped metrics are stored in the BenchPilot
monitoring stack for real-time and post-experiment analysis.

B. Experiments & Results

We evaluate the performance and resource utilization of
Flink compared to Storm embedding; we configure Storm with
two alternative schedulers, namely its default scheduler and R-
Storm. The default Storm scheduler adopts a fairness strategy
for operator placement, while R-Storm is resource-aware [17],
attempting to optimize operator placement by scheduling more
operators on powerful workers so that the inter-communication
overhead during data shuffling is reduced. The default pa-
rameterization for the rest of the software components (i.e.,
Kafka, Redis) has not been altered with the exception of
the number of Kafka partitions set to 5 and equivalent to
the number of workers to achieve maximum parallelization
during data injection. For each experiment run, the workload
is injected for 10 minutes (600 seconds) with BenchPilot
configured to monitor the execution environment for a period
of 150 seconds before load injection (warm-up period) and
50 seconds afterwards (cool-down period). Finally, we must
elaborate that our goal is not to fully optimize the performance
of the SDPEs but rather showcase BenchPilot’s usability via
interesting insights for SDPEs deployed on edge micro-DCs.
Performance Analysis: In this experiment run, we execute
the workload under different profiles: (i) lightweight, featuring
50k tuples per second data generation rate and 50k campaigns;
and (ii) heavyweight, in which we introduce 500k tuples per
second and 50k campaigns. Figure 3 depicts for both profiles
the processing latency as box plots (without outliers) as
generated by BenchPilot during the post-analysis. We observe

se
co
nd
s

se
co
nd
s

Fig. 3: Latency Box-Plot from BenchPilot Post-Analysis

that Storm has better performance in both experiments with the
scheduler not playing an important role for the light workload.
However, for the heavy workload, we observe how crucial it is
for micro-DCs to adopt a resource-aware scheduler especially
in cases with significant resource heterogeneity. In conclusion,
operator placement and parameter tuning of a SDPE is crucial
to amplify performance, especially in heavy load executions.

Next, Fig. 4 depicts resource utilization metrics exposed by
BenchPilot for the SDPEs during the heavy load experiments.
CPU utilization: First, we observe that for Storm (storm.cpu),
the Pi’s present significant cpu usage ranging from 60%-
80%. On the contrary, R-Storm favors nc1 and hence, the
cpu usage of the server is between 20%-80% while the
Pi’s are under-utilized. To understand why the r-storm.cpu
is initially ∼70% and then drops to ∼20% one just needs
to inspect the workload, to understand that Storm initially
retrieves and caches the data needed for the join operation.
So, the workload uses more resources at the beginning of
the batch, causing the minimization of execution time and
resource utilization when using the R-Storm placement. In
turn, the Flink testbed seems to be under-utilized, in contrast
to default Storm, and despite not embedding a resource-
aware scheduler (nc1 actually has lower cpu than the Pi’s)
it’s ability to handle efficiently iterative tasks (i.e., joins)
with delta increment computations, fits extremely well for this
workload. Thus, powerful nodes tend to be underutilized in a
heterogeneous realm, and default schedulers and parameters
of SDPEs do not tackle this issue. Furthermore, sophisticated
underlying implementation techniques, like delta increment
computations, may have a significant impact on infrastructure
resource utilization, as well as, workload processing latency.
Energy Consumption & Temperature: are correlated with
CPU utilization, especially in the case of edge devices. The en-
ergy consumption, as the literature for edge devices indicates,
can be computed using a regression model of the processor
utilization (i.e., Pactive, Pidle) [18]. In all runs, nc1 consumes
most of the micro-DC’s energy, with more than 80% of total
energy consumed during the experiments. The latter could
be expected since nc1’s Pactive and Pidle are much higher
than an edge device’s. The storm/r-storm/flink.temperature is
the average temperature of all cores of a node measured
in Celsius. The measured temperatures of the edge devices
are much more elevated than the ones nc1 has. Intuitively,
one understands that the server has its own cooling system
while edge devices do not have any cooling provision. In
conclusion, the energy consumption of a cluster is dominated
by the powerful servers, even if they are underutilized, while

Pe
rc
en

t
W
at
ts

W
at
ts

Co
kb
its

(a) Apache Storm

Pe
rc
en

t
W
at
ts

W
at
ts

Co
kb
its

(b) Apache R-Storm (Resource-aware)

Pe
rc
en

t
W
at
ts

W
at
ts

Co
kb
its

(c) Apache Flink

Fig. 4: SDPE Resource Utilization for Heavy Workload

the observed high-temperature of edge devices could cause
sustainability and failure issues in an edge micro-DC.
Network Traffic: Lastly, there is the network traffic, which is
the sum of incoming and outgoing data volume in each inter-
val. For Storm (storm.network), even if nc1 is underutilized,
the network traffic indicates that an underutilized server can
process much more tuples than a fully utilized edge device.
On the contrary, Flink’s traffic (flink.network) does not change
among the nodes. Finally, R-Storm (r-storm.network) transfers
traffic only through nc1 that has all deployed tasks, as it
is expected. In conclusion, the placement of the streaming
operators on nodes dictates the network traffic in micro-DCs.

