
A Socio-Aware Decentralized Topology Construction
Protocol

Stefanos Antaris⇤, Despina Stasi⇤, Mikael Högqvist†, George Pallis⇤, Marios Dikaiakos⇤
⇤Department of Computer Science, University of Cyprus †Hive Streaming AB

{antaris.stefanos, despina.stasi, gpallis, mdd}@cs.ucy.ac.cy, mikael@hivestreaming.com

Abstract—Decentralized Online Social Networks (DOSNs) of-
fer an alternative to the usual centralized solutions, that promises
to preserve more control of a user’s data to the user herself.
An important aspect in the design of DOSNs is the selection
of the Peer-to-Peer overlay network. We propose the use of
an augmented Pastry-based overlay network design, so as to
produce a topology that incorporates the social network. Our
augmentation aims to reduce the number of overlay hops required
for the communication between two users in the social network.
We experimentally show that our approach reduces the number
of overlay hops and the total latency between two socially
connected users versus the standard Pastry overlay. Additionally,
we compare our approach with Sprout, a Chord alternative, and
show that in many cases we achieve similarly low latency, while
maintaining a bounded number of links.

Keywords—Decentralized Social networks; DOSN; P2P; Over-
lay Network;

I. INTRODUCTION

Online Social Networks (OSNs) evolved into ubiquitous
platforms of communication over the past few years and rev-
olutionized interpersonal communication between people. So-
cial users produce and disseminate an unprecedented amount
of textual and multimedia content that is stored in a central
data storage. This central data storage is controlled by the OSN
providers and come with a variety of serious concerns, which
are amplified by the very personal nature of social-networking-
related data.

These concerns attracted the attention of the research com-
munity to decentralized OSNs (DOSNs). DOSN architectures
are promising as they inherently offer better privacy and
less dependence on a single service provider. However, these
architectures bring new challenges regarding core features of
OSNs such as data access and dissemination.

Recently, researchers proposed a wide range of DOSN
solutions [1]–[3] using P2P overlay networks. These solutions
enable data to be distributed in the social users’ machines and
data retrieval is accomplished using the P2P lookup service.
However, current DOSN approaches do not integrate the social
dynamics of the OSNs in the design of the P2P topology
construction protocol. Specifically, the P2P overlay networks
are designed to be generic in the sense that they provide low-
level communication abstractions of the Physical IP Network,
and are maintained based on the adjustments of the Physical
IP Network layer. When a user enters the DOSN, her peer
in the P2P overlay network is assigned a random identifier,
creating thus a socially unaware identifier space. The routing,
search and key-value functionality of the DOSN relies on the
complexity that the overlay network provides.

Motivated by the absence of a decentralized topology
construction protocol suitable for DOSNs, we propose a
new algorithm that embeds the social links into the P2P
topology construction protocol. Based on this algorithm, the
interconnections between peers in the P2P overlay network
are not designed to be generic. The peers provide connections
between socially connected users, taking into account their
network latency property. To sum up, we make the following
contributions:

• We introduce an efficient and scalable P2P topology
construction protocol for a DOSN. We propose an
algorithm that incorporates the structural properties of
the underlying social network.

• We demonstrate the feasibility of the proposed ap-
proach through the NewsFeed functionality by propa-
gating the user’s post to each of her social contacts. We
employ an implementation of Pastry [4], an overlay
network widely used by the literature for the design
of DOSNs [1], [2], [5].

• We experimentally show on four real-world data sets
that our approach provides superior performance com-
pared to the basic Pastry approach.

The remainder of this paper is structured as follows. In
Section II we conduct a review of the related work in the
course of DOSNs. In Section III we provide a comprehensive
analysis of the background in the structured P2P topology
construction protocol and the formulation of the problem that
current structured P2P overlay networks pose in a DOSN. The
design of our proposed P2P topology construction protocol is
presented in Section IV. We present an extensive evaluation of
our proposed approach against the state-of-the-art approaches
in Section V and conclude in Section VI.

