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GridStat: A Flexible QoS-Managed Data
Dissemination Framework for the Power Grid

Harald Gjermundrød, Member, IEEE, David E. Bakken, Carl H. Hauser, and Anjan Bose

Abstract—With the increase in the monitoring of operational
data at very high rates in high voltage substations and the ability
to time synchronize these data with global positioning systems,
there is a growing need for transmitting this data for monitoring,
operation, protection, and control needs. The sets of data that need
to be transferred and the speed at which they need to be trans-
ferred depend on the application—for example, slow for postevent
analysis, near real time for monitoring and as close to real time
as possible for control or protection. In this paper, we describe
GridStat, a novel middleware framework we have developed to
provide flexible, robust, and secure data communications for the
power grid’s operations. Test results demonstrate that such a
flexible framework can also guarantee latency that is suitable for
fast wide-area protection and control.

Index Terms—Computer control of power systems, distributed
control, energy-management systems, power system measure-
ments, power system monitoring, power system protection, quality
of service (QoS), supervisory control and data-access (SCADA)
systems, wide-area control.

I. INTRODUCTION

T HE communication systems for the electric power grids
in North America were developed in response to the 1965

Northeastern U.S. blackout. Today’s supervisory control and
data access (SCADA) systems, which form the core of the com-
munication system for monitoring and controlling the wide-area
power grid, are based on the requirements and technology of that
time period. In the years since then, the data collection capabili-
ties of devices in substations, such as IEDs, and energy manage-
ment systems’ computing capacity in control centers (EMSs)
have grown enormously.

Thecommunications systemisknowntogreatly limit thekinds
of control and protection that can be performed in today’s electric
powergrid[1], [2]. It is,however, reliedonheavilybyawiderange
of power application programs spread throughout utilities. Pro-
gramming distributed systems, where applications and services
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are spread across a computer network, is known to be very dif-
ficult, even for computer science experts in the field. In the last
few decades, a new class of software, middleware, has arisen to
help simplify the task of programming a distributed system [3].
Middleware is a layer of software above the operating system that
provides higher-level building blocks for programmers to use. In
doing so, it helps shield programmers from having to deal with
diversity of CPU architecture, programming language, operating
system, and network technology. It also allows application soft-
ware to be ported to new environments much easier than if they
werewrittenwithoutmiddleware[i.e.,directly toanetworkappli-
cation programming interface (API)], especially one that is spe-
cific to a particular operating system.

For these reasons, middleware frameworks such as CORBA
have been widely used in such industries as commercial
avionics, telecommunications, transportation since the 1990s
and has been used by the U.S. military since the 1980s. Middle-
ware also can be used to provide quality of service (QoS) such
as delay guarantees and availibility (via redundancy manage-
ment) while allowing the application program to not get locked
into a particular QoS mechanism [4], [5].

We have designed a middleware framework called GridStat
to support the emerging needs of the electric power system
for a flexible communication system. It manages network
resources to provide low-latency, reliable delivery of informa-
tion produced anywhere on the network and sent to multiple
other points (i.e., GridStat provides QoS-managed multicast).
Using the middleware approach allows data providers and
application developers to avoid the thornier issues involved in
wide-area communication and to concentrate on application
needs. GridStat was designed to meet the flexibility and QoS
requirements outlined above, and ongoing work is addressing
other miscellaneous (security and trust) requirements. More
about the flexibility and QoS requirements for the power grid,
with detailed citations of industry sources and standards as well
as power researchers, can be found in [6].

In this paper, we describe the design, implementation, and
performance of GridStat. The remainder of this paper is orga-
nized as follows. Section II describes the overall architecture
of GridStat. The design of its major components is given in
Section III. Section IV provides experimental results for Grid-
Stat, mainly delivery latency and throughput. described in the
preceeding sections. Section V compares GridStat with related
research and products in both computer science and the power
grid. Finally, Section VI concludes.

