Automating Multi-Tenancy Performance Evaluation
on Edge Compute Nodes

Joanna Georgiou, Moysis Symeonides, George Pallis, Marios D. Dikaiakos
Department of Computer Science, University of Cyprus
Email: {jgeorg02, msymeo03, gpallis, mdd} @ucy.ac.cy

Abstract—Edge Computing emerges as a promising alternative
of Cloud Computing, with scalable compute resources and
services deployed in the path between IoT devices and Cloud.
Since virtualization techniques can be applied on Edge com-
pute nodes, administrators can share their Edge infrastructures
among multiple users, providing the so-called multi-tenancy.
Even though multi-tenancy is unavoidable, it raises concerns
about security and performance degradation due to resource
contention in Edge Computing. For that, administrators need
to deploy services with non-antagonizing profiles and explore
workload co-location scenarios to enhance performance and
energy consumption. Achieving this, however, requires extensive
configuration, deployment, iterative testing, and analysis, an
effort-intensive and time-consuming process. To address this chal-
lenge, we introduce an auto-benchmarking framework designed
to streamline the analysis of multi-tenancy performance in Edge
environments. Our framework includes a built-in monitoring
stack and integrates with widely used benchmarking workloads,
such as streaming analytics, database operations, machine learn-
ing applications, and component-based stress testing. We perform
a case-driven analysis and provide valuable insights into the
impact of multi-tenancy on Edge environments with different
hardware configurations and diverse workloads. Finally, the
implementation of our framework, along with the containerized
workloads used for experimentation, is publicly available.

Index Terms—Benchmarking, Edge Computing,
Tenancy

Multi-

I. INTRODUCTION

The rapid expansion of interconnected embedded devices,
collectively known as the Internet of Things (IoT), is trans-
forming our daily lives. The number of IoT devices is expected
to reach 500 billion by 2030 [1], with each device generating
vast amounts of data that require analysis. However, process-
ing data on an IoT device is often impractical due to its limited
computational capacity and reliability [2]. Meanwhile, con-
tinuously offloading data to centralized cloud infrastructures
introduces challenges, including bandwidth constraints [3].

To bridge this gap, Multi-access Edge Computing (MEC)
has emerged as a standardized architecture that, like traditional
edge computing, brings processing closer to the IoT devices
to enhance efficiency and reduce latency. What distinguishes
MEC, however, is its tight integration with the Radio Ac-
cess Network (RAN), enabling more effective utilization of
network resources and further optimizing performance. [4].
Building on top of this, the 5th/6th generations of mobile
networks (5G and 6G) advance the concept of Network
Slicing, enabling the creation of multiple isolated virtual
networks over a shared physical infrastructure. This allows
operators to support multi-tenancy by leasing tailored “slices”

XXX-X-XXXX-XXXX-XX/xx/$31.00 ©2025 IEEE

of their networks, similarly to how Cloud providers rent out
compute resources [5]. With multi-tenancy, high-speed and per-
formance applications like autonomous driving, drone-based
surveillance, agentic workflows and LLM integration can be
supported more effectively, as these types of workloads often
require multiple machine learning, deep learning and LLM
tasks to be executed in parallel [6]-[9].

Multi-tenancy refers to a system’s ability to simultaneously
serve multiple tenants (users or applications), while ensuring
strict isolation of their data and resources [10]. A key enabler
technology for multi-tenancy on Edge nodes is a lightweight
virtualization (containerization) which bundles services into
artifacts and runs them as isolated processes with negligible
computational overhead [11]. Generally, service consolidation
reduces the operational and maintenance costs of the infras-
tructure, while it also decreases energy consumption [12].

Unfortunately, even in cloud infrastructures, multi-tenancy
raises concerns about security and performance deteriora-
tion of co-located services. Workloads that share the same
resources may suffer quality-of-service degradation due to
contention for CPU, memory, and network bandwidth. The
constrained and heterogeneous nature of Edge devices, along
with the diverse profiles of the deployed services, worsens
these challenges.

For instance, running a set of services on an edge server
can deliver high performance, but executing the same services
on a resource-constrained device, such as a Raspberry Pi,
may significantly increase service latency. This can be prob-
lematic for applications that require real-time responsiveness
while performing multiple deep learning tasks simultaneously,
such as object detection and face recognition for visually
impaired users [6]. To maintain efficiency, edge infrastructure
administrators and cluster orchestrators must co-locate ser-
vices with compatible resource profiles on the same machine.
This enables them to (i) assess whether local resources can
sustain the workload and (ii) analyze trade-offs associated with
multi-tenancy. These considerations are central to informed
orchestration decisions. Therefore, it is essential to identify
which deployment scenarios or configurations enhance the
performance of new or existing services and how to achieve
objectives, such as minimizing energy consumption.

Addressing this challenge requires the repeated deploy-
ment of diverse workloads across a range of configurations,
to explore the full spectrum of co-location scenarios, and
the continuous collection of performance metrics and in-

frastructure utilization data, followed by rigorous analysis to
identify optimal deployment strategies [13]. However, as the
number of potential configurations grows exponentially with
the number of target workloads [14], the process quickly
becomes intractable. Even though there are many benchmarks
that prototype workloads like big data streaming [15] and
machine learning (ML) inference [16], very few studies [6],
[17] actually examine the effects of multi-tenancy in edge
environments. Moreover, although tools for automating re-
peatable performance evaluations are available [13], [18], they
lack support for executing concurrent workloads. This paper
addresses the critical gap: the absence of a low-cost, scalable
and reproducible approach for evaluating performance trade-
offs introduced by workload co-location in real-world edge
environments. The main contributions of this paper are:

« An open-source benchmarking framework [19], that facil-
itates the automated deployment of benchmarking exper-
iments and ensures reproducible performance evaluation
of co-located workloads on top of real edge infras-
tructures. It incorporates comprehensive monitoring for
both performance and infrastructure metrics, supports
detailed post-experiment analysis, and addresses common
challenges in performance evaluation. Our framework
leverages cloud-native technologies, including continuous
deployment and containerization, to streamline bench-
mark configuration and deployment, whilst abstracting
the hardware heterogeneity across the edge continuum.

« A set of publicly accessible containerized workloads [20],
integrated with our framework to evaluate the perfor-
mance of edge nodes. These workloads are derived
from widely adopted benchmarks [15], [16], [21] and
component-based stressors, and each has been modified to
support parameterization and easy configuration. As the
workloads are independent of the framework, researchers
can utilize, extend, or adapt them to their requirements.

o A comprehensive, use-case-driven analysis of workload
co-location on various edge compute nodes (from Rasp-
berry Pi to edge Servers). Our analysis allows users to
assess: (i) ML service performance across various com-
pute nodes, showing that larger Edge servers offer better
performance at higher power costs, while smaller devices
like Raspberry Pi are more energy-efficient but slower;
(ii) the impact of workload co-location, revealing that
memory-intensive workloads increase cold start duration
of ML services by 1.5x, and CPU or disk I/O stressors
reduce CPU availability, degrading performance; (iii) the
effects of different co-location configurations, comparing
ML inference in two scenarios: (a) processing images
locally vs streaming them, with performance varying by
up to 3x, and (b) using different execution backends,
where ONNX (Open Neural Network Exchange) outper-
forms NCNN (inference framework optimized for mobile
platforms) by 9x and TensorFlow by 24x in throughput.

The remainder of the paper is structured as follows: Sec.II
outlines the motivating scenario; Sec.III reviews related work;

Sec.IV introduces our framework; Sec.V details the workloads
and metrics used for evaluating multi-tenancy on Edge devices
in Sec.VI; and Sec.VII concludes the paper.

II. MOTIVATING EXAMPLE

To illustrate the applicability of our framework, consider
a scenario where an edge infrastructure provider, such as a
mobile operator, serves multiple clients deploying applications
on a shared Edge environment. The infrastructure consists of
various heterogeneous devices, from high-performance edge
servers to resource-constrained micro-edge devices like single-
board computers. To meet client demands, the provider enables
containerized services to run in parallel across these nodes
while ensuring a specified Quality of Service (QoS).

