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∗Universitat Politècnica de Catalunya, Spain

†Royal Institute of Technology, Sweden
‡University of Cyprus, Cyprus

apolonia@ac.upc.edu, sarunasg@kth.se, {santar01, gpallis, mdd}@cs.ucy.ac.cy

Abstract—Publish/subscribe (pub/sub) mechanisms constitute
an attractive communication paradigm in the design of large-
scale notification systems for Online Social Networks (OSNs). To
accommodate the large-scale workloads of notifications produced
by OSNs, pub/sub mechanisms require thousands of servers
distributed on different data centers all over the world, incurring
large overheads. To eliminate the pub/sub resources used, we
propose SELECT - a distributed pub/sub social notification
system over peer-to-peer (P2P) networks. SELECT organizes
the peers on a ring topology and provides an adaptive P2P
connection establishment algorithm where each peer identifies
the number of connections required, based on the social structure
and user availability. This allows to propagate messages to the
social friends of the users using a reduced number of hops.
The presented algorithm is an efficient heuristic to an NP-
hard problem which maps workload graphs to structured P2P
overlays inducing overall, close to theoretical, minimal number of
messages. Experiments show that SELECT reduces the number
of relay nodes up to 89% versus the state-of-the-art pub/sub
notification systems. Additionally, we demonstrate the advantage
of SELECT against socially-aware P2P overlay networks and
show that the communication between two socially connected
peers is reduced on average by at least 64% hops, while achieving
100% communication availability even under high churn.

Index Terms—Publish/Subscribe, P2P Network, Social
Networks

I. INTRODUCTION

One of the fundamental services for Online Social Networks
(OSNs) is the real-time delivery of notifications due to users’
social interactions. Notifications constitute one of the primary
ways social users first learn about the activity of their social
friends or their preferable sources (e.g. groups, pages). Twitter
users generate on average 8,000 tweets per second1 which
amounts to 500 million of notifications per day from more
than 300 million of active users. Thus, large-scale notification
systems require to be scalable.

Publish/subscribe (pub/sub) systems are an attractive
solution for the design of large-scale social notification
systems. A pub/sub system provides a form of interaction
among social friends where each social user is subscribed
to his/her social friends in order to receive notifications, in
effect forming a social graph. In the case of scalable pub/sub
systems, such as Google Cloud Pub/Sub2, typically massive
corporate resources are required to accommodate large-scale
workloads of social notifications. Likewise, IBM deploys

1http://www.statista.com/
2https://cloud.google.com/pubsub

over a thousand servers on geographically distributed data
centers [1] to provide a high-quality pub/sub system. Moreover,
with the advent of the Internet of Things (IoT) the number of
devices is estimated to reach 20 billion3 by 2020 [2]. Also, the
integration of the IoT with social networks [3, 4] will increase
the required computational resources, further motivating
research for more advanced pub/sub overlay designs.

The above motivations attracted the attention of both
academia [5, 6] and industry [7] to decentralized OSNs
(DOSNs) [8] and provide pub/sub systems for OSNs [1] using
Peer-to-Peer (P2P) networks [9, 10]. In DOSNs, social users
are connected in a P2P network and interact with their social
friends using the P2P routing mechanism. However, designing
a scalable P2P pub/sub notification system for DOSNs requires
four main challenges to be addressed, as follows:

• Relay Nodes: A key characteristic of P2P pub/sub systems
[5, 11] is that they leverage a generic overlay network (e.g.
DHT, tree, full-mesh) without projecting the social graph in
the P2P overlay network. Since social users are not always
directly connected in the P2P overlay network, the message
dissemination in P2P pub/sub systems relies on peers (also
known as relay nodes) that may or may not be interested
for the message.

• High Traffic: Recent pub/sub systems [1] try to simplify the
design of the routing tree and focus on the construction of
the P2P overlay network in order to improve the efficiency
of message dissemination. Each peer has a bounded number
of connections that can be maintained, the selection of
which is accomplished without leveraging the social graph
and the social interactions. Hence, the generated P2P overlay
network presents load balancing problems, where a portion
of the peers has high traffic overhead against the rest of the
peers, due to the high social interactions and the absence
of social integration to the design of the overlay.

• Dissemination Latency: Each peer in the P2P overlay
network presents different upload and download bandwidth
characteristics. Since each peer has a bounded number
of connections, retaining a P2P connection with a poor
bandwidth rate increases the dissemination latency that
affects the overall performance of the P2P pub/sub system.

• Dynamic environment: It is essential for the success of the
OSN to provide a failure resilient P2P pub/sub system with
minimum disruption to the communication between social

3https://gartner.com/newsroom/id/3598917
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friends. The design of a churn-resistant P2P pub/sub system
has been studied in OMen [6]; however, OMen falls short
of identifying the online activity of each social user, which
poses an additional latency overhead as the establishment of
a P2P connection requires a Multi-Path TCP connection [12].

In synopsis, the major issue that arises from current pub/sub
implementations is that they are oblivious to specific workloads
which result from specific social structure and interactions, as
well as, connectivity restrictions (NATs, firewalls, and others).