II. GRIDSTAT ARCHITECTURE

In the GridStat middleware architecture, network manage-
ment and data delivery are handled by separate but interacting
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Fig. 1. GridStat architecture.

subsystems called planes. The management plane allocates
resources and adapts the network in reaction to changing power
system configurations or communication network failures.
Data plane components are responsible for forwarding data
from each source to potentially many destinations as directed
by management-plane components.

GridStat’s data plane supports a publish-subscribe com-
munication model. Thus, items in each periodic data stream
produced at a source (publisher) are distributed to destinations
(subscribers) without the publisher having to explicitly track
all the subscribing entities. This simplifies application pro-
grams and gives the system the flexibility to add subscribers
and even change the characteristics of existing subscriptions
at runtime. A publisher simply announces the availability of
its data stream(s) to the management plane. Subscribers then
request that the middleware set up delivery paths (with QoS,
including rate, latency, and redundancy) to accomplish the
delivery. GridStat middleware components at the publishers
and subscribers provide programming interfaces (APIs) that
applications use to make the announcements and requests.
Similarly, the publisher and subscriber middleware APIs allow
applications to send and receive data items.

The basic architecture of GridStat is illustrated in Fig. 1. The
active components of the management plane are called Grid-
Stat QoS brokers and those of the data plane are called status
routers. The QoS brokers are hierarchically arranged with poli-
cies set at higher levels in the hierarchy controlling more global
aspects and allowing local concerns to be implemented using
policies at lower levels. The hierarchical organization was de-
signed to support decomposition of communication manage-
ment and cyber-security policies along organizational and ge-
ographic boundaries. For example, the hierarchy enables util-

ities to have policies about bandwidth allocation for different
applications within the company and to limit internal and ex-
ternal subscriptions to status variables. These policies can also
be set at levels below the utility (regions of a utility) and above
it (e.g., bandwidth allocated to different entities’ subscriptions
on an RTO’s exchange network).

In contrast to the hierarchy of the management plane, the
status routers have a flat organization. A collection of status
routers in the same administrative domain and having the same
resource management and cyber-security policies is called a
cloud. A cloud of status routers is directly managed by a QoS
broker that is at the bottom of the hierarcy, which we call a leaf
QoS broker. The status routers forward each incoming data item
on outgoing communication links that have a downstream sub-
scriber for that item. Communication links between clouds are
managed by the least-common-ancestor QoS broker of the bro-
kers that manage the individual clouds, based on the policies in
place at that QoS broker.

In announcing publications and requesting subscriptions,
publishers and subscribers interact with a QoS broker using the
middleware APIs. For a publication, the QoS broker simply
notes that a publication is available and its publication rate.
Subscriptions are more complicated: after verifying that a
subscription request can be satisfied within the available re-
sources, the QoS brokers communicate with the management
interfaces of the status routers along the data delivery path to
set up forwarding rules. Since subscribers can request lower
update rates than publishers publish, and different subscribers
of a given status variable can request delivery at different rates,
some items may not need to be forwarded. Therefore, status
routers implement rate filtering as part of their forwarding
mechanisms, which means that different subscribers to the
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same status item can get it delivered at a different rate. For
example, a monitoring application in the same substation may
need the data many times a second, in order to perform some
protective action, while remote applications that are loosely
tracking the status item (for example, to ensure that its producer
is functioning) may need it only once per second or even less
frequently. Conversely, since a subscription may require use
of redundant paths, even a single subscription may cause an
item to be forwarded on multiple links. Thus, multicast and
heterogeneous delivery rates are efficiently supported: each
update message only traverses any network link at most once.
Utilizing this spatial redundancy, specifically where all redun-
dant links are used actively (instead of as backups) provides
essentially zero fail-over time when a link fails, compared with
best practices failover time in a LAN “10 to 50 ms or greater”
as reported in [7].