II. RELATED WORK

In the course of DOSNs, several approaches such as
LotusNet [6], Safebook [7], Cachet [1] and SOUP [2] have
been proposed. In LotusNet [6] the authors propose a two-
tier architecture in which the first tier is a structured P2P
overlay network and the second tier consists of social users
and the connections they form. The authors tackle the problem
of security and privacy in a DOSN. However, mechanisms
that leverage the social graph in the construction of the P2P
overlay network are not provided and information propagation
presents long delays due to the complexity of the P2P sub-
strate. Safebook [7] is based on a P2P overlay network named
“Matryoska” in order to preserve privacy on the users data by

leveraging the hop-by-hop trust. Although the authors retain
privacy in the DOSN communication, they provide additional
complexity to the information dissemination. The hop-by-hop
communication in Matryoska is accomplished between peers
that are several hops away in the P2P overlay network. The
complexity that the P2P overlay network provides to the infor-
mation propagation in a DOSN is presented in Cachet [1]. The
authors in Cachet propose a hybrid structured and unstructured
P2P overlay network in order to store the data to peers that are
close to the social users. However, the gossip-based algorithm
applied provides an additional overhead to the peers. SOUP [2]
advocates an approach to store the users’ data to their social
friends, by obtaining the social friends that are the best mirror
candidates. Although they achieve high data availability, they
do not consider the number of messages required to store and
retrieve the data to peers that are several hops away, and thus,
provide high latency as the network grows.

The closest work to our approach is SPROUT [8], where
links are added to the Chord [9] overlay network by estab-
lishing additional connections for each peer to each of her
social friends. This approach enables the P2P overlay substrate
to contain direct connections between friends, thus producing
one-hop storage/retrieval of the data between those individuals.
However this requires the peers in the overlay substrate to
maintain an unlimited number of TCP connections which
results in excessive communication overhead.

III. BACKGROUND AND PROBLEM STATEMENT

In this paper, we place specific emphasis on the Pastry [4]
overlay network, since this is the overlay network found most
in the literature for the design of a DOSN, e.g. in [1], [2], [5].

A. Pastry

Pastry [4] is a generic, efficient and scalable substrate for
P2P applications. Each peer in Pastry is assigned a random
128-bit identifier D (ranges from 0 to 2

128 � 1) that results
in the uniform distribution of the peers in the NodeID space
S. The NodeIDs are generated using a hash function and are
represented as a sequence of n � 1 digits with base B (where
B = 2

b is a configuration parameter with typical value of
b = 4).

For the lookup process, each peer pi maintains a routing
table Ti with logBN rows and B � 1 columns. The kth row
of the routing table contains peers whose NodeID matches the
k�1 first digits of the current peer’s NodeID. In addition, the
kth digit of each NodeID in this row attains one of the B� 1

possible values that differ from the kth digit in the current
peer’s NodeID, and correspond to each of the cells in the row.

Given a query with a key q, the peer pi answers the query if
its NodeID Di is the numerically closest NodeID to the given
key q. Otherwise, the peer pi routes the query q to the peer pj 2
Ti whose NodeID Dj has the longest prefix matching with the
given key q. This lookup process is performed until the peer pq ,
that is the numerically closest to the given key q, receives the
query. Each hop in the lookup process exponentially decreases
the NodeID space required to reach the destination peer pq .
Therefore, the lookup process is accomplished in a bounded
number of overlay hops l, where approximately l = dlogBNe,
unless 2

b�1 adjacent peers fail simultaneously.

In order to improve routing performance, Pastry employs
a network proximity metric for the maintenance of peers’
routing table. A peer which presents lower proximity value is
assumed to be more desirable and its NodeID is assigned to the
appropriate cell in the routing table. By applying this metric,
the total network latency for the lookup process is reduced.