Contributions. To address the above challenges, we intro-
duce a fully decentralized pub/sub system for DOSNs, called
SELECT. The proposed system organizes peers on a ring topol-
ogy and exploits both the social graph and the online activity of
each social user to establish connections between peers. The in-
tuition behind this is the construction of a P2P overlay network
that acts as a substrate for the pub/sub system with the minimum
number of relay nodes and the minimum communication inter-
ruption between social users. Therefore, by harnessing the so-
cial network graph we are able to build an overlay in which mes-
sages propagate towards the subscribers with minimum relay
nodes in between (while relay nodes may also be subscribers).
SELECT is the first approach which exploits the small-world
properties by embedding it into the overlay networks’ ID space.
Thus, peers are placed in the same area based on their social
proximity, establishing a bounded and adaptive number of
connections to peers. We consider our approach as solving
an NP-hard problem, where a P2P overlay is induced from a
workload social graph embedded into the identifier (ID) space.
Thus, decentralized greedy routing is not only possible but also
very efficient and equivalent to routing in navigable small-world
networks [13]. In summary, we define our contributions as:

• A proposal for a full decentralization of a pub/sub system
for DOSNs that exploits both social graphs and online
activities of the users. We use Locality Sensitive Hashing
(LSH) [14] and Cumulative Moving Average (CMA)4 to
identify which connections allow message propagation with
minimum hops, as well as, which peers potentially present
better online behaviour over time.

• The description and evaluation of an ID re-assignment
process which projects the social graph on a P2P overlay
network, minimizing the distance on the overlay networks’
ID space.

• The SELECT algorithm, which creates a global overlay
network that allows for message propagation with minimum
number of hops, taking advantage of peers that present better
online behaviour over time instead of relying on random
peers. SELECT is adaptive to dynamic environments with
the use of novel recovery mechanisms, applying re-routing
when it is required.

• An evaluation and analysis by means of simulation and
experimentation with real-world data sets, in order to
understand the value of each step of the proposed approach
and the performance gain in the pub/sub system.

To prove the efficiency of SELECT on pub/sub systems we
designed and developed a browser-based P2P pub/sub system5

4https://en.wikipedia.org/wiki/Moving average
5https://github.com/stefanosantaris/SelectDemo

using the free and open-source W3C standardized protocol,
WebRTC6. Based on our implementation we emulated the
social behaviour using real-world data sets of Facebook [15],
Slashdot [16] and Google Plus [16]. To prove the scalability
of our proposed system, we also conducted simulations on a
large-scale data set with millions of users collected by Twitter
[16]. We show experimentally that this social graph exploitation
reduces the number of hops required for dissemination over
64% and the number of relay nodes over 89% against state-of-
the-art approaches. Moreover, SELECT maintains 100% com-
munication availability by establishing connections on peers
that present better online behavior than other peers. Finally, the
peers in the proposed overlay network converge to a stable state
in 75% fewer iterations than the state-of-the-art approaches.

The remainder of this paper is structured as follows. In
Section II we provide a comprehensive analysis of the
background in the structured P2P topology construction
protocol, the pub/sub mechanisms and the formulation of the
problem. The design of SELECT, our proposed distributed
pub/sub notification system, is presented in Section III. We
present an extensive evaluation of our proposed approach
against the state-of-the-art approaches in Section IV and
discuss the results in Section V. In Section VI we conduct
a review of the related work in the course of topic-based
pub/sub services. The last section concludes our work.

II. BACKGROUND AND PROBLEM STATEMENT

In this section, we provide an analysis of P2P networks and
overlay construction, relating to the node relay minimization
problem and dissemination of information.

A. Peer-to-Peer Networks

A P2P overlay network consists of a set of N peers
P(|P|=N). The identifiers of the peers are assigned from an
ID space I , on the unit interval I ∈ [0...1), using a uniform map-
ping function (SHA-1). There exists a distance function dI(u,v)
which indicates the distance between peer u∈P and peer v∈P
in the ID space I . Each peer p∈P maintains short-range links
Rs

p⊂P , that are peers with the minimum distance dI(u,v) in

the ID space I , and long-range links Rl
p⊂P have been estab-

lished with a probability inversely proportional to the distance
between the peers. The short-range links Rs

p and long-range
links Rl

p of each peer p form its routing table Rp=Rs
p+Rl

p,
where |Rp|�N (usually |Rp|= logN ); this is the case in latest
P2P models [17] where the optimization stands in minimizing
connections instead of establishing new connections to peers.

The lookup query from a peer p to a peer u is routed in
a greedy fashion, i.e. peer p selects the neighbor w∈Rp, that
minimizes the distance dI(w,u) in the ID space I, to forward
the query. The lookup process forms an h-hop path p→+u
with h= |p→+u| ≥ 1. Based on the selection process of the
links Rp, P2P overlay networks can guarantee that the h-hop
path is bounded in O(logN).

Moreover, peers are heterogeneous in terms of their
connectivity characteristics. Different peers present different
bandwidth capabilities reflecting in different latency l between

6https://webrtc.org/
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peers, and affecting the rate at which a peer can send or
receive packets. Therefore, the propagation of messages from

peer p to peer u can be given by l(p,u)=
∑h

i=1li.

B. Publish/Subscribe for OSNs

A pub/sub system for OSNs consists of four basic entities:
i) a social graph G = (V,E), where V is the set of social
users and E is the set of social connections; ii) a Publisher
set B ⊆ V of social users that produces the data; iii) a
Subscriber set S ⊆ V that comprises the publishers’ social
friends and consumes the data; and iv) an interest function
f : S×B→ {true,false}. A subscriber s ∈ S expresses his
interest only on the messages that a user b ∈ B produces if
f(b,s) = true∧ (b,s) ∈ E . When a publisher b ∈ B posts a
new message, this message needs to be delivered only to the
interested subscribers Sb={s∈S|f(s,b)= true}.