Note that in an actual wide-area deployment of GridStat, the
status routers and network links would be engineered such that
different kinds of communication media were used, with very
different properties (error rate, bandwidth, latency, cyber se-
curity vulnerabilities, susceptibility to jamming, etc.). Further,
they could be obtained from different providers: backbone In-
ternet providers, cable modem ISPs, cellular phone providers
(for some low-bandwidth, high importance traffic), broadband
over power lines, etc. Thus, updates from a single publisher
could be made to traverse different network technologies and
different providers (and possibly different operating systems).
This diversity has the potential to greatly enhance the reliability
of data delivery, in part because the different paths from pub-
lisher to subscriber can potentially be much less likely to suffer
from common mode failures, for example due to a single vul-
nerability in a single instance of technology (such as WiFi or
Linux).

This section has overviewed the baseline capabilities of the
GridStat framework focusing on the timely and robust delivery
of updates. References [6] and [8] contain a description of more
advanced features that GridStat supports.

III. DESIGN OF THE PRINCIPAL GRIDSTAT

DATA PLANE ENTITIES

As previously mentioned, the principal GridStat entities are
publishers, subscribers, status routers, and QoS brokers. QoS
brokers are the main component of the management plane
and do not participate in data forwarding at all. Publishers,
subscribers, and status routers are all data plane components.
Understanding the performance, security and reliability of the
GridStat framework requires an understanding of each of these
entities and the interactions between them.

There are two types of interactions: command interactions
and forwarding interactions. Data plane entities support both
types of interaction and management plane entities support only
command interactions.

Command interactions are implemented by command
modules using CORBA client-server technology. Java RMI
and Microsoft’s .NET would be appropriate alternatives to
CORBA—the important thing is to leverage a distributed
system technology base to achieve interoperability between

implementations using different languages and running on
different operating systems.

Forwarding interactions are conducted in GridStat using
an abstraction called an event channel, depicted by the lines
connected to the status routers in Fig. 1. Each GridStat event
channel represents a point-to-point communication capability
between the entities that it connects. The event channel ab-
straction provides a great deal of flexibility concerning the
underlying network that carries data between two entities: it
could be an actual point-to-point link, or an IP network, or an
ATM network, or a SONET ring, for example. GridStat was
designed to be implemented on top of all of these kinds of
networks. This is very important, because practical wide-area
deployment GridStat would be likely to involve data paths
crossing multiple network technologies and involving multiple
utilities. Further, in practice it will be necessary to provide QoS
guarantees such as latency that span these different network
technologies.

The GridStat event channel is a building block for QoS-aware
point-to-multipoint (multicast) communication which, in Grid-
Stat, has a distributed implementation provided collectively by
the status routers and management plane. Of course, providing
QoS in GridStat involves receiving certain QoS guarantees
from the underlying network. For example, the public Internet
currently does not support QoS guarantees yet a private internet,
using the same protocols but carrying only GridStat traffic,
could provide adequate QoS guarantees.

The data plane is structured as follows: each publisher is con-
nected by an event channel to a status router. The event channel
carries status items for all the publications made by the pub-
lisher. Similarly, a subscriber is connected to a status router by
an event channel that carries status items for all the subscriber’s
subscriptions. Between the publisher and subscriber there is at
least one delivery path through status routers. Each status router
has potentially many incoming and many outgoing event chan-
nels that connect it to publishers, subscribers, and other status
routers. A status router’s job is to forward each incoming item
on the outgoing event channels where it is needed. The for-
warding rules are determined by the management plane when
subscriptions are added, and then inserted in the status router
using a command interaction.

As in any communication network, the delivery latency of a
packet across a link is made up of several components.

Transmission time T (L/b), the length of the packet (L)
divided by the bandwidth of the link (b).
Propagation delay P (D/c), the length of the link (D) di-
vided by the speed of light in the particular communication
medium (c). These are fixed by the packet length, network
technology and distance between nodes.
Processing time C.
Queuing delay Q; both C and Q are determined by the
performance of the routing hardware and software and the
offered load. These are fixed by the packet length, network
technology and distance between nodes.