Co-locating applications, even on constrained devices, is
often more practical despite potential performance degra-
dation from resource contention, as dedicating a node to
each workload is usually impractical due to power, cost, and
resource limitations. [22]. Operators, researchers, and system
administrators who want to study multi-tenancy effects, opti-
mize deployments, and benchmark their infrastructure must
carefully assess the impact and trade-offs of workload co-
location to determine optimal deployment strategies. Factors
like energy efficiency must also be considered, requiring
extensive experimentation to identify configurations that mini-
mize energy consumption while maintaining performance [23].
Hence, researchers must either develop custom workloads, an
effort requiring significant time and expertise, or use existing
workloads, which still involve extensive software and hardware
setup, dependency management, and monitoring configura-
tions. Then they must execute a benchmarking pipeline, which
traditionally involves manually deploying various workloads,
monitoring resources, and analyzing service performance. This
process on its own is time-consuming and shifts the focus
away from the user’s objective, which is the system’s per-
formance evaluation [13]. However, in the case of assessing
multi-tenancy, this task becomes even more challenging, as it
requires testing all workload combinations with diverse config-
urations. Additionally, as the number of target workloads and
configurations increases, the number of scenario combinations
grows exponentially, lengthening the process even further.

To address these challenges, our open-source framework
streamlines the benchmarking of co-located services, enabling
users to assess infrastructure performance, fine-tune service
parameters, and analyze co-location trade-offs, such as iden-
tifying antagonistic workload metrics, without the overhead
of managing complex setup and configuration tasks. The
methodology automates (i) the installation and configuration
of essential software components, including containers and
monitoring agents on edge nodes, and (ii) the deployment of
both isolated and co-located, parameterizable services (e.g.,
database workloads, ML inference) across diverse scenarios.

III. RELATED WORK

Analyzing interference between applications in data centers
is a well-known issue, requiring workload analysis through in-

frastructure metrics. Towards that, Ilager et al. [24] conducted
a data-driven study on cloud datacenter workloads, energy,
and thermal characteristics using nine months of machine-
level metrics, developing predictive models for efficiency plan-
ning. Similarly, [25] analyzed workload interference in cloud
providers (Google, Alibaba), quantifying co-location effects
at micro-architecture and app-level. In [26], virtualization
techniques (containers, VMs) were assessed, showing higher
interference in containers, while an experimental study in [27]
examined performance interference in containerized microser-
vices, measuring the effects of co-located services. However,
these studies focus solely on workload co-location in cloud
environments, omitting potential issues in MEC deployments.

Recognizing the unique constraints of edge environments,
edge co-location research has primarily focused on the deploy-
ment of ML inference workloads [6], [7]. For example, Edge-
MultiAl enhances the multitenancy of ML inference while
meeting latency and accuracy goals [6], while [7] introduces
concurrent Deep Learning model inference with dynamic
placement, improving throughput on Jetson TX2 using various
ML frameworks. However, beyond ML-specific workloads,
only a few systems consider general-purpose co-location on
the edge, mostly from a scheduling perspective. PolarisPro-
filer [28] optimizes resource management through metadata-
based profiling, while Edge Federation [29] introduces a
dependency-aware scheduler for federated containerized work-
loads. Mathematical approaches like Co-Approximator [14]
estimate co-location performance but lack automation and
scalability considerations. Similarly, efforts to optimize net-
work co-location (cellular base stations and MECs), such as
ColoMEC [30], focus on orchestration but do not address
general-purpose workload evaluation. Consequently, the gap
in automating the performance evaluation of co-located work-
loads on edge infrastructures still remains.

To address the evaluation of edge deployments, experimen-
tation tools are widely used by Edge Computing engineers
to compare frameworks, applications, and infrastructures. Fog
and Edge emulators [2], [31]-[34] facilitate topology emu-
lation, application deployment, and metric extraction but do
not support automated deployment on physical infrastructures.
Although some frameworks attempt to automate evaluation,
their focus remains limited. For instance, Plug and Play
Bench (PAPB) [35] enables big data benchmarking using
containerized execution, while Frisbee [36] performs chaos en-
gineering on Kubernetes-deployed applications with a declar-
ative approach to failure injection. Similarly, BenchPilot [13],
although it provides declarative experimentation descriptions
and benchmarking functionalities, supports only a single type
of workload and, more importantly, does not support co-
location. While these systems demonstrate promising advance-
ments, they do not provide mechanisms for automating the
performance evaluation and analysis of co-located workloads
across diverse edge environments.

In summary, although several existing works support bench-
marking or workload orchestration in cloud/edge settings, they
either lack the capability to evaluate multi-tenancy, especially

=l

o

Analysis Trigger

AN
yaml

Preferences

b

Performance
Report [X

\

Analyze
Results

=7

Workload 1 Parser

Experiment
Coordinator

Deployment

Coordinator
—’ Orchestrator
T Connector

Data]
Workload Centralized Services ..«

Workload 2
000

Workload
Repository

—
Container
Orchestrator's
Templates

Monitoring

Deploy/
oo Storage

—
Undeploy Infrastructure

Metrics

Benchmarking Suite

Workload Coordinator

Centralized Server

System Under Test

Workload 1 Workload 2 Workload 1

[Container Orchestrator
Workload Deployment

Worker Worker -2 Worker
|
Monitoring Agent Monitoring Monitoring _|
Agent Agent

Edge Node 1 Edge Node 2 Edge Node N

Fig. 1: The Overview of the Auto-benchmarking Framework

on real edge nodes, or focus on a specific type of workloads.
Our work distinguishes itself by enabling fully automated de-
ployment and in-depth analysis of co-located workloads. This
empowers operators and researchers to explore interference
patterns and deployment trade-offs across real-world, diverse,
edge environments in a reproducible manner.

IV. BENCHMARKING FRAMEWORK
A. System Overview

To address the complexity of evaluating and the deployment
of co-located workloads, our system initially undergoes a
bootstrapping phase to automatically install and configure all
required dependencies across the evaluation nodes if necessary.
This process ensures that all nodes are properly set up based on
the user’s configuration file that defines nodes’ roles and access
credentials (see Section IV-B). Once the bootstrapping phase
is complete, the user can proceed with submitting experiment
descriptions, as depicted in Fig. 1.

Specifically, the experiment description includes a list of
co-located workloads, their configurations, execution duration,
potential starting delays, and more, all structured according to
the framework’s high-level YAML model (see Section IV-C).
Having a submitted description, the Parser is responsible for
parsing it and evaluating whether the description of the ex-
periments is syntactically correct and valid. If the description
is correct, it is propagated to the Experiment Coordinator.
This module translates the given information into a list of
experiment objects and organizes their execution.

For each experiment object, the Deployment Coordinator
will be spawned to create the workload(s) configurations. Each
workload supported by the framework has a corresponding
Container Orchestrator Template that defines the required
services, a set of default parameters (which can be overridden),
and their respective container images. The Deployment Tem-
plate Generator retrieves the appropriate template, populates
it based on the user’s submitted variables, generates the final

workload description, and forwards it to the Deployment Coor-
dinator. Once all of the experiment and workload objects have
been prepared, the Orchestrator Connector creates deployment
descriptions compatible with the user’s desired container or-
chestrator. The orchestrator is responsible for managing the
deployment and networking of containerized services and is
materialized by frameworks like Docker Swarm.