A routing tree RTb is constructed in order to disseminate
the message to all the subscribers Sb. Thus, the edges of
the routing tree connect social friends’ peers that receive
and forward the message until all subscribers receive it.
However, an edge in the routing tree RTb does not necessarily
correspond to an existing connection in the P2P overlay
network. Therefore, the dissemination path latency from a
publisher b to all his subscribers Sb is calculated as follows:

l(b,Sb)=max
s∈Sb

l(b,s) (1)

Furthermore, the relay nodes r ∈ RTb are viewed as the
edges of the routing tree RTb in the path between a publisher
and its subscribers. Therefore, depending on the social graph,
relay nodes can be subscribers themselves.

C. Problem Definition

The focus of our work is to minimize the number of relay
nodes used to disseminate messages on pub/sub systems, as well
as to reduce the dissemination latency, even under node churn.

Although the routing tree RT guarantees the dissemination
of messages to all the social friends, it suffers from high
number of relay nodes. This happens because social users
that are connected in the routing tree RT are not necessarily
directly connected in the P2P overlay network. Hence, each
edge in the routing tree consists of O(logN) relay nodes.
Replacing the connections of the routing table Rp with
the subscribers s ∈ Sp does not provide guarantees that the
h-hop path would be bounded in O(logN), while also not
guaranteeing communication between any two arbitrary peers
in the P2P overlay network. We need to ensure that the
propagated messages will be reached by all the social user’s
friends regardless of the structure of the social network.

Therefore, a P2P substrate that minimizes the number of
relay nodes in the routing tree RT is required. We define the
problem of relay nodes minimization as follows:

Given a publisher b and a set of subscribers Sb, each
peer p ∈ P aims to establish links in its routing table Rp

such that the routing tree among the publisher b and the
subscriber s ∈ Sb contains the minimum number of relay
nodes Sb={s∈S|f(s,b)=false}, granting a near theoretical
optima minimal solution.

TABLE I
A PEER’S p LOCAL STATE, LISTING OF LOCAL VARIABLES FOR A GIVEN PEER.

Dp the peer’s p identifier
Rp a set of peers’ identifiers that the peer p is connected
Cp a set of identifiers of the peers that host the peer’s p social friends
Lp a set of connections that the peer v∈Rp maintains

III. THE SELECT SYSTEM

SELECT aims to construct a global P2P overlay network that
establishes connections between peers that host social friends.
Moreover, SELECT seeks to organize socially-connected peers
in close distance in the overlay network, in order to reduce the
number of hops required for the routing process. The intuition
behind this is to provide a P2P substrate that reduces the number
of hops between two socially-connected peers as well as to
maintain the minimum number of relay nodes of the routing
tree RTb for each publisher b∈B. Finally, the goal of SELECT
is to provide a pub/sub service that has a low latency impact.

A. System Model

Our system model consists of a set of peers P and a set
of social users V . Social users join the social network either
by invitation or they subscribe independently. Each social user
u∈V is mapped onto only one peer p∈P . We assume that
peers communicate with each other over reliable channels (e.g.
TCP connections) that bound the number of connections each
peer maintains.

Each peer maintains a set of four local variables listed in
Table I. The first variable, Dp is the identifier of the peer
p and defines the position of the peer p in the ID space
I ∈ [0...1). SELECT seeks to organize the socially-connected
peers in close distance in the overlay network. Thus, each
peer p modifies its identifier Dp in order to minimize the
distance dI(p,u) to its most important peer u. We measure the
importance between two peers and use it as a distance factor
between social users, the strength of ties between two users in
the social graph, by using the number of common friends that
the two nodes share in the social graph. Therefore, we define
the social strength between two peers p and u as follows:

s(p,u)=
|Cp∩Cu|
Cp wherep,u∈V (2)

The second variable, set Rp, constitutes the routing table of
the peer p. The third variable, set Cp, comprises the identifiers
of the peers that host its friends in the social graph. The number
of connections that each peer establishes is usually lower than
the number of friends that each social user maintains in the
social network. This is due to the fact that most of the social
friends peers have either equal connections to the same friends
or a lower number of friends. Thus, in most cases, |Rp|�|Cp|,
given that in social networks the number of friends is much
higher than the connections that are required. Also, the set Cp
contains only the identifiers of the peers which enhance the
lookup process without establishing direct connections to all the
peers of the set Cp. The main goal of SELECT is to establish
connections with the maximum number of each social users’
neighborhood, while minimizing communication with the rest
of the social friends by maintaining a minimum number of hops.
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Fig. 1. The three-layer architecture of SELECT.

The fourth variable, set Lp, contains the identifiers of the
peers that each peer u∈Rp maintains. The existence of this
variable is similar to the lookahead process of Symphony [10].
This lookahead set enhances the routing process as it forwards
the message to the neighbor that affirms the connection with
the targeted peer.

In our model, each peer establishes its own connections
to other peers, according to the social networks’ friendship
mapping. In overall, all peers will lay in a ring topology
shared to all peers in order to gain routing performance
across the whole network, by minimizing the relay nodes and
establishing social routing instead of plain network routing.

B. SELECT System Overview

We implement SELECT using a three-layer architecture, as
shown in Figure 1, where the bottom layer provides the social
network; the middle layer provides a topology construction
mechanism, based on each peer’s position and its social
neighbourhood, that creates the global overlay network; and
the top layer refers to the topology construction protocol
where pub/sub mechanism is executed.