Thus, per-link latency is T P C Q. In GridStat, it is the
end-to-end latency that is of interest so these quantities must
be summed over all the status routers and links that a packet
traverses.
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The GridStat prototype implementation provides a baseline
for evaluating the forwarding performance of status routers, pri-
marily C and Q in the latency expression. C is directly under
the control of the status router implementor—it depends on the
speed of the routing hardware and the complexity of tasks that
are performed on each incoming packet as well as the quality of
the implementation of those tasks. The queuing delay incurred
by a particular packet is also potentially under the control of the
routing software but the guarantees that are possible are ulti-
mately affected by the total offered load for each link. In order
to limit the effect of queuing delays to those that are neces-
sary, status routers implement rate filtering as follows: incoming
packets that are not needed to meet the rate requirements of any
downstream subscriber are dropped. There is a tradeoff involved
in this, however: performing the computation to implement this
feature increases C for packets that are forwarded so the relative
contributions to latency of additional network traffic and addi-
tional computation must be evaluated.

A. Design of the Publisher and the Subscriber

The GridStat publisher and subscriber are implemented in
software shared libraries that can be linked with applications.
The libraries implement the communication steps that are
needed to establish and maintain a connection with a status
router, including reconnecting when communication is lost.
Library implementations are available in Java and C# (the
favored language of Microsoft’s .NET middleware framework).
They have been designed so that publisher and subscriber
applications can exist on a wide range of devices, ranging
from embedded devices of limited computational power to
high-powered computers running modeling and simulation
applications running in control centers. It is important to note
here that “subscriber” and “publisher” are merely roles that an
application program or even hardware device may play and that
any application or device may play either or both roles with
respect to many publications. For an application, publishing is
simply a matter of asserting the intent to publish, stating the
intended publishing rate, then periodically calling the Publish
method.

Subscribing involves identifying a particular status variable
along with the desired update rate, latency, and level of redun-
dancy. When it receives this request the status router forwards it
to a QoS broker which arranges, using management plane facili-
ties, the needed forwarding rules in the network of status routers.
Neither the application, the Publisher, nor the Subscriber need
be aware of the communication network topology (the number
and location of status routers and the communication links be-
tween them). Routing is handled entirely by the management
plane.

When the setup is complete the application can receive the
most recently received status item for the subscription using ei-
ther (or both) of two different interfaces. The cache API lets the
application program treat the subscribed status variable as if it
were a local variable. This frees the application from concerning
itself with directly handling variable updates. The callback API
lets the subscriber register a callback so that it is notified of up-
dates as they arrive. This is useful, for example, for integration
into a local database. Additionally, the application may request

notification of QoS violations—for example, if an expected up-
date is late or does not arrive.

B. Design of the Status Router

The purpose of the collection of status routers is to provide a
message bus between publishers and subscribers that is special-
ized for forwarding streams of periodically-generated update
messages. Compared with an IP router, a status router is special-
ized to provide multicast, rate filtering, and subscription modes
(defined below) while supporting a range of latency, rate, and
redundancy requirements, even for the same data item. These
specializations are all based on the observation that resource
allocation and routing decisions for a large status network are
made infrequently, on the basis of subscriptions, rather than
packet-by-packet as in an IP router.

Subscription modes are a feature of GridStat’s status routers
which allows the data plane of status routers to adapt quickly
to changing operational situations. A mode contains the for-
warding rules corresponding to a set of subscriptions. A mode
change globally changes the set of subscriptions quickly without
the need to recalculate routes, allocate resources, etc. Because
such management calculations are complex, they take a signif-
icant amount of time for each created subscription. Adding a
large number of subscriptions during a crisis or contingency,
while possible, could result in unsatisfactory delays in providing
relevant data to subscribers and thus could cripple the ability
to add a few new subscriptions that could help “drill down”
and discover the cause of the disturbance. Subscription modes
get around this problem by allowing pre-contingency planning
for communication needs in addition to the required practice of
pre-contingency planning for responses in the power network.