B. Problem Definition

Consider a social graph G = (V,E), where V is the set
of N users (N = |V |) and E is the set of edges in the social
graph. An edge (ui, uj) 2 E exists if and only if ui 2 V and
uj 2 V are two users connected in the social network. The
set of all connections of node ui, defined as Ci = {uj 2 V :

(ui, uj) 2 E}, is called ui’s social neighborhood.

In a DOSN, each social user ui 2 V participates as a
peer node pi in an overlay network G0

= (P, F), where P
is the set of peers in the overlay and F is the set of direct
connections that each peer maintains in its routing table Ti,
i.e. (pi, pj) 2 F if pj is an entry in pi’s routing table Ti. We
assume that each user u 2 V is mapped onto only one peer,
and thus |P | = |V | = N .

When a social user ui 2 V joins the DOSN, a new peer
pi 2 P is generated into the overlay network along with its
routing table Ti. The peer pi is assigned a random NodeID Di,
using a hash function, that indicates its position in the NodeID
space S. Therefore, both peers and social users are uniformly
distributed in the NodeID space S. The NodeID D consists
of all nonnegative integers with n � 1 digits in base b � 2.
In the remainder of the paper, when we refer to a peer pi we
consider the peer that hosts the social user ui.

In current DOSN approaches, P2P overlay networks are
exploited without taking into consideration the social network.
The probability in Pastry P2P overlay network that the social
connections E overlap with the overlay connections F is
extremely small. In particular, the expected number of peers
that are eligible to be inserted into a specific cell in the kth row
of the routing table Ti of the peer pi is approximately N/Bk+1,
where 1 k logBN . On the other hand, the expected
number of socially connected peers that are eligible to be
inserted into the same cell of Ti is approximately |Ci|/Bk+1.
This means that the probability that a direct connection in the
overlay network connects two peers who are friends in the
social network is |Ci|/N , a quantity that tends to 0 as the
network size grows faster than the the cardinality of Ci.

Thus, in a socially unaware Pastry overlay network, the
number of hops required for a social user pi to send a message
to his social friend pj is, on average, O (logN). We denote by
pi!+pj the path that connects peer pi to peer pj . The length of
that path is lij = |pi!+pj |. When a social user ui publishes a
post, the system needs to inform all of his friends, i.e. the entire
neighborhood set Ci. The total number of messages required
to propagate a message to ui’s neighborhood set Ci is:

|pi!+Ci| =
X

pj2Ci

lij (1)

Each overlay hop provides an additional delay to the
propagation of the message, which affects the network latency
⌧(pi, pj) of the routing process from pi to pj . We measure

the total network latency required for a user ui to propagate
an update to each of the nodes corresponding to users in the
neighborhood set Ci as:

|pi!+Ci|⌧ =

X

pj2Ci

⌧(pi, pj) (2)

An overlay network that reduces the number of overlay
hops and the total network latency for the communication
between social friends is required. To this end, the peers in the
overlay network should establish a carefully selected number
of direct connections in order to reduce the communication
overhead. Therefore, each peer pi should maintain direct
connections in its routing table T that minimize the total
number of hops. We denote by ⇢(pi, Ci) the minimum number
of hops required for a social user ui to inform all of his friends
in Ci, as follows:

⇢(pi, pj) = min

T
|pi!+pj | (3)

Finally, the selection of the direct connections that each
peer establishes should preserve the minimum network latency,
in terms of time, required at each overlay hop l to propagate
a message to his social friend, as follows:

⌧(pi, Ci) = min

T
|pi!+Ci|⌧ (4)

IV. OUR APPROACH: AUGMENTING THE ROUTING TABLE

In our approach, we assume that a social user commu-
nicates mostly with his social friends and communication
between non-socially connected users is rare. Therefore, we
propose an algorithm that augments the routing table of Pastry
P2P overlay network with social links. The main objective of
this algorithm is to establish direct connections between as
many pairs of social friends as possible. Simultaneously we
aim to achieve logN -overlay hop communication between the
remaining pairs of social friends, as well as between pairs of
social non-friends. Based on the routing table refinement pro-
duced by Algorithm 1, the number of overlay hops |pi!+pj |
required for a user ui to propagate a post to each of his friends
pj 2 Ci is reduced to 1 hop for the majority of pj .