The SELECT system consists of three main processes:

– Projection: SELECT associates the position of each peer that
hosts a social user in the overlay network (Step 1 in Figure
1). The position of each peer is used to define the distance
between two socially connected peers in the ID space I.
When a peer joins the overlay network, the local variables
of Table I are initialized (Step 1’). (cf. Section III-C)

– Identifiers Reassignment: SELECT evaluates the peers
position in the ID space and reassigns the identifiers on
a round-based basis. Specifically, each peer leverages the
social neighborhood information and modifies its identifier
in order to reduce its distance in the overlay network with
its social friends (Step 2). (cf. Section III-C)

– Peer Connections Establishment and Reassignment:
While SELECT organizes the socially connected peers in
the same area in the ID space I , each peer establishes direct
connections to peers that are also connected in the social
network (Step 3). A link reassignment process is performed
(Step 3’) to ensure that each social user communicates with
the maximum number of his social friends in the minimum
required hops, as well as with the minimum dissemination
latency. (cf. Section III-D)

Both peers’ identifier and connection reassignment processes
use a gossip-based peer-sampling methodology to evaluate the
topology defined. When the overlay network is constructed,
SELECT applies the pub/sub mechanism to construct the
routing tree RTb for the publisher b∈B.

C. Projection and Identifier Reassignment

The projection process (Step 1 in Figure 1) determines
the peer’s initial position that is perceived by the underlying
overlay network. Since social users join the social network
either by invitation or by subscription, this directly impacts
the peer’s initial position (Step 1’ in Figure 1).

As shown in Algorithm 1, the projection of the social user
in the overlay network is specified based on the subscription
type in the overlay network (line 1). When a social user is
subscribed by invitation, his assigned identifier Dp reduces
the distance (line 3) between the peer u and the peer p that
hosts the invited social user. Otherwise, a random identifier is
assigned to the peer p using a uniform hash function (line 5).

As the social network grows, social users create new
friendships and the social strength in Equation 2 between two
users is modified. SELECT strives to reduce the distance in
the ID space I between social friends. In particular, each peer
modifies its identifier in order to minimize the distance in the
overlay network, to be near the peer’s ID which hosts the social
friend that has the highest social strength (Step 2 in Figure 1).

The new position choice is the centroid of all its social
friends position. However, this does not work in social users
with high degree, in which the social strength between friends
may significantly differ. Thus, social friends can be located in a
totally different position in the ID space I . To address this, we
use the centroid between the two social friends that maintain
the highest social strength value, as presented in Algorithm 2.

The social strength of each user is calculated using a
gossip-based peer-sampling protocol, as shown in Algorithm
3 and Algorithm 4. Every peer p periodically (e.g. every
10 seconds) selects a random social friend u and sends its
social neighborhood set Cp (line 3 in Algorithm 3). The
peer u compares the received neighborhood set Cp with its
neighborhood set Cu (line 4 in Algorithm 4) and returns the
number of mutual friends to the peer p (line 6 in Algorithm 4).

Complexity Analysis : For each peer p ∈ P , the initial
position in the overlay network is calculated in O(1), since
the identifier is assigned either uniformly or based on the
invited peer’s identifier. Thus, the initial projection of the
social graph in the P2P topology requires O(N) complexity.
The reassignment of the peers’ identifiers based on the
peer-sampling protocol requires a O(|Cp|) complexity for each
peer, where |Cp|�N . In modern social networks usually |Cp|
is on the range of hundreds of social friends, while the size of
the network N is billions of users [16]. The total complexity
of the Projection and Identifier Reassignment algorithm is

O(N ·|Cp|) (3)

D. Peer Connections Establishment and Reassignment

SELECT utilizes a gossip-based peer-sampling service to
construct the topology in the overlay network. Each peer
periodically acquires its social neighbor’s connections in
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Algorithm 1: Peer Identifier Assignment

Input: v∈V newly registered social user
Output: Dp peer’s identifier

1 if Cv �=∅ then
2 u ← the peer of the social user that invited v;
3 Dp←minDdI(u,v)
4 else
5 Dp← uniformHash(v);
6 end
7 return Dp;

Algorithm 2: Peer Identifier Reassignment

1 Procedure evaluatePosition()
2 u← peer with the highest social strength in Cp;
3 v← peer with the second highest social strength in Cp;

4 Dp← |dI(u,v)|
2 ;

5 end procedure

Algorithm 3: Peer-sampling - Active Thread

1 Procedure ExchangeRT
2 socialFriend ← getRandomSocialFriendPeer();
3 Send <Cp,Rp> to socialFriend;
4 Receive <nMutual,M > from socialFriend;
5 socialFriend.nMutual = nMutual;
6 socialFriend.M = M;
7 Dp← evaluatePosition();
8 Rp← createLinks();
9 end procedure

Algorithm 4: Peer-sampling - Passive Thread

1 Procedure ResponseExchangeRT
2 Receive <Cu,Ru> from socialFriend;
3 nMutual ←|Cu.merge(Cp)|;
4 socialFriend.nMutual ← nMutual;
5 M←Cu.constructFriendshipBitmap(Rp);
6 Send <nMutual,M > to socialFriend;
7 M ′←Cp.constructFriendshipBitmap(Ru);
8 socialFriend.bitMap = M ′;
9 Dp← evaluatePosition();

10 Rp← createLinks();
11 end procedure

the overlay network and evaluate its current established
connections (Step 3 in Figure 1). Specifically, each peer
p seeks to establish direct connections with the maximum
number of its social neighborhood Cp.