Multicast has been mentioned previously as a key require-
ment for GridStat. It provides the property that any entity with a
legitimate need for data should be able to receive it in a timely
fashion while limiting the resources needed to support the prop-
erty. Spatial redundancy—provisioning multiple disjoint paths
from publishers to subscribers—is indirectly implemented by
the status routers but no explicit mechanism is needed for this;
it is simply a consequence of appropriate forwarding rules being
established in the status routers based on routing computations
performed by the QoS Brokers, [9]. GridStat implements the re-
quirement for supporting heterogeneous rate delivery with rate
filtering mechanisms in the status router.

Multicast and rate filtering interact and are implemented by a
single forwarding mechanism that works as follows. The status
variable ID and timestamp are extracted from each incoming
packet. The ID is used as a key to look up the outgoing links
with active subscriptions for that ID. The lookup yields for each
link a list of subscription intervals. A calculation based on the
interval and timestamp yields a forward or do not forward deci-
sion for that link. If any of the subscriptions on a link produce the
decision forward then the packet is sent on the link; otherwise,
it is dropped—there is currently no need for it downstream.

Since one potential use of the status dissemination network
is to support applications using synchronous phasor measure-
ments there is a subtlety in rate filtering for synchronous phasor
measurements: a large part of their benefit comes from the fact
that, being taken simultaneously throughout the power grid, they
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can be compared to compute, for example, voltage angles. Rate
filtering is necessary for PMU data because these devices can
produce 1–4 readings per power cycle, yet data can only be
typically used (at least today) at one or two orders of magni-
tude lower rate. Without rate filtering, many status updates from
PMUs (and other sources) would be wasting significant band-
width. It would be most unfortunate, however, if the rate fil-
tering were to filter update streams from different sources dif-
ferently—delivering, say, 4 updates/s from one stream times-
tamped at 0, 250, 500, and 750 ms past the second while de-
livering update events from another stream timestamped at 125,
375, 725, and 875 ms past the second. GridStat’s rate filtering is
designed so that subscriptions with identical rate requirements
for status variables with compatible publication intervals result
in identical timestamps on the delivered update events for all
subscriptions, [8], [10], [11].

We call this property temporal synchronism. It means that a
state measurement program can collect PMU data from wide-
spread locations and be assured that, despite rate filtering, the
measurements that arrive from each PMU are taken at the same
GPS time, for example all at 0, 250, 500, and 750 ms past the
second.

C. Implementation

The GridStat prototype consists of Java implementations of
all of the entities mentioned above. In addition there are C# pub-
lisher and subscriber implementations that interoperate with the
Java status router implementations.

The next section reports performance measurements made on
the prototype implementation. It should be noted that Java im-
poses a number of performance consequences on the system that
affect the reported results.

• Interpretation overhead for virtual machine byte codes
compared with native code.

• Just-in-time (JIT) compilation overhead for converting
byte codes to native code.

• Garbage collection overhead.
As a result, we can be confident that the performance reported

here (which is based on early 2004 hardware) is a lower bound
on what the architecture is capable of achieving. Even with the
Java implementation it is clear that performance requirements
of many current and envisioned power system monitoring and
control applications given in [6] are within the capabilities of
the prototype.

IV. EXPERIMENTAL RESULTS

In this section we overview the results of extensive perfor-
mance experiments on the GridStat prototype. For more details,
see [8], which includes 74 pages of detailed experimental re-
sults.

There are two primary metrics of interest in this overview.
The first, forwarding latency, is the amount of time it takes an
SR to forward an update event. The second, load scalability,
is the number of update forwards per second which can be
sustained without degrading forwarding latency. Other metrics
such as the drop rate, the fraction of forwarding events dropped
by an SR, were measured extensively but are not presented here
in detail for reasons of brevity.