V. CONCLUSION

In this work, we introduced BenchPilot, a framework that fa-
cilitates the repeatable, reproducible, and rapid benchmarking
and experimentation on Edge micro-DCs. BenchPilot features
a high-level declarative language for customizable bench-
marking, seamless micro-DC deployment via containerization
technologies, and an extensible monitoring stack. Focusing
on SDPEs, we provided a containerized streaming workload
from a real-world marketing application, and we performed
repeatable trials on different SDPEs (Apache Storm & Flink)
that are deployed on a representative Edge micro-DC. Our
results illustrate that (i) parameter tuning of SDPEs is crucial
to amplify performance and to minimize network traffic among
nodes, with resource-aware Apache Storm to have the best
performance in all trials, while Apache Flink needs fewer
resources from the underlying nodes, (ii) powerful servers
tend to be underutilized in most of the experiments, and (iii)
energy consumption and nodes’ temperature are correlated
with the CPU utilization, with the overall energy consumption
of micro-DCs to be dominated by the powerful servers. Our
future work includes the encapsulation of more streaming
workloads, evaluation of more SDPEs (e.g., Apache Spark),
and the deployment of BenchPilot on diverse Edge micro-DCs.
Acknowledgement. This work is partially supported by the EU Com-
mission through RAINBOW 871403 (ICT-15-2019-2020) project, the
Cyprus Research and Innovation Foundation through COMPLEMEN-
TARY/0916/0916/0171 project, and from RAIS (Real-time analytics
for the Internet of Sports), Marie Skłodowska-Curie Innovative Train-
ing Networks (ITN), under grant agreement No 813162.

REFERENCES

[1] “L. dignan. (2019), iot devices to generate 79.4zb of
data in 2025, says idc,” https://www.zdnet.com/article/
iot-devices-to-generate-79-4zb-of-data-in-2025-says-idc/.

[2] M. Symeonides, Z. Georgiou, D. Trihinas, G. Pallis, and M. D.
Dikaiakos, “Fogify: A fog computing emulation framework,” in 2020
IEEE/ACM Symposium on Edge Computing (SEC), 2020, pp. 42–54.

[3] W. Shi and S. Dustdar, “The promise of edge computing,” Computer,
vol. 49, no. 5, pp. 78–81, 2016.

[4] M. Symeonides, D. Trihinas, G. Pallis, M. D. Dikaiakos, C. Psomas, and
I. Krikidis, “5g-slicer: An emulator for mobile iot applications deployed
over 5g network slices,” in IEEE/ACM IoTDI, 2022.

[5] B. Varghese, N. Wang, D. Bermbach, C.-H. Hong, E. D. Lara, W. Shi,
and C. Stewart, “A survey on edge performance benchmarking,” ACM
Comput. Surv., 2021.

[6] M. D. Dikaiakos, “Grid benchmarking: Vision, challenges and cur-
rent status,” Concurrency and Computation: Practice and Experience,
vol. 19, no. 1, pp. 89–105, 2007.

[7] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang, “The hibench bench-
mark suite: Characterization of the mapreduce-based data analysis,” in
IEEE ICDEW, 2010.

[8] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with ycsb,” in Proceedings of the
1st ACM Symposium on Cloud Computing, ser. SoCC ’10. New York,
NY, USA: Association for Computing Machinery, 2010.

[9] M. Li, J. Tan, Y. Wang, L. Zhang, and V. Salapura, “Sparkbench: A
comprehensive benchmarking suite for in memory data analytic platform
spark,” in ACM International Conference on Computing Frontiers, 2015.

[10] S. Chintapalli, D. Dagit, B. Evans, R. Farivar, T. Graves, M. Holder-
baugh, Z. Liu, K. Nusbaum, K. Patil, B. J. Peng, and P. Poulosky,
“Benchmarking streaming computation engines: Storm, flink and spark
streaming,” in IEEE IPDPSW, 2016.

[11] J. Karimov, T. Rabl, A. Katsifodimos, R. Samarev, H. Heiskanen, and
V. Markl, “Benchmarking distributed stream data processing systems,”
in IEEE ICDE, 2018.

[12] J. McChesney, N. Wang, A. Tanwer, E. de Lara, and B. Varghese,
“Defog: Fog computing benchmarks,” in ACM/IEEE SEC, 2019.

[13] D. Trihinas, M. Agathocleous, K. Avogian, and I. Katakis, “Flockai: A
testing suite for ml-driven drone applications,” Future Internet, vol. 13,
no. 12, 2021.

[14] S. Ceesay, A. Barker, and B. Varghese, “Plug and play bench: Simpli-
fying big data benchmarking using containers,” in IEEE BigData, 2017.

[15] F. Nikolaidis, A. Chazapis, M. Marazakis, and A. Bilas, “Frisbee: A
suite for benchmarking systems recovery,” in Proceedings of the 1st
Workshop on High Availability and Observability of Cloud Systems, ser.
HAOC, 2021.

[16] R. Morabito, “Virtualization on internet of things edge devices with
container technologies: A performance evaluation,” IEEE Access, 2017.

[17] B. Peng, M. Hosseini, Z. Hong, R. Farivar, and R. Campbell, “R-storm:
Resource-aware scheduling in storm,” in Proceedings of the 16th Annual
Middleware Conference, ser. Middleware. ACM, 2015.

[18] D. Trihinas, G. Pallis, and M. Dikaiakos, “ADMin: adaptive monitoring
dissemination for the internet of things,” in IEEE INFOCOM, 2017.