After the benchmarking process setup is completed, the
Experiment Coordinator will coordinate additional actions:
(i) recording the starting and ending timestamps of the ex-
periment, (ii) giving instruction to trigger workloads that were
meant to start delayed, (iii) monitoring all workloads to ensure
they are healthy, up, and running, and (iv) upon completion of
an experiment, either repeating it as many times as defined by
the user or starting the next experiment. To accomplish this, the
Experiment Coordinator maintains constant communication
with the Deployment Coordinator, which is responsible for
invoking, monitoring, and stopping each deployment (work-
load). Once all experiments are complete, the user can retrieve
the collected metrics and focus on the analysis. Specifically,
our framework collects metrics—such as CPU usage, memory
consumption, network traffic, and energy consumption—for
both the underlying hardware and each deployed service.
Additionally, it extracts workload-specific metrics, like latency
or throughput, and stores all data as CSV files.

B. Bootstrapping Process

To streamline the benchmarking setup, our framework au-
tomates the installation, configuration, and deployment of all
required software and dependencies, including the monitoring
stack. Before benchmarking begins, it connects to each node
based on a bootstrapping configuration where users define
the cluster setup, specifying the manager and worker nodes
along with their access credentials. Description 1 presents
an example configuration file, where users specify: (i) the
manager node, responsible for centralized services, such as
data generators, and (ii) the worker nodes to be evaluated.
Each node entry includes an accessible IP (reachable from the
node where the framework is set up), hostname, and login cre-
dentials, supporting authentication via (i) username-password
or (ii) username-SSH key. This file only needs to be set up
once unless the user wishes to introduce new nodes. When the
user initiates a benchmarking process, the framework utilizes
this information to prepare the nodes for the evaluation, by
installing all necessary software and dependencies, and then
proceed with the benchmarking process.

C. Experimentation Modeling

Our framework offers users a YAML-based representation
for defining comprehensive and repeatable experiment de-
scriptions at a higher abstraction level. Users can specify
a collection of experiment elements within the experiments
section of the YAML file. Each experiment is identified
by a record name, which serves as the name of the log
file that the system will generate for the experiment. Then,
users specify the number of times the experiment should be

cluster:
manager:
ip: "0.0.0.0" # manager’s IP
hostname: "manager"

ssh_key_path: "/conf/ssh_keys/ssh_key.pem"
nodes: # system under test
- ip: "10.10.10.10" # using password
hostname: "raspberrypi"
username: "pi"
password: "raspberrypi"

— O VIR W=

—_ =

Description 1: Example of the Bootstraping Configuration

executed (repetition) and, its execution duration. Once these
parameters are specified, they define a set of workloads that
the system will deploy concurrently. Description 2 presents a
representative example of our modeling configuration, where
two distinct workloads are defined: a database and a streaming
analytics workload. Focusing on the first workload, users
declare its name according to the framework’s supported
workloads. Then, they designate the set of nodes (cluster)
where the workload will be deployed and provide the relevant
workload parameters (e.g., db: "mongodb”). Depending on the
workload type, users can also specify additional parameters,
such as the data generation rate (e.g., tuples per second),
the underlying system type (e.g., "storm”, "mongodb”, etc.),
and other configuration settings. Users can also introduce a
delay (shift) for one or more workloads, allowing them to start
a few seconds or minutes after the experiment begins. Once
the experiment definitions are completed, they can configure
additional parameters, such as the idle duration between exper-
iments (idle_between__experiments) and the chosen connector
for managing the cluster (orchestrator, e.g., "docker swarm”).
It is important to highlight that, since our framework operates
directly on the underlying infrastructure without imposing ad-
ditional constraints on system resources, users do not need to
specify any limitations, such as memory and network settings.

D. Containerization of Workloads

Containerization is a lightweight virtualization technique
that abstracts hardware, enabling efficient application execu-
tion with minimal performance overhead [11]. To achieve an
efficient and dynamic workload deployment, our framework
utilizes Docker as its containerization engine. In Docker,
users define services using Dockerfiles, which specify con-
figurations, dependencies, and environment variables before
being built into images and deployed as running containers.
By leveraging Docker’s inheritance mechanism, we introduce
a base image, containing all essential dependencies, to en-
sure consistency across workloads. To support diverse edge
infrastructures, including x64 and ARM architectures, our
framework generates multi-architecture Docker images, auto-
matically compiling them for the target hardware. For seamless
distribution, we publish all image artifacts on DockerHub [20],
making them accessible to the research and industry communi-
ties. Finally, containerizing the workloads enables our system
to seamlessly integrate with various Docker orchestrators,

1 experiments:

2 - experiment:

3 record_name: "streaming_with_db"
4 repetition: 2

5 duration: "20m"

6 workloads:

7 - name: "database"

8 cluster: ["rpi", "small_server"]
9 parameters:

10 db: "mongodb"

11 - name: "marketing-campaign"

12 cluster: ["rpi", "small_server"]
13 parameters:

14 engine: "storm"

15 enging_parameters:

16 tuples_per_second: 1000
17 capacity_per_window: 10
18 shift: 5m

19 - experiment:
20 e
21 idle_between_experiments: "2m"
22 orchestrator: "docker swarm"

Description 2: Example of the Experiment Model

such as Docker Swarm or Kubernetes, without requiring any
modifications to its core implementation components.

E. Infrastructure Monitoring Stack & Metrics

To monitor workloads and the system under test, our frame-
work employs a monitoring stack that collects infrastructure
metrics such as CPU and memory usage. This is enabled by
deploying a containerized Netdata [37] agent on each node
to gather metrics non-intrusively via multiple probes targeting
specific sub-components (e.g., cgroup, OS). The agent exposes
an API that a centralized monitoring server uses to periodically
collect and store data. In our testbed, we expose two probes:
one for a Meross Wi-Fi Smart Plug [38] for IoT devices,
and another for a Smart Power Distribution Unit (SPDU) that
uses SNMP to retrieve server power consumption. All metrics
are collected at 5s intervals and stored in Prometheus [39], a
widely used open-source monitoring server.

The key metrics used in our evaluation are: (i) average CPU
Utilization (excluding idle time, in %), as high usage can lead
to performance issues and crashes; (ii) total Memory Usage
(in MiB), to ensure sufficient memory for system stability;
(iii) total Disk I/0 (in KiB), which affects data-intensive task
performance; (iv) total Network I/O (in bytes), as high usage
may cause delays; (v) average Power Consumption (in watts),
a key cost and environmental factor; and (vi) average CPU
Temperature (in °C), crucial for preventing hardware damage.
All metrics are collected at the system level, while CPU,
memory, disk, and network are collected on service level.

V. APPLICATIONS & WORKLOADS

Our framework offers a range of workloads to simulate
diverse scenarios and stress resource components individually
or in combination. These workloads are: (i) Component-based
Stressors for targeting specific resources, (ii) Streaming An-
alytic Workload using popular distributed processing engines,
(iii) ML Inference Application with a well-known model and
various backends, and (iv) NoSQL Database Operations. As

Message Queue
(Apache Kafka)

Data Storage

(Redis)

Client
System Under Test

Data Time-range

Filtering Projection Join Store

Parsing Aggregation

Fig. 2: Overview of Yahoo Streaming Workload
previously noted, all workloads are containerized and extended
to expose application metrics, support parameterization, and

enable customization via Framework Templates, eliminating
the need for code modification or recompilation.

A. Component-based Stressors

To evaluate individual compute resources or analyze work-
load co-location, we selected targeted performance tests for
each component. For CPU, memory, and disk I/O, we use
the Linux stress command [40], which applies adjustable stress
to components either individually or concurrently. Users can
specify 1 to N CPU threads, where N is the CPUs thread
limit, determining the number of workers spawned to simulate
different levels of utilization of simple applications.

For network testing, we use iperf3 [41], which transmits
data between two devices, acting either as a client or a server.
Devices must be on the same local network (wired or wireless)
or use public IPs. This workload includes: (i) the generator,
sending packets at a set rate and measuring outbound traffic,
and (ii) the receiver, which monitors inbound traffic.

In regards to application-level metrics, one can collect the
number of packets exchanged when using the iperf3 tool. As
for the stress tool, it does not export any application statistics
for direct use, as its purpose is solely to apply stress.