Fig. 2. Baseline experimental topology.

The experiments were conducted in a rack-mounted system
whose main computers are 19 Dell Power Edge 1750s with
a Dual Xeon 2.8 GHz CPU, 533 MHz system bus, 1 GB of
DRAM, and a triple 1 Gb/s Ethernet interface connected by
switched Ethernet. The system software included Fedora 2
Linux (kernel 2.6.10-1.9 FC smp) and Java 2 Platform Stan-
dard Edition 5.0 (version 1.5.02) from Sun Microsystems,
using UDP sockets.

A. Baseline Forwarding Experiments

The experimental topology for the baseline forwarding exper-
iments is given in Fig. 2. In our experiments, the performance
metrics are measured on a reference system, a single publisher

and a single subscriber . These subscription endpoints are
on the same computer so the end-to-end latencies can be mea-
sured very accurately using the local clock. Additionally, there
are two load systems, which consist of two pairs of publishers
and subscribers, and . Each publisher and sub-
scriber is connected to an edge status router (ESR); these are
denoted . In these experiments, the reference system and the
load systems share a chain of n SRs, backbone status routers
(BSRs), denoted through .

Fig. 3 depicts the forwarding latency and load scalability ob-
served in our experiments. Here, the number of BSRs, n, is
varied from 1 to 7, and both the forwarding latency and its stan-
dard deviation increase close to linearly with n. With a load of
approximately 18 K forwards/s, the forwarding latency for each
BSR (derived from the slope from 1 to 7 BSRs) is 0.360 ms.
When the load is approximately 50 K forwards/s, the forwarding
latency for each BSR is 0.532 ms. We do not present results be-
yond approximately 50 K forwards/s, because at this point the
BSR’s CPU gets overloaded, causing the forwarding latency in-
creases more than linearly and the drop rate (well below 1% at
lower rates) increases drastically.

B. Multicast Forwarding Experiments

The previous experiments measured costs associated with
forwarding update events through a linear chain of BSRs
(i.e., a point-to-point communication). In this experiment, we
generalize this to measure multicast performance, where BSRs
forward each update to multiple outgoing destinations. The
experimental topology for these experiments is given in Fig. 4.
The BSR through each has two outgoing communica-
tion links. Subscribers through subscribe to all variables
published by both and . As in the baseline experiment
publisher and subscriber constitute the reference system.

Fig. 5 depicts the forwarding latency and load scalability ob-
served in our experiments. Here, the number of BSRs, n, varies
from 1 to 4, and both the forwarding latency and its standard de-
viation increase close to linearly with n for a load of 9 K and 18



GJERMUNDRØD et al.: FLEXIBLE QOS-MANAGED DATA DISSEMINATION FRAMEWORK 141

Fig. 3. Baseline forwarding latency and load scalability.

Fig. 4. Multicast experimental topology.

K forwards/s. With a load of approximately 18 K forwards/s, the
forwarding latency for each BSR (derived from the slope from
1 to 4 BSRs) is 0.317 ms. When the load is ~41 K forwards/s,
the forwarding latency for each BSR is 1.932 ms. For this exper-
iment the CPUs got overloaded with a lighter forwarding load
(due to the multicast) so the 50 K forwards/s is not presented.
Note that for no multicast occurs; it only occurs when

. The sharp increase in the end-to-end latency for the 31
K and 41 K forwards/s can be explained by the CPU load on
through for these experiment runs. Due to a limitation of a
Java library class the garbage collector is extensively executed
for these runs (for more detail see [8]). We expect this sharp in-
crease to be greatly reduced in the C language version of the
status routers that we are presently building.