A. Peer State

Each peer maintains a social neighborhood set C and a
routing table T in an encrypted manner to prevent an attacker
learn social contact information. Each routing table T contains
dlogBNe ⇥ (B � 1) entries.

The social neighborhood set C contains the NodeIDs of
his social friends. The neighborhood set is used to augment
the routing table entries with direct connections to the social
user ui’s social friends, and maintained to reflect changes in
the social graph.

B. Routing Table Refinement Algorithm

Having initialized the state tables of the peers, each peer
pi replaces the existing direct connections in Ti with a di-
rect connection between two peers that are neighbors in the
social graph. Since a bounded number of direct connections
(dlogNe ⇥ (2

B � 1)) are maintained in the routing table T ,

more than one friends of ui will fall in the same cell of the
routing table. In our algorithm, we consider two strategies for
the selection of the friend who will replace the current entry
in Ti[row, col]: uniformly at random, or based on proximity.
In the former, each friend that fits in the cell has an equal
probability of being selected. In the latter we pick the friend
with the lowest network latency. In both ways, we establish
connections with the same number of social friends. However,
in the proximity-based solution we also ensure that we keep
the network latency low.

The outline of our proposed Routing Table Refinement
Algorithm that each peer pi runs independently is presented
in Algorithm 1. Recall that the peer has only local knowledge
of both the social network and the overlay network, in the
user’s neighborhood set Ci and the peer’s routing table Ti,
respectively.

Algorithm 1: Routing Table Refinement Algorithm
Input:
Ci: the set of neighbors of social user ui in G.
Ti: the routing table of the peer.
choiceOfFriendCriterion: flag indicating the method of
choosing a friend to be proximity-based or uniformly at
random.
Output:
Ti

0: the augmented table of the peer.
1 T 0

i = Ti;
2 Shuffle Ci;
3 for uj 2 Ci do
4 if isOnline(uj) then
5 (row, col) = findRoutingTableCell(pi, pj);
6 case choiceOfFriendCriterion==“random”
7 Ti

0
(row, col) = pj .NodeID;

8 end
9 case choiceOfFriendCriterion==“proximity”

10 if getProximity(pj .NodeID) <
getProximity(Ti(row, col)) then

11 Ti
0
(row, col) = pj .NodeID;

12 end
13 end
14 end
15 end
16 return Ti

0;

We begin by shuffling the social neighborhood set Ci (step
2) in order for each entry of the Ci to be inserted into the
routing table Ti, with equal probability, when the random
strategy is applied. Thereafter, in steps 3-15, we distribute
the neighbors of the user ui 2 V that are online, into the
routing table Ti of ui’s peer pi 2 P . To do this, for each
social friend uj of ui, we determine the appropriate cell in
the routing table Ti, where pj can be inserted according to its
NodeID as follows. As Pastry’s routing table is designed based
on Plaxton’s prefix-based routing algorithm [10], we identify
the number of common digits in the prefix between the NodeID
of pi and pj : this determines the row of the routing table.
The column is determined by the first digit in which the two
node identifiers differ. When the proximity strategy is applied
(steps 9-13), we compare the network latency, in terms of time,
between the two candidate social friends and select the one

(a)

(b) (c)

Fig. 1. The Neighborhhod set C of the peer with NodeID 0ad21 (a) and
the Routing Table (b) before and (c) after our algorithm is applied.

with the minimum latency.