B. Streaming Analytics Workload

For this workload, we have employed the widely known
Yahoo Streaming Benchmark [15], which is designed to sim-
ulate a data processing pipeline for extracting insights from
marketing campaigns. As shown in Fig. 2, the pipeline runs on
the edge device, performing tasks such as receiving advertising
traffic data, filtering and cleaning it, merging it with existing
key-value store information, and storing the final results. All
data produced by the data generator is pushed and extracted
through a message queue (Apache Kafka [42]), while interme-
diate data and final results are stored in an in-memory database
(Redis [43]). This workload can be executed using any of the
following distributed streaming processing engines: Apache
Storm, Flink, or Spark. Additionally, we can adjust the data
rate, the number of campaigns, workload duration, and engine
specific parameters, such as worker partitions, etc.

To evaluate the performance of this application, we extract
two measurements: the total number of tuples processed
during execution and the total latency of the application,
based on the statistics provided by the selected underlying
processing engine for each deployed task.

C. Database Operations

To compare NoSQL database performance under different
conditions, we have utilized the Yahoo! Cloud Serving Bench-

mark (YCSB) [21]. YCSB applies heavy load to perform basic
operations such as reading, updating and inserting records
using a single key. It is important to highlight that each run of
the workload does not perform only one basic operation per
time, but a round of all of them, based on the operation rate
that the user defined, until the experimentation time is over.
It supports multiple databases, like MongoDB and Redis, and
offers three workload distributions: Zipfian (frequent access
to some items), Latest (favoring recent records), and Uniform
(random access). YCSB also provides adjustable parameters
and a flexible schema. Users can change the number of
records to be processed, the total number of operations to be
performed, the load distribution, the rate of operations, and the
experiment’s duration. If all operations are completed before
the time limit, the experiment ends early; otherwise, it stops
when the time expires. Users can increase database stress by
specifying the number of threads for asynchronous operations.
YCSB provides statistics for each operation it performs,
informing the user of the count, min, max, and average
operations per second for each minute of the experiment.

D. Machine Learning Inference Applications

To evaluate the performance of ML inference tasks, we use
the MLPerf [16], a well-known benchmark for ML training
and inference. While MLPerf includes numerous tasks, we
have focused solely on image classification to create a more
targeted workload. This task is widely used in commercial
applications to evaluate ML performance. It involves a clas-
sifier network that assigns an image to a class. MLPerf uses
the ImageNet 2012 dataset, resizing images to 224x224 and
measuring Top-1 accuracy. It employs two models: ResNet-
50 v1.5, known for high computational demands and strong
classification performance, and RetinaNet, effective in object
detection with accurate bounding box predictions.

Except for the pre-provided models from MLPerf, we
modified its codebase to serve models over the network,
enabling measurement of network overhead in ML inference.
Specifically, we created two separate services: (i) a lightweight
server that loads models and exposes a RESTful API, and (ii) a
workload generator that loads and sends images to the server
one-by-one. We refer to this as “streaming mode”, while the
default MLPerf setup, which loads images locally, is called
“local mode”. MLPerf allows users to adjust various workload
parameters, including input dataset, max latency, batch size,
duration, thread count for asynchronous execution, and the
inference framework which is currently limited to CPU-based
options: ONNX [44], NCNN [45], or TensorFlow [46].

After the workload execution, the retrieved statistics include
the model’s accuracy percentage, the average batches per
second (where each query represents the processing batch of
images), the total completed queries, and the mean latency.

VI. EVALUATION

This section comprehensively evaluates our framework’s
capabilities via experiments based on the use case in Section II,
demonstrating its ability to assess ML inference services
across various configurations and co-located workloads.

A. Experimental Setup & Devices Under Test

To realistically replicate MEC nodes and their typical het-

erogeneity, common across the Multi-access Edge Computing
continuum, we selected a range of compute devices under test:
Single-board Computer (SBC): A Raspberry Pi 4 Model B
with a quad-core ARM Cortex-A72 (4 threads, 1.5GHz) and
4GB RAM. As the most well-known SBC, we chose one of its
most popular variants, capable of running multiple workloads.
SMALL server, that is equipped with a six-core Intel(R)
Xeon(R) CPU X5690, which has 12 threads @3.47GHz,
12MB CPU cache, 6.4 GT/s bus speed, and Thermal Design
Power (TDP) 130W. Additionally, it comprises a 12GB RAM.
MEDIUM server, which features a 71GB RAM, and two
Intel(R) Xeon(R) CPU E5620 processors. Each CPU has 4
cores and 8 threads at a 2.4GHz frequency, 5.86 GT/s bus
speed, 12MB CPU cache, and 8OW TDP.
LARGE server, has 173GB RAM and two Intel(R) Xeon(R)
CPU E5-2680v3 CPU processors. Each processor has 12 cores
and 24 threads @2.5GHz frequency, 9.6 GT/s bus speed,
30MB cache, and 120W TDP.

All servers feature dual power supply plugs to ensure unin-
terrupted operation. The SMALL, MEDIUM, and LARGE
servers have dynamic frequency scaling (CPU throttling)
enabled, a standard Intel CPU feature that improves power
efficiency and reduces heat during CPU-intensive workloads.

Lastly, we use a server for (i) the experiments’ orchestration,
(ii) the deployment of data generators, and (ii) the collection
of utilization and application metrics. The latter server has 71
GB RAM, and a 12-core CPU with 24 threads.

B. Workload Parameterization

For our analysis we have employed the workloads that were
previously discussed with specific parameters, namely:
Component-based stressors, using them for stressing the:
(i) CPU; (ii) memorys; (iii) I/O; and (iv) network. The primary
objective of this workload is to create an intense co-located
workload that occupies the device’s resources. In all stress
scenarios, the number of workers assigned to each device
was based on the maximum number of threads supported. We
spawned 4 workers for the Raspberry Pi, 12 for the small
server, 16 for the medium server, and 48 for the large server.
Streaming workload focuses on Apache Storm as the stream-
ing processing engine, even though our experiments could be
easily done using any of the other two engines, Spark and
Flink. In regards to workload parameters, we have used 1000M
tuples per second data generation rate and 100M campaigns.
Database workload employs MongoDB as the underlying
database, using a Zipfian load distribution and the default
YCSB workload configuration values, with two exceptions:
the number of records and the number of operations, which
for both we used a value of 2.5M. Additionally, we chose to
run this benchmark in asynchronous mode, using 12 threads,
in order to stress our cluster to its maximum capacity.

ML workload uses the image classification for both local and
streaming mode, utilizing the following inference frameworks:

Memory Usage Per Device

Network Usage per Device

Performance Metrics Per Device

% 34 : .]
) 163 113 T, 20 16.61
Sa g -
£ 27 105 €3 253 7.20
B Raspherry Pi — Medium Server = oA 9
3 14 Small Server —— Large Server 2 0 : : e B :
' . . ; T - Raspherry Pi Small Medinm Large Rasphberry Pi Small Medium Large
0 200 400 600 800 1000 1200 Server Server Servor Server Server Server
Seconds Server Server Server Server Server Server
Cpu Usage per Device Device Temperature Power Usage per Device
% - E 7158 oL 1e 150,00 144.00
e 509 13839 ;C 50 35.70 11 139 100 4 00,001
2 16.73 ‘0 =
) 3.08 T 5.07
“ o0 — - . E o —_— 7 ob— -
Raspberry Pi Small Mediun Large Raspberry Pi Small Medimm Large Raspberry Pi Small Mediun Large
Server Server Server Server Server Server Server Server Server

Fig. 3: Utilization and Performance Metrics Across Devices Using an ML Inference Application

ONNX, NCNN, and TensorFlow. Again, we deployed this
workload using asynchronous processing with 12 threads.

For all the aforementioned workloads, the selection of
parameters was made based on trial and error, where we
tested a variety of values until we identified the silver lining
of load to stress our cluster without overwhelming it.