Each peer is allowed to accept only K incoming links,
while maintaining two short range outgoing links Rs

p with his
successor and predecessor in the overlay network in order to
create a ring topology and K long range outgoing links Rl

p

with its social friends. The intuition behind the K incoming
links is to avoid having peers that have too many connections,
because other peers seek to connect to them, and consequently
present more traffic than others. When the K incoming links
are established, the peer accepts a new incoming connection
if the new connection has better bandwidth capability than the
already existing connections. The K outgoing long range links
are selected by applying the Locality Sensitive Hashing (LSH)
technique to the social neighbor’s connections retrieved from
the peer-sampling service (lines 3-6 and 2-8 in Algorithms

3 and 4, respectively). The LSH technique is used to choose
the long range links from different zones of the overlay and
avoid link overlap in the overlay network. We consider that
the LSH family technique to be reliable in maintaining long
range connectivity for the overlay network.

The connection establishment mechanism is shown in
Algorithm 5. We begin by indexing the bitmaps of the social
neighborhood in H buckets in the LSH index (lines 2 - 4).
In our algorithm, we consider that the number of buckets is
equal to the number of long range links defined (|H|=K).
The reason for selecting |H|=K buckets in the LSH index
is to simplify the selection process of the direct connections.
Peers, whose connections are similar, will be indexed in the
same bucket. This results in selecting only one peer in each
bucket, establishing at most K long range links.

The bitmap of u ∈ Cp is an array of size |Cp|, the values
of which define the link existence in Ru between two socially
connected peers u∈Cp and v∈Cp, where u 
=v, as follows:

bitmap(u,v)=

{
1 if (u,v)∈Ru

0 if (u,v) /∈Ru

While the bitmaps are indexed in the H buckets of LSH,
in lines 5 - 18, we aim to select one peer of each bucket
h∈H to establish connection. However, not all buckets may
contain only one peer, as social friends tend to converge to
similar connections. In order to establish connections with
the maximum number of the peer’s p social neighborhood
Cp, but also the minimum dissemination latency, we select
the peer that attempts to establish a connection using a
picker (line 8), as shown in Algorithm 6. In doing so, we
select the peer that achieves the maximum number of social
connections and presents better bandwidth capability in order
to propagate the message with higher rate. Moreover, we
drop an already established connection (p,u)∈Rp with a peer
u that presents similar connections with newly established
connection (p,v)∈Rp (lines 12-16) in Algorithm 5.

Algorithm 5: Peer Links Reassignment

1 Procedure createLinks()
2 for u∈Cp do
3 LSHIndex(u.bitMap);
4 end
5 for h∈H do
6 Ph← peers assigned in the same bucket h;
7 if Ph �=∅ then
8 u← picker(Ph);
9 if (p,u) /∈Rp then

10 Rp←(p,u)
11 end
12 for v∈Ph,v �=u do
13 if (v,p)∈Rp then
14 Rp.remove(v);
15 end
16 end
17 end
18 end
19 end procedure

Complexity Analysis : The complexity analysis of the
Connections Establishment and Reassignment algorithm is anal-
ogous to the number of social friends |Cp| that each user main-
tains and the number of buckets |H| assigned on the LSH index.
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Algorithm 6: Picker Peer Connection

1 Procedure picker(Ph)
2 PSh← sortPeers(Ph);
3 if (|PSh|>0) && (PSh(0).bw<PSh(1).bw) then
4 RETURN PSh(1)
5 end
6 RETURN PSh(0)
7 end procedure

The peer-sampling protocol aggregates the bitmaps in O(|Cp|)
complexity. The index of the bitmaps in |H| = K buckets
requires O(|Cp|·log(|Cp|)·K) complexity. The selection of the
K long range links using the LSH index is performed in O(K)
cost. Summarizing, the total complexity of the Connections Es-
tablishment and Reassignment algorithm for each peer p∈P is

O(|Cp|2 ·log(|Cp|)·K2) (4)

E. Pub/Sub system

The pub/sub system utilizes the generated overlay network
to create the routing tree RTb for each social user b∈B and
guarantees the delivery of the published messages to all of
his social friends Sb.

Following the lookahead technique of [10], each peer p main-
tains a lookahead set Lp of connections that each peer u∈Cp
maintains. Peer p uses the lookahead set Lp to create the routing
tree RTb and forward the message during the routing process.
Each peer monitors its routing table RTb and the lookahead set
Lp and forwards the message to the peer that guarantees the
delivery of the message within 1 or 2 hops. If the peer u∈Sb is
not included in the routing table Rp and the lookahead set Lp,
the peer v∈Rp that minimizes the distance dI(v,u) is selected.

F. Recovery Mechanism

Peers join and depart the overlay network at unexpected
rate (churn). Also, to maintain the pub/sub reliability property
for message delivery, we need to manage a routing table
that efficiently recovers from peers departure. In doing so,
peers periodically request each social friend of their routing
table for their state. The availability of each peer is recorded
and their online behavior is calculated using the Cumulative
Moving Average (CMA). The intuition of using CMA is to
identify the average online behavior of a social user during the
period of the last few days and ensure that the social user is
a good candidate for establishing a connection. Thus, the peer
identifies if a connection is unresponsive because a social user
is mostly offline or if it is a temporal connection failure. In
doing so, a peer p decides to keep an unresponsive connection
to the peer u in order not to create a chain of connections
reassignment to the peers that are connected to the peer p. In
contrast, when a peer is unresponsive and its CMA value is low,
we replace the unresponsive peer with another peer from the
same bucket of the LSH index (see Section III-D). Using this
approach, SELECT maintains direct connections with peers
that host social friends and publish a message on non-relay
nodes while also being adaptive to dynamic environments.