C. Discussion

The GridStat prototype demonstrates that the flexibility
and QoS management needed for a next-generation SCADA
replacement is feasible on off-the-shelf commodity computers
and portable software (Java code). However, much better
performance is achievable (these numbers are conservative),
for many reasons. First, the computers used in the experi-
ments were state-of-the-art as of early 2004, but today even
a mid-level PC is considerably faster, and as of 2007 have

Fig. 5. Multicast forwarding latency and load scalability.

quad cores (4 processors). The forwarding latency reported
above also includes Ethernet latency through the switch to the
next SR. Second, using Java incurs overheads associated with
byte-code interpretation and just-in-time compilation as well
as delays due to garbage collection. We are starting a second
version of the SR prototype in C, that will eliminate these
overheads and hence be faster.

For today’s applications, handling a sustained load of 50 K
forwards/s in a small or medium-sized substation’s commu-
nication processor is likely to be sufficient. Additionally, this
forwarding latency of approximately 0.5 ms is also adequate
for many situations, including those given in the IEEE 1646
specification and the QoS requirements in [6]. For example, a
path spanning a control area 800 km across might go through
5–10 SRs, for a cumulative latency of approximately 2.5–5.0 ms
in addition to the propagation time (3.9 ms for this distance).
Thus, not counting latency in the destination application pro-
gram, overall latency of approximately 6.4–8.9 ms is achiev-
able. Thus, GridStat allows wide area communication for new
kinds of remote protection or control at a latency that is a small
fraction of the 3 to 4 ac cycles typically required for locally trig-
gered breaker opening today.

This performance also opens up new possibilities for remote
protection and a new class of controls to contain cascading, even
with the above numbers on Java and 2004 vintage hardware.
[12] predicts that disturbances travel at 500 km/s in an example
system with 64 generators, and different kinds of fast controls
such as transient stability controls typically need to react in as
little as 100 ms and as much as 1–2 s. GridStat can in realistic
situations deliver data much faster than electrical disturbances,
but much research would be required to develop best practices
on how and when such remote schemes would be beneficial.

The above experimental results were conducted using gen-
eral purpose computers. Network processors are another hard-
ware platform that could be used for status routers, [13]. A typ-
ical network processor features a single, general purpose CPU
and a number of specialized packet processors called Micro-
Engines—specialized CPUs that are optimized for network pro-
tocols. They can perform many kinds of activities related to
packet forwarding, such as computing UDP checksums, in a
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single instruction cycle. A network processor interfaced to sev-
eral Ethernet and fiber inputs can do IP forwarding between
them at line speeds (1–10 Gb/s or more).

We are presently wrapping up an initial investigation into how
fast GridStat routing can be performed on a network processor
[14]. The main goal of this project is to see how fast GridStat-
style routing can be on network processors rather than to imple-
ment the full functionality of today’s Java-based status router.
The initial experimental results were conducted on Intel’s sim-
ulator configured to mimic the Radisys ENP2611 PCI card. The
ENP2611 integrates an Intel IXP2400 network processor chip
having 8 packet processors, 4 network connections (1 at 100
Mb/s, 3 at 1 Gb/s), and buffer and program memory on a PCI
card that plugs into a host computer. The simulator is a full im-
plementation of the IXP2400 chip that also faithfully simulates
the externals such as the network links and the various on-board
memories. The simulator runs the same binary code as the hard-
ware itself and makes it possible to obtain exact cycle counts and
instruction traces for status router activities.

The ENP2611 is capable of performing a simplified GridStat
routing algorithm, supporting only subscription periods that are
a power of 2 ms, at 1 Gb/s line speeds.1 This corresponds to ap-
proximately 2 million GridStat update forwards per second per
output link, using the same packet size (62 bytes) as the Java ex-
periments reported above. Measured forwarding delays ranging
from 1–3 s have been obtained on different experiments.

These numbers suggest that the overhead of GridStat could be
negligible: in any wide area deployment the forwarding latency
added by GridStat would be much smaller than the propagation
time (i.e., the speed of light over the distances involved) and the
application program latencies at the endpoints. The throughput
is also very high. It is important to remember, however, that this
prototype does not yet implement the full functionality of Grid-
Stat’s Java status routers. More research is needed to evaluate
ways of providing complete GridStat functionality on newer
network processors, including finding ways to provide the tem-
poral synchronism needed by PMU data streams.