C. Results and Discussion

In this section, we explore three key research questions
related to the use case scenario outlined in Section II. These
questions not only demonstrate the usability of our system
but also provide valuable insights into service co-location on
the edge, benefiting both researchers and practitioners. All
scenarios are executed for 20 minutes utilizing our framework
and capturing utilization and application-level metrics. Addi-
tionally, all of our utilization plots represent the mean value
over the entire execution (e.g., power consumption, measured
in watts, represents the average rate of power usage).

RQ1I: Given an edge cluster, which device is best suited for
execution of a streaming ML inference application in terms
of performance, resource utilization and energy efficiency?

Let us consider a scenario, where a group of administrators
have at their disposal a set of unused devices and want
to deploy a streaming ML inference application. So, they
are interested in evaluating which device performs best with
this workload. To replicate this scenario, we deployed the
ML inference application in streaming mode across all of
the devices under test. It is important to highlight that the
workload deployment was chosen to be isolated at this stage,
allowing it to serve later as a baseline for comparison.

The first plot (upper-left corner of Fig. 3) shows the memory
usage for the different nodes that follow a similar pattern.
Initially, memory utilization is low across all nodes since the
model has not yet been loaded. At a certain point, we notice a
distinct ”step”, where the model occupies a significant portion
of memory, maintaining this level until the end. However, the
delay in memory allocation (cold start effect) differs depending
on the machine. The Large Server loads the model fastest, fol-
lowed by the Small and Medium Servers, while the Raspberry
Pi is the slowest. Additionally, baseline memory usage and
the devices’ storage differences also impact the loading time.
To ensure fair analysis, the results in the following plots and
sections consider only the period after model loading.

Next, we examined CPU usage, power needs, and tempera-
ture metrics (Fig. 3, second series of plots), as these factors are
closely correlated. We observe that both the Raspberry Pi and
Small Server have a higher CPU usage, contrary to the Medium
and Large Servers, where the CPUs remain underutilized.
Moreover, the Small Server has the highest power demand
during inference, consuming 150 watts, followed by the Large
Server (144 watts) and the Medium Server (90 watts). The
Raspberry Pi, due to its low-power profile, requires only 5
watts. However, when analyzing temperature, the Raspberry
Pi reaches the highest levels at 71.5°C, followed by the Small
Server at 61°C. This indicates that both devices are operating
under significant load. In contrast, the Medium and Large
Servers maintain lower temperatures (35°C - 40°C).

Moreover, we examine the performance and the overall
network traffic of each device (Fig. 3 first line middle and right
plots). Starting with throughput (processed batch of images per
second), Raspberry Pi exhibits the lowest performance by a
significant margin, processing only 1.12 batches per second,
while Small, Medium, and Large Servers process 9.5, 7.2,
and 16.6 batches per second, respectively. Interestingly, Small
Server achieves higher throughput than Medium Server, but the
latter offers a better balance between performance and CPU
utilization, resulting in lower power consumption. In network
traffic, due to its limited processing throughput, the Raspberry
Pi generates approximately half of the network traffic of the
other deployments. For the remaining nodes, data transfer
remains relatively consistent, with minor differences related
to the randomness of batching images before transmission.

Finally, we evaluated the energy efficiency of each node
by calculating the average energy consumption per processed
batch. Our results show that the Raspberry Pi is the most
energy-efficient node, requiring only 4.52 joules per batch.
Among the servers, the Large Server performs best, consuming
8.65 joules per batch, followed by the Medium Server and the
Small Server at 12.5 and 15.73 joules per batch, respectively.
Key Takeaways: To this end, small edge devices (e.g., Rasp-
berry Pi) seem to have lower performance in model loading
and throughput, but are the most energy-efficient options
(6.67] per batch). Small servers are not always energy efficient
and may have temperature issues, yet may match or surpass the
medium servers in throughput. Large servers deliver the best
performance and may provide energy efficiency but has high
static power demands, while medium servers balance power

needs, energy efficiency and throughput.

RQ2: Given an edge device which already has deployed a
streaming ML inference application, how can other different
co-located services affect its performance?

After evaluating the first scenario, the administrator has
chosen to deploy the ML inference algorithm on the Medium
Server. However, with no other servers available, the user
must co-locate the ML workload with other tasks, such
as component-intensive stressors (e.g., CPU, memory, disk,
and network) or general-purpose workloads (e.g., databases
or streaming analytics). To determine whether this setup is
feasible and how it impacts performance, the user leverages
our framework again, modifying only the input parameters.

Our first observation is that cold start duration varies across
different co-location strategies. Specifically, when deploying
the ML streaming inference workload alongside a network
stressor (iperf), the impact on cold start time is minimal
(less than 10%). In contrast, collocating the service with
CPU and disk I/O stressors increases cold start duration by
approximately 35-40 %. Most notably, introducing a memory-
intensive stressor doubles the cold start time, rising from
244 seconds to 505 seconds. This underscores the significant
impact of memory pressure on ML model initialization.

Moreover, Fig. 4 (first plot) illustrates the CPU utilization of
each workload across different experiments. Our key observa-
tion is that component-based stressors significantly reduce the
CPU utilization of the ML streaming service. In an isolated ex-
ecution, the service utilizes 16.73% of the CPU (Fig. 3, right-
bottom plot). However, when co-located with disk 1/O, CPU,
and memory stressors, its utilization drops to approximately
8%, as these stressors consume a substantial share of CPU
resources: 76.82% (disk 1/0), 89.93% (CPU), and 90.10%
(memory). When the co-located workloads require less CPU,
such as the network stressor (0.29%), database (27.98%), and
streaming analytics (14.14%), the CPU allocation for the ML
workload nearly doubles to approximately 14-15%, which is
closer to the 17.67% of isolated execution scenario.

Regarding memory and network utilization (Fig. 4, last
two plots), we observe minimal impact on the corresponding
metrics of the target workload (ML streaming). Interestingly,
when workloads introduce network stress, such as the network
stressor or streaming analytics, the target workload generates
more network traffic. Although this may seem counterintu-
itive, it can be explained by considering CPU utilization and
throughput. Specifically, we observe that more data points
are processed and transmitted over the network when the
CPU usage of the co-located workloads is low. Moreover, the
memory allocation of the memory stressor and the database
appears to have minimal impact on the target workload, except
for the cold start period, as previously discussed.

Additionally, first and second plots of Fig. 5 show the
server’s temperature and power consumption, respectively.
While workload co-location inevitably increases both metrics,
different workload types contribute to varying levels of impact.
For instance, CPU-intensive stressors significantly elevate en-
ergy demand, with power consumption rising from 88 watts

Cpu Usage per Deployment

&% 100 - 60 80.9 90.1
o [
2z
e 28.
E B 86 78 150 . 141122 14650
D D = T = T = T {]-I‘;
I/O CPU Memory Network Streaming Database
Deployment
- Memory Usage per Deployment
en
F 104 8.2 8.0
5500 w00 mm 00 pmll e
ol mmoo wmoo wmi wmoo mmil s
IO CPU Memory Network Streaming Database
Deployment
. Network Usage per Deployment
en
K 1125
—_ 4
~& 100
*E 0 246 0.0 2.4 0.0 L9 00 1.1 L0 3.8 1.2 0.0
¥ T T T T T T
“ I/O CPU Memory Network Streaming Database
Deployment

Fig. 4: CPU, memory & network usage during co-location of an ML inference
application with other workloads. Darker shades represent the ML workload’s
resource consumption, while lighter indicate the co-located workload’s usage.

(baseline) to 114 watts, 130 watts, and 132 watts for I/O,
CPU, and memory stressors, respectively. In contrast, real-
world workloads, such as database operations (105 watts)
and streaming analytics (100 watts) lead to more moder-
ate increases. Moreover, power consumption and temperature
exhibit a strong correlation, with the highest temperature
observed under CPU stress, followed by memory and I/O
stressors. Notably, network stress has negligible effects on
power and temperature, reevaluating the relationship between
CPU usage and system heat generation.