IV. EVALUATION

For our evaluation, we considered two types of experiments,
one as a simulation and another as a realistic environment. For

TABLE II
FOUR REAL-WORLD DATA SETS OF SOCIAL NETWORKS THAT INCLUDE

USERS INFORMATION, SUCH AS SOCIAL CONNECTIONS AND AVERAGE

DEGREE.

Data Set Users Connections Average Degree
Facebook 63,731 817,090 25.642

Twitter 3,990,418 294,865,207 73.89
Slashdot 82,168 948,463 11.543

GooglePlus 107,614 13,673,453 127

the simulation experiments, we used the Gelly Graph API7

which runs over the Apache Flink8 distributed data processing
framework. We ran our experiments on a Flink cluster with 20
nodes in order to provide a distributed discrete event simulator
suitable to conduct large-scale experiments with millions of
peers. For the realistic experiments, we used WebRTC to
create the peers as browser-dependent and deployed on a cloud
infrastructure several VMs (in total 18 VMs are used). The
VMs contained several peers spread among each, hosting all the
users in each data set. The communication between peers was
done through the network interface, which allowed to emulate
the latency between nodes and achieve a realistic environment.

The implementation of SELECT is performed using
the vertex-centric iterative model [18]. Specifically, in
synchronized iteration steps, each peer produces messages to
other peers and updates their identifiers and their connections
in the overlay network using the SELECT algorithms.

Experiments are performed in evolving networks, where
users join the overlay network at different phases. We initiate
our experiments by selecting a social user u ∈ V from the
data set at random. Thereafter, we insert into the social
network a portion of the user u’s social friends, following the
model of [19]. Based on [19], social users establish friendship
connections at high rate in the beginning of the join process,
and this rate decreases exponentially over time. Therefore,
at each iteration step, we select a registered social user and
insert into the social graph a number of her social friends that
preserves the exponentially decreasing rate of the model.

Additionally, we introduced the churn rate of each peer in
the overlay network, following the model of [20]. Specifically,
at each iteration step, we select a number of peers based on
a log-normal distribution to be excluded from the overlay
network. When the iteration step is completed, the removed
peers are recovered in the overlay network.

When the overlay network is constructed, we perform
simulations of the pub/sub mechanism to measure the number
of relay nodes that exist on each routing tree. In order to
realistically simulate a real-time notification system in the
social network, each publisher posts messages at exponential
rate following the model of [21].

The realistic experiments follow the same pattern as the simu-
lation experiments, however since each node has different band-
width capabilities, different latency is applied for each node and
accounted in the analysis. Also, in the pub/sub system, packets
of 1.2MB are sent from the publishers to the subscribers.

7https://ci.apache.org/projects/flink/flink-docs-master/dev/libs/gelly/index.
html

8http://flink.apache.org/
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A. Data sets

Our evaluation is performed with four real-world data sets,
listed in Table II. These data sets cover a wide range of
social graph features, from less connected graphs (Slashdot
[16], Facebook [15]) to highly connected graphs (Twitter,
Google Plus [16]), that enhance the evaluation of our
proposed approach on several graph types. Moreover, we
conduct experiments on the large-scale data set of Twitter
in order to demonstrate the scalability of our algorithm. The
characteristics of the data sets are presented in Table II.

B. Metrics

In order to measure the efficiency of SELECT, we use the
following metrics:

• Number of Hops: The average number of overlay hops
within the path between two peers.

• Number of relay nodes: The average number of relay
nodes that exists in the pub/sub routing tree.

• Number of iterations: The average number of iterations
required to organize the peers in the overlay network.

• Percentage of messages: The percentage of messages that
each peer forwards in the dissemination tree.

• Latency: The average latency of communication between
peers in the overlay network, counting the latency between
intermediate peers in a given path. Only used for the realistic
experiments, since simulations do not account with latency.

To validate our analysis, for each metric we report the
average result out of 100 independent trials to decrease the
risk of statistical error. We consider these metrics to be
important to understand the behaviour of SELECT and the
pub/sub system. Thus, be able to compare the end results
with other works while also giving feedback on the use of
SELECT for the domain of pub/sub systems.

C. Simulation Experiments

We compared SELECT with several existing pub/sub
systems of different categories: i) a pub/sub system over
the Symphony P2P overlay network without any further
modification on the P2P topology; ii) Bayeux, a pub/sub
system that organizes peers into a DHT in a P2P overlay
and builds a spanning tree for each topic to propagate the
messages; iii) Vitis, a gossip-based pub/sub system that
organizes the subscribers into clusters; and iv) OMen, that
constructs TCOs to disseminate information on each topic.

As the number of direct connections increases, we observe a
substantial reduction, over 90%, on the average number of hops
required for the communication between two socially-connected
peers. However, as the number of links used overcomes the
logarithmic number of peers in the overlay network, no further
improvement is performed. Based on the above observation,
for the rest of the experiments, we assign log2N direct
connections on each peer in order to construct a P2P topology.