As shown in Figure 1b, peer 0ad21 maintains direct con-
nections that differ from the NodeIDs included in the neighbor-
hood set C (Figure 1a). Pastry establishes direct connections
with peers at each partition of the NodeID space S in order
to exponentially decrease the distance in the NodeID space at
each hop. Replacing a direct connection of one partition with
a peer of the same partition that hosts a social user’s friend
will not affect the routing process of Pastry. In Figure 1c, the
output of the algorithm is presented, where the NodeIDs of
the social user’s friends are included into the routing table T .

C. Peer Arrival

When a social user joins the DOSN, a new peer pi is
created and a random NodeID is assigned using the SHA-1
128-bit hash function. The peer pi initializes its routing table
Ti following the peer arrival process of Pastry. Therefore, the
peer pi contains a routing table Ti with dlogBNe ⇥ (B � 1)

direct connections to other peers in the overlay network.

We assume that a social user ui joins the DOSN by
accepting an invitation received by an already existing social
user uj . As the social users ui and uj are socially connected,
peers pi and pj include in their respective neighborhood sets
Ci and Cj each others’ NodeID, and each proceeds to call
Algorithm 1 to update their routing tables.

D. Peer Departure

To maintain a routing table with direct connections that
are online, our algorithm periodically requests each peer of
the routing table for its state. When a peer is unresponsive,
we replace the unresponsive peer with another peer from the
neighborhood set C following Algorithm 1. If no NodeID
in C is suitable to replace the unresponsive connection, the
peer evokes the Pastry routing table maintenance process to
create a new direct connection with another peer. Using this
approach, our method maintains direct connections with many
of the social user ui’s friends, and preserves the O (logN)

overlay hops when a direct connection with a social friend is
not feasible.

E. Add/Remove Social Friends

In any social network friendships are formed and dissolved.
At such events, peers pi and pj must not only update their
neighborhood sets Ci and Cj , but also maintain their routing
tables in order to augment or repair the entries. To accomplish
this, pi and pj execute Algorithm 1 when either a new social
connection occurs or an existing one is removed.

V. EXPERIMENTS

We start our experimentation with large-scale simulations
of our proposed approach. In order to measure the efficiency of
our augmented Pastry-based overlay network, we implemented
the NewsFeed functionality and used the following metrics:

• Number of Hops: The average number of overlay
hops required to communicate two social friends.

• Network latency: The average time spent to propa-
gate a message between two social friends.

• Percentage of social connections: The percentage of
social links that are also overlay network connections.

• Percentage of social entries: The percentage of the
routing table entries that correspond to social links.

To evaluate the performance of our approach for a DOSN
service, we compared our approach with the basic Pastry P2P
overlay network. Finally, we measured the performance of our
approach against the socially augmented P2P overlay network
of Chord, also called SPROUT [8].

A. Datasets

Our experimental evaluation is performed on four real-
world data sets, listed in Table I. These datasets cover a
wide range of social graph features, from less-connected
graphs (Epinions) to high-connected graphs (Facebook), that
help evaluate our proposed approach on several graph types.
Moreover, we conduct experiments on the large-scale data
set of Twitter in order to demonstrate the scalability of our
algorithm. The characteristics of the data sets are presented in
Table I.

TABLE I. THE FOUR REAL-WORLD DATA SETS [11], [12].

Data Set Users Connections Average Degree
Facebook 63,731 817,090 25.642

Twitter 456.631 14,855,874 28.642
Slashdot 82,168 948,463 11.543
Epinions 75,879 508,837 6.706

B. Experimental Evaluation

For the experimental evaluation, we used the Discrete
Event Simulator of FreePastry 2.11, an open source imple-
mentation of the Pastry P2P overlay network [4]. For each
metric we report the average results out of 100 trials in order
to reduce the statistical error.

1http://www.freepastry.org/ (last accessed 11/09/2015)

(a) (b)

(c) (d)

Fig. 2. Percentage of the social friends found in the routing table for the (a)
Facebook, (b) Twitter, (c) Slashdot and (d) Epinions datasets.