Finally, last plot of Fig. 5 illustrates the throughput (Batches
per second) of the ML streaming workload and the im-
pact of service co-location. The green dashed line repre-
sents the throughput without co-location (7.29 batches per
second). When co-located with disk I/O, network, database,
and streaming workloads, performance degradation occurs,
reducing throughput to approximately 4.5-5.5 Batches per
second. The workloads that affect the ML application are the
CPU-intensive workload and the memory-intensive workload.
Examining the utilization metrics in Fig. 4, we observe that the
CPU-intensive workload primarily consumes CPU resources,
while the memory stressor heavily utilizes both CPU and
memory. The latter has a greater negative impact on the ML
workload, reducing its throughput to 2.54 Batches per second,
whereas the CPU-intensive workload allows for a higher
throughput of 4.04 Batches per second. The plot highlights
a strong correlation between available CPU resources and the
ML streaming service’s throughput, as well as the influence
of other compute resources, such as memory.

Key Takeaways: In this scenario, we highlighted that memory-
intensive stressors significantly increase the cold start time of
ML services, which is important to consider, especially when
there is a need to restart the workload frequently. Furthermore,
CPU and disk I/O stressors substantially reduce the CPU allo-
cation for the ML workload, leading to degraded performance.

Device Temperature per Deployment

) 55.08 19.92
16.19 . 39.10
T T 7 N N
I/O CPU Memory Network Streaming Database
Deployment
Power Usage per Deployment
130,00 132.00
L14.00 8800 100,00 L046.00
T — . -
IjO CPU Memory Network Streaming Database
Deplovment
Performance Metries Per Deployment
198 101
T T ~ N N
I/O CPU Memory Network Streaming Database

Deployment

Fig. 5: Temperature, Power Usage, and Performance Metrics for co-located
workloads (ML+Workload)

Additionally, when co-located workloads demand less CPU,
the ML service retains higher CPU utilization, improving
throughput, while memory and network stressors have minimal
direct impact. Moreover, CPU-intensive stressors significantly
increase power consumption and temperature, while real-world
workloads have a more moderate impact, and network stressors
exhibit negligible effects, reinforcing the strong correlation
between CPU usage and system heat generation.

RQ3: Given an Edge device which already has deployed
multiple workloads, like ML, databases, and streaming
analytics, how can different configurations of them affect
the overall performance and utilization metrics?

In this session, we examine a scenario where the user
has already deployed workloads on a selected node (Medium
Server) and intends to execute an ML workload alongside
them. The user also aims to compare different execution back-
ends in various modes to find the best option for throughput
and energy efficiency, while also identifying any potential
uncharted trade-offs. For this, we co-locate the ML workload
with streaming analytics and database workloads while also
modifying the benchmarking configuration of the ML work-
load. We assess three different execution engines (backends) —
ONNX, NCNN, and TensorFlow (TF) — under two execution
modes: (i) streaming (remote), where image batches are sent
over the network from a workload generator to the stressed
node; and (ii) local execution, where images exist on the same
machine, allowing inference without network involvement.

Examining the cold start period across different deploy-
ments, we observed that the ONNX and NCNN engines
load the model significantly faster (30-40 seconds) compared
to TensorFlow (356-375 seconds) in all cases. So, special-
ized ML engines optimized for CPU compute resources can
substantially reduce the startup time in such deployments.
Moreover, we have to note that the variations on co-located
services (at least for database and streaming analytic process)
do not influence the starting period of ML workloads.

Cpu Usage per Deployment

22.1 25.0
10.2 10.7

T
ML ML ML
NCNN TF

ML Str
ONNX
Deployment

ML Str ML Str
NCNN TF

Memory Usage per Deployment

20 74 6.8 7.2 7.2 7.5
214 2410 e 5 L4 14 14 L7
: : 2 0.5 L KM .
- - h_ L
M ML ML ML Str ML Str ML Str
ONNX NCNN TF ONNX NCNN TF
Deployment
o Network Usage per Deployment
il
3.7 3.0
0.0 ; 0.0 0.0 ; 0.0 0.0
ML ML ML ML Str ML Str ML Str

ONNX NCNN TF ONNX
Deployment
Fig. 6: CPU, memory, and network usage of an ML inference application
co-located with other workloads. In each group, the first shade represents the
ML workload, the middle the Streaming Analytic workload, and the right the

Databases resource consumption.

NCNN TF

Fig. 6 depicts the utilization of CPU, memory, and net-
work resources when an ML inference application runs
alongside other workloads. In each group, the first shaded
section (left bar) represents the ML workload, the middle
one corresponds to the Streaming Analytics workload, and
the rightmost bar indicates the resource consumption of the
Database workload. Firstly, we observe that local execution
(ML ONNX / NCNN / TF) leads to higher CPU utilization for
ML workloads, reaching just below 50%, while the database
and streaming analytics workloads remain at approximately
23% and 10%, respectively. In contrast, when the ML work-
load processes batches of images transmitted over the network
(ML Str ONNX / NCNN / TF), the CPU utilization decreases
to 20.3% for ONNX, 40.8% for NCNN, and 12.2% for TF.
This reduction is primarily due to network-related operations
(e.g., encoding/decoding, HTTP handshake, etc.) handled by
the network connector, during which the CPU remains idle.
As a result, more CPU capacity becomes available for the
co-located services, leading to a slight increase in their CPU
utilization, ranging from 23.6% to 26.7% for the database
workload and from 9.2% to 12.8% for streaming analytics.

For memory usage, we saw almost no differences in the
database and streaming analytics workloads across execution
modes, with the database workload consuming the largest
portion of the server’s memory (7-8GB). In contrast, the ML
shows differences in memory allocation between local (2—
3GB) and remote execution (1.4—1.7GB), as in local execution,
the workload loads the entire dataset into memory, whereas in
remote execution, it only fetches the model’s weights.

Regarding network usage, streaming analytics dominate,
generating approximately 3.7 MB of network traffic during the
experiment. Neither database workload nor local ML execution
involve network data transfers. Interestingly, ML streaming
(remote) workloads consume a significant amount of network
resources, with ML Str ONNX surpassing the streaming
analytics workload and ML Str TF showing similar network
usage. To understand this behavior, one must consider the

Device Temperature per Deployment

£ 5o gL 761 5.9 16,23 15,63

65

g o , ,
ML ML ML MLStr MLStr ML Str
ONNX NCNN TF ONNX NCNN TF

Deployment

Power Usage per Deployment
123.00

126.00 117.00 113.00 114,00

ML ML ML

ML Str ML Str ML Str
ONNX NCNN TF ONNX NCNN TF
Deployment

Performance Metries Per Deployment

52 86

10.20
T

ML ML ML ML Str ML Str ML Str
ONNX NCNN TF ONNX NCNN TF
Deplovment

Fig. 7: Temperature, Power Usage, and Performance Metrics for co-located
workloads (ML+Streaming+Database)

rate and size of the input data for streaming workloads (both
analytics and ML). Streaming analytics handle numeric data at
a higher throughput than ML services, whereas ML workloads
process batches of images. Although images are larger in
size compared to numeric data, their processing takes longer,
usually resulting in lower throughput. However, since ONNX
achieves a higher processing rate, it requires more network
bandwidth compared to the streaming analytics workload.

Fig. 7 presents the server’s temperature, power con-
sumption, and the performance metrics of the ML
workload. The temperature during local ML execution
(ML ONNX / NCNN / TF) is slightly higher, ranging from
47.61°C to 51.19°C, compared to streaming ML execution
(ML Str ONNX / NCNN / TF), which varies between 44.43°C
and 46.23°C. Moreover, local execution requires more power,
consuming between 117-127 watts, whereas remote execution
operates with a lower power demand of 113-114 watts.