Figure 2 presents the average number of hops required
for a publisher to propagate information to each one of his
subscribers. As the network grows, the average number of
hops increases logarithmically. However, SELECT performs
with 76%, 83%, 75% and 85% fewer hops compared to the
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Fig. 2. Number of hops per social lookup for the (a) Facebook, (b) Twitter,
(c) Google Plus and (d) Slashdot data sets.
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Fig. 3. Number of relay nodes per pub/sub routing path for the (a) Facebook,
(b) Twitter, (c) Google Plus and (d) Slashdot data sets.

pub/sub mechanism built over the Symphony overlay network
and for the Facebook, Twitter, Google Plus and Slashdot data
sets, respectively. This occurs due to the fact that Symphony’s
construction of long range links is completely oblivious to the
social graph and the publication workload. In contrast, SELECT
establishes connections between socially-connected peers, and
as such subscribers are 1 or 2 hops away from the publisher.
Compared to the state-of-the-art pub/sub approaches, SELECT
achieves more than 43%, 61%, 41% and 65% reduction for
the Facebook, Twitter, Google Plus and Slashdot data sets,
respectively. This happens because peer identifiers on SELECT
are mutable and socially-connected peers are clustered in the
same region in the ID space. Hence, a small-world network
is accomplished on SELECT, in contrast to the presented
approaches where an immutable identifier policy is applied.

Figure 3 presents the impact of SELECT on the number
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Fig. 4. Messages forwarded per social degree in a pub/sub routing tree for
the (a) Facebook, (b) Twitter, (c) Google Plus and (d) Slashdot data sets.
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Fig. 5. Number of iterations required to construct the overlay. Symphony
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establishment process.

of relay nodes that exist in the routing path between publisher
and subscriber. SELECT presents over 98% reduction on the
number of relay nodes for all data sets, in comparison to the
Symphony, Bayeux, Vitis and OMen approaches. This happens
because in Symphony, Bayeux, Vitis and OMen the probability
of two socially-connected users to be also connected in
the overlay network is extremely low. In contrast, SELECT
leverages the social graph and establishes connections between
socially-connected peers that reduces the number of relay
nodes in the routing path between publisher and subscriber.

In Figure 4, we investigate the balance of the load that each
peer presents, by measuring the percentage of messages that
each peer forwards in the routing tree against the degree of
the peer. Figure 4 indicates that SELECT provides better load
balancing than Symphony, Bayeux, Vitis and OMen approaches.
This happens because Symphony and Bayeux are agnostic to
the social network dynamics, and thus information propagation
converges to the peers that present high social degree. In
contrast, Vitis and OMen leverage the social network dynamics
but the peer connection strategy that they follow emphasize on
connecting peers with high social degree. SELECT presents
more than 60%, 73%, 56% and 46% improvement against Sym-
phony, Bayeux, Vitis and OMen approaches for the Facebook,
Twitter, Google Plus and Slashdot data sets, respectively.

The total number of iterations required to establish

the connections between peers, are presented in Figure
5. Symphony and Bayeux are excluded from this set of
experiments as they provide no iterative algorithms. Based
on the reporting results in Figure 5 we observe that SELECT
converges in significantly lower number of iterations than
Vitis and OMen. This observation is due to the fact that Vitis
and OMen initially organize the peers following a standard
DHT-based overlay network and optimise the connections
when the overlay network is formed. Thus, connections are
established between non socially-connected peers and the
gossip algorithm applied requires more iterations in order to
identify the socially-connected peers. In contrast, SELECT
establishes immediately the connections between peers that are
socially-connected and thereafter optimises the connections in
order to improve the information propagation. This results in a
lower number of iterations to organize the peers since most of
the peers’ connections are already to a socially-connected peer.
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Fig. 6. The impact of churn in the data availability during the information prop-
agation. Dash line represents the node churn and continuous line the availability.

Finally, in Figure 6, we present the impact of the unexpected
join and leave of peers in the relay nodes between two
socially-connected peers. In this set of experiments we ran a
simulation for over ten hours, where in each second a random
number of peers depart or join the network. The total number
of peers that are available in the P2P overlay network cannot
be less than half of the overall social network. Based on this
experiment, we observe that each peer efficiently replaces
the unresponsive connection with another peer that presents
similar connections based on the LSH index. Thus, the routing
process maintains 100% data availability in all data sets.

D. Realistic Experiments

In the realistic experiments, we perform the comparison
with other pub/sub systems, as Symphony, Bayeux, Vitis and
Omen, as described in the previous experiments.

Towards understanding the behaviour of our algorithm when
latency is applied, we start by introducing an initial experiment
on simultaneous connectivity. The peers join a network and con-
nect to a central peer, without applying any selection algorithm.
Thus, the central peer is connected to all others. Afterwards,
the central peer creates a data fragment of 1.2MB (average
image size) and sends to all its connections simultaneously. In
our findings when increasing the number of connections there
is a linear increase in the total time for transfers. Therefore,
we can establish that an issue is not the number of connections
to be established, but the simultaneous transfers to peers.

Figure 7 presents the latency for message dissemination
between the publishers and their subscribers. At first, without
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Fig. 7. Average latency of data dissemination in the pub/sub routing tree
for the (a) Facebook, (b) Twitter, (c) Google Plus and (d) Slashdot data sets.
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Fig. 8. Identifiers distribution among the network for the (a) Facebook, (b)
Twitter, (c) Google Plus and (d) Slashdot data sets.

selection algorithm (random), for each of the data sets we find
that the peers connectivity can grow exponentially making
the dissemination process costly in terms of timing. When
applying SELECT, the overlay becomes latency aware and
therefore the dissemination latency has a small *linear growth*
accommodating more peers in the overlay without sacrificing
dissemination time.

Figure 8 presents the distribution of the identifiers after
applying SELECT, for each of the data sets. We determine
that SELECT rearranges the overlay in such a way that the
nodes distances are maintained as low as possible while still
being able to reach all of the network. In fact, we can observe
that small groups of nodes are within the same regions,
which aggregate the socially-connected nodes without losing
connectivity between regions.