Finally, in this context we feel it is important to comment on a
practice in the power grid today. Often sensor data is placed di-
rectly into a database, and then different applications retrieve
if from there. We note that putting a database on the critical
path for data delivery adds unnecessarily to latency, so the data
is less fresh when it finally gets to the application that can act
upon it. Just storing and then retrieving it from a database adds
to the end-to-end latency (from the sensor to the application).
Worse, the application often must explicitly pull the data from
the database, which means a round trip network message. With
a publish-subscribe system such as GridStat, the data is pushed
out when it arrives, and only a one-way network latency is nec-
essary, potentially saving up to half of the long-distance net-
working costs.

V. RELATED WORK

GridStat is unique in a number of respects: its explicit sup-
port and management for streams of status updates, its inte-
grated rate filtering and multicast mechanisms, its integrated

1The restriction to powers of 2 eliminates the need to divide by arbitrary num-
bers, an operation that is very expensive on this hardware.

QoS and disjoint path routing algorithms, and the fact that it was
designed explicitly for the electric power grid. There are some
related efforts in the power industry. The IEC 61850 specifica-
tion includes an elaborate and elegant model-driven approach to
substation automation, including self-describing substation de-
vices, [15]. It “provides a comprehensive model for how power
system devices should organize data in a manner that is consis-
tent across all types and brands of devices.” Within its current
scope, it seems to have great potential. We believe that Grid-
Stat and IEC 61850 are highly complementary: GridStat pro-
vides wide-area delivery (and could easily be extended to deliver
messages in the standard’s GOOSE message format), while IEC
61850 does not, itself, define any wide-area delivery mecha-
nisms. IEC 61850-capable devices live at the edges of the com-
munication network. There is a consensus in industry that, at
the present, more device configuration applications are needed
to help exploit the full potential of IEC 61850. These applica-
tions can serve as effective tools in deploying devices using this
standard. But this exact same kind of device type information
could be very useful with tools to help configure and manage
a GridStat-like, sophisticated communication infrastructure for
the power grid.

An information architecture for the power grid is proposed in
[16]. It contains proposals for different ways to structure inter-
actions between control centers and substations, and reliability
analyses of different schemes. However, it does not propose any
communications mechanisms, and relies on off-the-shelf net-
work technology whose reliability and latencies are not control-
lable and which does not meet most of the requirements outlined
in [6].

In computer science research there has been some work re-
lated to GridStat. The closest is PASS, [19]. PASS provides a
limited form of status dissemination, specifically, binary “up/
down” status dissemination for remote devices. It does not pro-
vide QoS management, support heterogeneous delivery rates, or
provide redundant delivery paths (though is very useful for its
intended domain: wide-area military networks in the field with
low bandwidth). Other publish-subscribe systems do not pro-
vide any kind of rate filtering, because they do not capture the
semantics of a status variable flow. A discussion of additional
research in computer science disciplines that is related to Grid-
Stat can be found in [6], [8].

VI. CONCLUSION

The communication infrastructure in today’s power grid is
based on the technology of the 1960s. It greatly limits the kinds
of protection and control that can be employed and hampers
the situation awareness of the grid’s operators. The communica-
tion infrastructure is being augmented in a piecemeal fashion by
newer network technologies such as optical fiber and Ethernet.
However, to date there has been no utilization of advances in
distributed computing technologies, that offer much more flex-
ibility, portability, and adaptability than can be achieved using
network-layer technology.

GridStat is a publish-subscribe middleware framework that
has been designed to meet the data delivery requirements for
the electric power grid. Its performance is adequate for today’s
monitoring and control requirements.
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For more details on ongoing and future work, see [6].
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