The last plot of Fig. 7 shows the throughput (batch per
second) of ML services. In all cases, local ML execution
provides much better results than the same workload running
remotely. Specifically, the best performance is observed for
local ONNX with 241.61 batches/second. The second position
is also allocated by the ONNX but for its streaming execution
with 82.86 batches/second. The latter highlights the superiority
of ONNX execution engine for CPU inference. NCNN handles
27.73 batches/second and 21.56 batches/second, for local and
remote execution, respectively, while the worst performance
observed for TensorFlow (10.2 and 3.5 batches/second).

Key Takeaways: Our analysis highlights that ONNX and
NCNN achieve significantly faster cold start times than Ten-
sorFlow, due to the benefits of CPU-optimized ML engines,
which is particularly advantageous when someone wants to
change models frequently. Local execution results in higher
CPU usage but reduces network traffic, while remote execution

lowers ML CPU usage, allowing co-located services to utilize
more resources. ML workloads require more memory during
local execution (2-3GB) than remote (1.4-1.7GB), and the
latter workloads consume notable network bandwidth, with
ONNX demanding the most due to its high throughput. Local
ML execution leads to slightly higher temperatures (47.61°C—
51.19°C) and power consumption (117-127W) than remote
execution (44.43°C—46.23°C, 113-114W). Performance-wise,
ONNX outperforms other backends, achieving the highest
throughput (241.61 batches/sec locally, 82.86 remotely), while
TF performs the worst (10.2 and 3.5 batches/sec).

VII. CONCLUSION

In this work, we introduced an automated benchmark-
ing framework to evaluate the impact of multi-tenancy in
Edge Computing environments. It simplifies the deployment,
monitoring, and analysis of co-located workloads, enabling
reproducible performance evaluation across diverse hardware
setups. Through a series of experiments, we showed how
workload co-location impacts key performance metrics, in-
cluding cold start duration, CPU utilization, and network
behavior. Specifically, our key findings include: (i) small edge
devices, while energy-efficient, have slower model loading and
throughput compared to larger servers, which offer the best
performance but come with significantly higher power de-
mands; (ii) memory-intensive workloads increase the cold start
time of machine learning applications by nearly 1.5x, while
CPU and disk I/O stressors degrade performance through
heavy CPU usage; and (iii) CPU-optimized ML engines, such
as ONNX and NCNN, achieve significantly faster cold starts
(up to 11), with ONNX achieving the highest throughput,
surpassing NCNN by 9x and TensorFlow by 24x. Building on
these insights, our tool allows researchers to generate profiles
of utilization metrics such as memory, CPU, disk, and en-
ergy, for each workload combination and configuration.These
profiles are valuable for co-location-aware strategies, while
practitioners can use the benchmarking loops to monitor and
adapt placement policies based on specific target metrics.

For future work, we plan to evaluate the impact of the
multitenancy of modern ML workloads, deployed on GPUs or
edge accelerators. Additionally, we will extend the framework
to support the creation of customizable edge network topolo-
gies, by using programmable network devices or emulators,
in order for our framework to be capable of changing not
only workload parameters but also infrastructure configura-
tions. Most importantly, we aim to enhance the framework
with the capability to automatically identify optimal work-
load parameters and configurations, apply them, and allocate
them to edge nodes. To this end, we will explore automated
methods, such as Bayesian optimization, ML techniques, and
reinforcement learning, to determine deployment parameters
based on specified performance indicators, including energy
consumption, latency, and computational footprint.

Acknowledgement. This work is part of AdaptoFlow that has indirectly
received funding from the European Unions Horizon Europe research and
innovation action programme, via the TRIALSNET Open Call issued and
executed under the TrialsNet project (Grant Agreement no. 101017141).

[1]

[2]

[3]
[4]

[5]

[6]

[7]

[8]

[9]

(10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

REFERENCES

“Powering an inclusive, digital future for all,
https://newsroom.cisco.com/c/r/newsroom/en/us/a/y2023/m01/
powering-an-inclusive-digital-future-for-all.html/.

M. Symeonides, Z. Georgiou, D. Trihinas, G. Pallis, and M. D.
Dikaiakos, “Fogify: A fog computing emulation framework,” in 2020
IEEE/ACM Symposium on Edge Computing (SEC). 1EEE, 2020, pp.
42-54.

W. Shi and S. Dustdar, “The promise of edge computing,” Computer,
vol. 49, no. 5, pp. 78-81, 2016.

P. Porambage, J. Okwuibe, M. Liyanage, M. Ylianttila, and T. Taleb,
“Survey on multi-access edge computing for internet of things realiza-
tion,” IEEE Communications Surveys & Tutorials, vol. 20, no. 4, pp.
2961-2991, 2018.

S. Wijethilaka and M. Liyanage, “Survey on network slicing for internet
of things realization in 5g networks,” IEEE Communications Surveys &
Tutorials, vol. 23, no. 2, pp. 957-994, 2021.

S. Zobaed, A. Mokhtari, J. Champati, M. Kourouma, and M. Salehi,
“Edge-MultiAl: Multi-tenancy of latency-sensitive deep learning
applications on edge,” in 2022 IEEE/ACM 15th International Conference
on Utility and Cloud Computing (UCC). Los Alamitos, CA, USA:
IEEE Computer Society, dec 2022, pp. 11-20. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/UCC56403.2022.00012

P. Subedi, J. Hao, I. Kim, and L. Ramaswamy, “Ai multi-tenancy
on edge: Concurrent deep learning model executions and dynamic
model placements on edge devices,” in 2021 IEEE 14th International
Conference on Cloud Computing (CLOUD). Los Alamitos, CA,
USA: IEEE Computer Society, sep, pp. 31-42. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/CLOUD53861.2021.00016

I. Alla, H. B. Olou, V. Loscri, and M. Levorato, “From sound to
sight: Audio-visual fusion and deep learning for drone detection,” in
Proceedings of the 17th acm conference on security and privacy in
wireless and mobile networks, 2024, pp. 123-133.

K. Krasovitskiy, S. Christou, and D. Zeinalipour-Yazti, “LLM-MS: A
multi-model 1lm search engine,” in First Intl. Workshop on Coupling of
Large Language Models with Vector Data Management (LLM+Vector
Data) (LLMVDB’25), collocated with the 40th IEEE International
Conference on Data Engineering (IEEE ICDE’25), 2025.

P. Sharma, L. Chaufournier, P. Shenoy, and Y. C. Tay, “Containers and
Virtual Machines at Scale: A Comparative Study,” in Proceedings of
the 17th International Middleware Conference. Trento Italy: ACM,
Nov. 2016, pp. 1-13. [Online]. Available: https://dl.acm.org/doi/10.
1145/2988336.2988337

R. Morabito, “Virtualization on internet of things edge devices with
container technologies: A performance evaluation,” IEEE Access, 2017.
G. Premsankar and B. Ghaddar, “Energy-efficient service placement
for latency-sensitive applications in edge computing,” IEEE Internet of
Things Journal, vol. 9, no. 18, pp. 17926-17937, 2022.

J. Georgiou, M. Symeonides, M. Kasioulis, D. Trihinas, G. Pallis, and
M. D. Dikaiakos, “Benchpilot: Repeatable & reproducible benchmarking
for edge micro-dcs,” in 2022 IEEE Symposium on Computers and
Communications (ISCC). 1EEE, 2022, pp. 1-6.

R. Mohammad, S. Gopalakrishnan, and K. Pattabiraman, “Co-
approximator: Enabling performance prediction in colocated
applications.” ACM Trans. Embed. Comput. Syst., vol. 24, no. 1, Oct.
2024. [Online]. Available: https://doi.org/10.1145/3677180

S. Chintapalli, D. Dagit, B. Evans, R. Farivar, T. Graves, M. Holder-
baugh, Z. Liu, K. Nusbaum, K. Patil, B. J. Peng et al., “Benchmarking
streaming computation engines: Storm, flink and spark streaming,” in
2016 IEEFE international parallel and distributed processing symposium
workshops (IPDPSW). 1EEE, 2016, pp. 1789-1792.