Simulations are performed in evolving networks, where
users join the DOSN at different phases. In order for a user to
join the DOSN she must be invited by one of her social friends
that is already a registered user. We initiate our simulation
by selecting a social user ui from the data set at random.
Thereafter, we insert into the DOSN a portion of the user ui’s
social friends, following the model of [13]. It is observed that
social users establish friendship connections at high rate in
the beginning of the join process, and that this rate decreases
exponentially over time. Therefore, at each phase, we select a
registered social user and insert into the social graph a number
of her social friends that preserves the exponentially decreasing
rate of the model.

In Figure 2, we present the average percentage of social
connections that are also connections in the routing table
T . The non-socially aware Pastry implementation contains
almost none of the social links in the routing table since
the probability that the social connections E overlap with the
overlay connections F is extremely small (see Section III-B).
However, SPROUT [8] creates direct connections to all of the
social user’s friends along with the logN direct connections
that Chord maintains. In our approach, the percentage of social
connections populating the routing table T increases from
60% to 90% as the network grows. This phenomenon occurs
because the routing table size is increased based on the size
of the network (|T | = dlogBNe ⇥ (B � 1)).

The impact that our approach has on the social make-up of
the routing table, is presented in Figure 3. Our approach results
in between 10% � 30% of the routing table corresponding
to social connections in all datasets, compared to virtually
zero percent for the standard Pastry overlay. Note that in our
approach more than 60% of our social friends are included in
the routing table T (recall Figure 2). Therefore, the rest of the
NodeIDs share the same prefix with the an already included
social connection. In comparison to our approach, SPROUT
includes 70% more direct connections to socially connected

(a) (b)

(c) (d)

Fig. 3. Percentage of the entries in routing table that are social friends for
the (a) Facebook, (b) Twitter, (c) Slashdot and (d) Epinions datasets.

users, which is to be expected as SPROUT connects to all of
a user’s friends.

By augmenting the routing table T , each user ui commu-
nicates with more than 60% of his social friends in 1 overlay
hop, while the communication with the rest of his friends
is accomplished in O (logN) hops. As shown in Figure 4,
our approach reduces the number of overlay hops required to
disseminate the data between two social users by 1 to 6 hops
in comparison to Pastry.

Finally, we measure the network latency required to propa-

(a) (b)

(c) (d)

Fig. 4. Number of hops per social lookup for the (a) Facebook, (b) Twitter,
(c) Slashdot and (d) Epinions datasets.

(a) (b)

(c) (d)

Fig. 5. Network latency per social lookup for the (a) Facebook, (b) Twitter,
(c) Slashdot and (d) Epinions datasets.

gate a message between social friends. In Figure 5, we present
the results of our approach against the baselines using both the
random and the proximity strategy of augmentation. Regarding
network latency, our approach reduces the propagation time
by 600 and 100 milliseconds in comparison with the basic
Pastry and the random selection strategy, respectively. The
increasing rate that our approach presents in the Facebook data
set, occurs because the Facebook graph is dense and the size
of the routing table is increasing according to the size of the
network. Therefore, at the first steps of our simulation each
user ui has more friends in his neighborhood set Ci than his
routing table Ti is able to store.

As expected, SPROUT performs 200 to 50 milliseconds
better latency than our approach in all data sets. In order to
accomplish this, SPROUT establishes direct connections to all
of the peer’s social friends. However, in real social networks
that follow the power-law distribution, a small portion of peers
will need to establish a huge number of TCP connections due
to their high degree. This results in extremely high communi-
cation overhead. Bounding the number of direct connections
at each peer, as in our approach, balances the communication
overhead, at the cost of increasing the network latency.