V. DISCUSSION

Our approach to disseminate data in pub/sub systems relies
on the social network connections. Due to the fact that state-of-

the-art approaches rely on different aspects of the network for
their optimization, it is hard to provide a fair cost comparison
between them and the SELECT algorithm. We clearly see
from our experimental results that the actual costs come from
the added social information which is necessary to create the
friendship graph in order to augment the global overlay.

We assure the correctness of our approach by grounding
it in a ring topology, since it gives us the ability to continue
sending messages to all peers and guarantee that all nodes
are able to receive them. Other topologies, such as mesh, tend
to create isolated communities of nodes. Therefore, the use
of other topologies may not guarantee the same results when
applying different social networks.

We also show that the issue of simultaneous data transfers
may degrade the performance of a peer when disseminating
concurrent messages. This issue can be optimized by having
more than one paths to the subscribers in order to guarantee
the transmission; however, it is unlikely to find paths of the
same length and latency stability.

Finally, we can observe that SELECT achieves its uni-
dimensional network construction in real world environments
very successfully and without compromising any of the required
large-scale pub/sub properties. This proves that SELECT is
fully applicable on OSNs in real world settings, although a
geographically distribution study would augment our findings.

VI. RELATED WORK

A significant body of research has considered the
construction of a P2P pub/sub system so that the number
of relay nodes is minimized. The proposed approaches are
divided in two main categories: i) the design of a routing tree,
the construction of which relies on the routing process of the
underlying P2P overlay network [11]; and ii) the construction
of a P2P topology such that the paths in the routing tree
contain the minimum number of relay nodes [1, 5, 22].

In the first category, Bayeux [11] organized peers into a
DHT, where each peer maintains O(logN) connections. Then
a routing tree is built for each topic with a rendezvous node
at the root, which delivers the events to the peers that join the
tree. This approach, however, forces many nodes to relay the
messages for which they have not subscribed. Consequently,
Bayeux-based systems suffer from high traffic overhead as
they fail to minimize the number of relay nodes.

Rahimian et al. [5, 23] proposed a gossip-based hybrid P2P
overlay for pub/sub systems, called Vitis. Peers in Vitis are or-
ganized in a ring structure and run a gossip-based peer sampling
algorithm to identify the subscription and establish connections
so that peers that are interested on similar topics are organized
in clusters. Although Vitis manages to reduce the number of
relay nodes, peers with high social degree present high traffic
overhead since the rest of the peers aim to connect with the
social users that maintain the most social friends in common.

The theoretical formulation of pub/sub overlay design with
the minimum number of relay nodes originated in [22]. Chock-
ler et al. [22] investigated the problem of constructing a routing
tree with minimum edges. They presented a Greedy Merge
(GM) algorithm that achieves a logarithmic approximation
ratio for the average peer degree. The GM algorithm produces
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a routing tree for each topic with unbalanced peer degrees
by effectively creating hotspot peers with a high node degree.

Finally, OMen [6] is one of the most recent approaches that
emphasizes on the design of the P2P overlay network in order
to provide a P2P pub/sub system. OMen [6] incorporated the
design of a Topic connected Overlay (TCO) [24], which is
an approximation of the GM algorithm [22]. Forming a P2P
small world overlay network of [1], each peer in the OMen
pub/sub system maintains a shadow set, which is a subset of
backup peers that maintains the information to repair the TCO
when churn occurs. Furthermore, Omen utilizes social network
connectivity to generate the pub/sub workloads and propagates
messages through the established overlay. Although OMen pro-
vides a fast recovery mechanism, while maintaining low number
of relay nodes, no monitoring on the peers’ online activity is per-
formed, thus presenting high traffic overhead to the peers that es-
tablish connection to peers with extremely low online behavior.

Recent works such as SpiderCast [25] and PolderCast [26]
extend the mentioned works however we do not compete di-
rectly with them. Furthermore, such works build upon the same
frame of reference works, not fully exploiting the underlying
social structure for efficient routing, which can result in heavy
relay costs or different handling of the social and P2P graphs.

Our work differs in designing an overlay network that
leverages the social graph topology and interactions to organize
both the peers in the overlay network and their established
connections. Specifically, in our work, the peers are placed
in the same area in the overlay network based on their social
proximity and establish a bounded and adaptive number of
connections with peers that are also connected in the social
graph. Thus, we avoid congestion in peers with high social
degree, spreading the connections with other social users that
retain better behavior. Hence, we simplify the routing tree
construction and reduce the number of relay nodes.

VII. CONCLUSIONS

In this paper, we address the problem of relay nodes in a
pub/sub system for social notifications and propose SELECT -
a distributed pub/sub system. We design a P2P overlay network
that exploits the social graph to organize the peers in an overlay
network and establish connections between socially-connected
peers. Using a gossip-based peer sampling service, SELECT re-
duces the number of hops required to communicate two socially-
connected peers. Additionally, the constructed routing trees in
the pub/sub system exhibit the minimum number of relay nodes.
We evaluate SELECT in simulated and realistic environments
using four real-world data sets and highlight the performance of
SELECT against state-of-the-art approaches. Modern social net-
works, such as Facebook, Twitter and Spotify, have to propagate
a vast amount of notifications. Consequently, to account for the
fact that such notification systems need to offload processing
from their dedicated resources it is worth to consider the
implementation of SELECT that reduces the number of relay
nodes, while maintaining 100% communication availability.
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