V. J. Reddi, C. Cheng, D. Kanter, P. Mattson, G. Schmuelling, C.-J.
Wu, B. Anderson, M. Breughe, M. Charlebois, W. Chou et al., “Mlperf
inference benchmark,” in 2020 ACM/IEEE 47th Annual International
Symposium on Computer Architecture (ISCA). 1EEE, 2020, pp. 446—
459.

P. Subedi, J. Hao, I. K. Kim, and L. Ramaswamy, “Ai multi-tenancy
on edge: Concurrent deep learning model executions and dynamic
model placements on edge devices,” in 2021 IEEE 14th International
Conference on Cloud Computing (CLOUD). IEEE, 2021, pp. 31-42.

M. Jansen, L. Wagner, A. Trivedi, and A. Iosup, “Continuum: Automate
infrastructure deployment and benchmarking in the compute contin-

cisco,”

[19]
[20]

(21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

[32]

(33]

[34]

[35]

uum,” in Companion of the 2023 ACM/SPEC International Conference
on Performance Engineering, 2023, pp. 181-188.
Joanna Georgiou, “Github repository,”
GithubFramework, 2025, accessed: 2025-05-28.
——, “Framework docker images repository,” https://tinyurl.com/
DockerHubFramework, 2025, accessed: 2025-05-28.

B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with ycsb,” in Proceedings of the
1st ACM symposium on Cloud computing, 2010, pp. 143-154.

N. Wang, M. Matthaiou, D. S. Nikolopoulos, and B. Varghese, “Dyverse:
Dynamic vertical scaling in multi-tenant edge environments,” Future
Generation Computer Systems, vol. 108, pp. 598-612, 2020.

D. Trihinas, M. Symeonides, J. Georgiou, G. Pallis, and M. D. Dika-
iakos, “Energy-aware streaming analytics job scheduling for edge com-
puting,” in 2023 IEEE International Conference on Cloud Computing
Technology and Science (CloudCom). 1EEE, 2023, pp. 161-168.

S. Ilager, A. N. Toosi, M. R. Jha, I. Brandic, and R. Buyya, “A
data-driven analysis of a cloud data center: Statistical characterization
of workload, energy and temperature,” in Proceedings of the IEEE/ACM
16th International Conference on Utility and Cloud Computing, ser.
UCC ’23. New York, NY, USA: Association for Computing Machinery,
2024. [Online]. Available: https://doi.org/10.1145/3603166.3632137

W. Chen, K. Ye, and C.-Z. Xu, “Co-locating online workload and
offline workload in the cloud: An interference analysis,” in 2079
IEEE 21st International Conference on High Performance Computing
and Communications; IEEE 17th International Conference on Smart
City; IEEE 5th International Conference on Data Science and Systems
(HPCC/SmartCity/DSS), 2019, pp. 2278-2283.

P. Sharma, L. Chaufournier, P. Shenoy, and Y. C. Tay, “Containers
and virtual machines at scale: A comparative study,” in Proceedings
of the 17th International Middleware Conference, ser. Middleware ’16.
New York, NY, USA: Association for Computing Machinery, 2016.
[Online]. Available: https://doi.org/10.1145/2988336.2988337

D. N. Jha, S. Garg, P. P. Jayaraman, R. Buyya, Z. Li, and R. Ranjan, “A
holistic evaluation of docker containers for interfering microservices,”
in 2018 IEEE International Conference on Services Computing (SCC),
2018, pp. 33-40.

A. Morichetta, V. Pujol, S. Nastic, S. Dustdar, D. Vij, Y. Xiong,
and Z. Zhang, “Polarisprofiler: A novel metadata-based profiling
approach for optimizing resource management in the edge-cloud
continnum,” in 2023 IEEE International Conference on Service-
Oriented System Engineering (SOSE). Los Alamitos, CA, USA:
IEEE Computer Society, jul 2023, pp. 27-36. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/SOSE58276.2023.00010

U. Awada and J. Zhang, “Edge federation: A dependency-aware multi-
task dispatching and co-location in federated edge container-instances,”
in 2020 IEEE International Conference on Edge Computing (EDGE),
2020, pp. 91-98.

M. N. H. Nguyen, C. W. Zaw, K. Kim, N. H. Tran, and C. S.
Hong, “Let’s share the resource when were co-located: Colocation edge
computing,” IEEE Transactions on Vehicular Technology, vol. 69, no. 5,
pp. 5618-5633, 2020.

R. Mayer, L. Graser, H. Gupta, E. Saurez, and U. Ramachandran, “Emu-
fog: Extensible and scalable emulation of large-scale fog computing
infrastructures,” in 2017 IEEE Fog World Congress (FWC), 2017, pp.
1-6.

J. Hasenburg, M. Grambow, and D. Bermbach, “ MockFog 2.0:
Automated Execution of Fog Application Experiments in the Cloud ,”
IEEE Transactions on Cloud Computing, vol. 11, no. 01, pp. 58-70,
Jan. 2023. [Online]. Available: https://doi.ieeecomputersociety.org/10.
1109/TCC.2021.3074988

M. Jansen, L. Wagner, A. Trivedi, and A. Iosup, “Continuum:
Automate infrastructure deployment and benchmarking in the compute
continuum,” in Companion of the 2023 ACM/SPEC International
Conference on Performance Engineering, ser. ICPE '23 Companion.
New York, NY, USA: Association for Computing Machinery, 2023, p.
181188. [Online]. Available: https://doi.org/10.1145/3578245.3584936
O. Naman, H. Qadi, M. Karsten, and S. Al-Kiswany, “Mecbench: A
framework for benchmarking multi-access edge computing platforms,”
in 2023 IEEE International Conference on Edge Computing and Com-
munications (EDGE). 1EEE, 2023, pp. 85-95.

S. Ceesay, A. Barker, and B. Varghese, “Plug and play bench: Simpli-
fying big data benchmarking using containers,” in /EEE BigData, 2017.

https://tinyurl.com/

[36]

[37]
[38]
[39]
[40]
[41]
[42]

[43]
[44]

[45]

[46]

F. Nikolaidis, A. Chazapis, M. Marazakis, and A. Bilas, “Frisbee: A
suite for benchmarking systems recovery,” in Proceedings of the Ist
Workshop on High Availability and Observability of Cloud Systems, ser.
HAOC, 2021.

Netdata, Inc., “Netdata cloud,” https://www.netdata.cloud/, 2025, ac-
cessed: 2025-05-30.

Meross Technology Ltd., “Smart plug - meross wifi plug,” https://www.
meross.com/product/3/article/, 2025, accessed: 2025-05-30.
Prometheus Authors, “Prometheus: Monitoring system & time series
database,” https://www.prometheus.io/, 2025, accessed: 2025-05-30.
Linux Die.net, “stress(1) - linux manual page,” https://linux.die.net/man/
1/stress, 2025, accessed: 2025-05-30.

iPerf Team, “iperf download page,” https://iperf.fr/iperf-download.php,
2025, accessed: 2025-05-30.

Apache Software Foundation, “Apache kafka,” https://kafka.apache.org/,
2025, accessed: 2025-05-30.

Redis Labs, “Redis,” https://redis.io/, 2025, accessed: 2025-05-30.
ONNX Contributors, “Open neural network exchange (onnx),” https:
//github.com/onnx/onnx, 2019, accessed: 2025-05-30.

Tencent, “ncnn: High-performance neural network inference framework
optimized for mobile platforms,” https://github.com/Tencent/ncnn, 2023,
accessed: 2025-05-30.

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro,
G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, 1. Good-
fellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Man, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Vigas, O. Vinyals, P. War-
den, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “Tensorflow:
Large-scale machine learning on heterogeneous distributed systems,”
in OSDI Workshop on Machine Learning Systems (MLSys), 2015,
https://www.tensorflow.org/about/bib.