VI. CONCLUSION AND FUTURE WORK

In this paper we proposed a socio-aware decentralized
topology construction protocol for a DOSN with an empha-
sis on information dissemination between social users. Our
approach uses an efficient P2P overlay network, called Pastry,
and augments the routing table of each peer in order to main-
tain direct connections between friends. We preserve the Pastry
properties, in terms of bounded number of direct connections
and the logarithmic number of messages for each lookup
process. We experimentally evaluated the superior performance
of our approach against the basic Pastry implementation using
simulations. Additionally, we compared our approach with
a Chord alternative, called SPROUT. Integrating the social

users’ geographical location and interaction behavior [14] in
the selection strategy of the peers’ direct connections is a topic
of our future work.

ACKNOWLEDGMENT

This work is supported by iSocial EU Marie Curie ITN
project (FP7-PEOPLE-2012-ITN).

REFERENCES

[1] S. Nilizadeh, S. Jahid, P. Mittal, N. Borisov, and A. Kapadia, “Cachet:
A decentralized architecture for privacy preserving social networking
with caching,” in Proceedings of the 8th International Conference on
Emerging Networking Experiments and Technologies, 2012, pp. 337–
348.

[2] D. Koll, J. Li, and X. Fu, “Soup: An online social network by the people,
for the people,” in Proceedings of the 15th International Middleware
Conference, ser. Middleware, 2014, pp. 193–204.

[3] N. Kourtellis and A. Iamnitchi, “Leveraging peer centrality in the
design of socially-informed peer-to-peer systems,” IEEE Transactions
on Parallel and Distributed Systems, vol. 25, no. 9, pp. 2364–2374,
Sept 2014.

[4] A. I. T. Rowstron and P. Druschel, “Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer systems,” in
Proceedings of the IFIP/ACM International Conference on Distributed
Systems Platforms Heidelberg, ser. Middleware, 2001, pp. 329–350.

[5] A. Datta, S. Buchegger, L.-H. Vu, T. Strufe, and K. Rzadca, “De-
centralized online social networks,” in Handbook of Social Network
Technologies and Applications, 2010, pp. 349–378.

[6] L. M. Aiello and G. Ruffo, “Lotusnet: Tunable privacy for distributed
online social network services,” Computer Communications, vol. 35,
no. 1, pp. 75–88, Jan. 2012.

[7] L. Cutillo, R. Molva, and T. Strufe, “Safebook: A privacy-preserving
online social network leveraging on real-life trust,” Communications
Magazine, IEEE, vol. 47, no. 12, pp. 94–101, Dec 2009.

[8] S. Marti, P. Ganesan, and H. Garcia-Molina, “DHT routing using social
links,” in Proceedings of the Third International Conference on Peer-
to-Peer Systems, 2004, pp. 100–111.

[9] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applica-
tions,” SIGCOMM Computer Communication Review, vol. 31, no. 4,
pp. 149–160, 2001.

[10] C. G. Plaxton, R. Rajaraman, and A. W. Richa, “Accessing nearby
copies of replicated objects in a distributed environment,” in Proceed-
ings of the Ninth Annual ACM Symposium on Parallel Algorithms and
Architectures, 1997, pp. 311–320.

[11] B. Viswanath, A. Mislove, M. Cha, and K. P. Gummadi, “On the
evolution of user interaction in facebook,” in Proceedings of the 2Nd
ACM Workshop on Online Social Networks, 2009, pp. 37–42.

[12] “Stanford large network dataset collection,” http://snap.stanford.edu,
accessed Jul. 02, 2015.

[13] K. Zhu, W. Li, and X. Fu, “Modeling population growth in online social
networks,” Complex Adaptive Systems Modeling, vol. 1, no. 1, 2013.

[14] J. Jiang, C. Wilson, X. Wang, P. Huang, W. Sha, Y. Dai, and B. Y.
Zhao, “Understanding latent interactions in online social networks,”
in Proceedings of the 10th ACM SIGCOMM Conference on Internet
Measurement, 2010, pp. 369–382.

