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Abstract—The widespread adoption of IoT has driven the
development of cyber-physical systems (CPS) in industrial en-
vironments, leveraging Industrial IoTs (IIoTs) to automate man-
ufacturing processes and enhance productivity. The transition
to autonomous systems introduces significant operational costs,
particularly in terms of energy consumption. Accurate modeling
and prediction of IIoT energy requirements are critical, but
traditional physics- and engineering-based approaches often fall
short in addressing these challenges comprehensively. In this
paper, we propose a novel methodology for benchmarking and
analyzing IToT devices and applications to uncover insights into
their power demands, energy consumption, and performance.
To demonstrate this methodology, we develop a comprehensive
framework and apply it to study an industrial CPS comprising
an educational robotic arm, a conveyor belt, a smart camera,
and a compute node. By creating micro-benchmarks and an
end-to-end application within this framework, we create an
extensive performance and power consumption dataset, which
we use to train and analyze ML models for predicting energy
usage from features of the application and the CPS system. The
proposed methodology and framework provide valuable insights
into the energy dynamics of industrial CPS, offering practical
implications for researchers and practitioners aiming to enhance
the efficiency and sustainability of IloT-driven automation.

Index Terms—Robotics, Energy Modeling, Machine Learning

I. INTRODUCTION

Exponential advances in Internet of Things (IoT) technolo-
gies have led to a rapid proliferation of IoT applications
deployed in numerous domains, such as transportation, health-
care, industrial control, etc. Modern industrial infrastructures
increasingly comprise cyber-physical systems (CPS), which
integrate industrial devices with computational components
and processes [1]. Typically, CPS consist of IoT sensors,
which monitor physical processes and systems to collect data
reflecting their state, and of IoT actuators, which control
physical systems to complete selected tasks. The management
of CPS systems is performed by software components, which
implement various computational processes like data analyt-
ics and Machine Learning (ML) inference to provide CPS-
component control and coordination. These software compo-
nents are typically deployed in computing nodes within small
data centers located near the IoT installations [2].

As CPS proliferate in distribution and scale, their operation
is expected to take an increasing portion of the total energy
consumption of IT systems, contributing significantly to global
electricity consumption and C'O, emissions. Consequently,
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many recent research efforts focus on analysing and modeling
the energy profile of edge computing devices and application
workloads, and on adding energy-efficiency features to edge
computing operations [3]-[6]. Most of these efforts, however,
focus on profiling computational workloads running on indi-
vidual IoT computing devices. Few studies focus on analyzing
CPS installations that comprise both computing as well as
sensing and actuating components working in tandem to
perform complex tasks. Such scenarios are nevertheless preva-
lent in industrial infrastructures and applications, particularly
where Industrial IoT (IloT) deployments automate manufac-
turing processes within industrial production pipelines. Such
automation enables modern factories to operate around the
clock, reducing personnel costs and enhancing productivity.
With the prices of robotic arms dropping fast (46.2% reduction
between 2017 and 2021 [7]), analysts predict that such devices
will become ubiquitous and could unleash a huge potential
for the global economy [8]. Given that power requirements
significantly impact the operational costs of IIoT deployments,
it is crucial to explore the power, energy, and performance of
such applications, considering both their computational and
physical components and performed tasks. However, studies
of IIoT deployments often rely on simplistic models or focus
on specific industrial machinery that do not consider real-
world applications [9]-[11]. More comprehensive and realistic
models are required to better predict energy consumption, im-
proving the efficiency and cost-effectiveness of IIoT systems.

In this paper, we present a methodology and a benchmarking
framework for analyzing the energy profile of CPS configu-
rations in industrial automation systems, and for developing
predictive models of their energy consumption. We deploy and
demonstrate this framework to analyze the power and energy
profile of an industrial CPS system, comprising a robotic arm,
a conveyor belt, and a smart camera, collaboratively perform-
ing automated object sorting based on visual attributes such
as color. The methodology is supported by our benchmarking
and monitoring framework, which analyzes the energy profile
of instructions submitted for execution by the application to
the physical (e.g., robotic arm, belt) and digital (e.g., camera)
components of the installation. The analysis maps component
energy profiles, links them to operational parameters, and
trains models to predict the energy profile of end-to-end appli-
cations based on features like speed, acceleration, and weight.
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Fig. 1. Experimentation Setup & Robotic Arm

The rest of the paper is structured as follows: Sec. II intro-
duces the related work and Sec. III our cyber-physical setup.
Next, Sec. IV and V show our methodology and its workloads,
respectively. In Sec. VI and VII, we apply exploratory analysis
and the AI/ML training, while Sec. VIII concludes the paper.

II. RELATED WORK

The initial efforts to model the energy consumption of me-
chanical robotic components are related to the optimization of
multi-robot systems [9]. However, the models and the analysis
of these cases were relatively simple, taking into account only
the initial and final trajectory points of a movement without
considering the user-defined application. Recognizing this gap,
Heredia et al [12] introduced an instruction-based approach to
model the energy consumption of robots. By determining the
energy consumed by each instruction, this approach enables
the calculation of the overall energy consumption for any
user-defined program. Building on this foundation, Heredia
et al in [13], proposed a novel optimization strategy tailored
for lightweight robots, incorporating three energy-minimizing
techniques: manufacturer command optimization, motion time
determination optimization, and dissipative energy reduction.
Additionally, in [14], they developed an energy consumption
disaggregation pipeline, demonstrating its application on four
robotic arms from various manufacturers.

Beyond mathematical formulation and modeling of robotic
components’ energy consumption, other approaches have
emerged. For instance, the authors of [15] propose a method-
ology for developing models that map parameters such as joint
torque and joint angular velocity of a robotic welding machine
subsystem to its corresponding electric current and voltage.
The authors in [16], introduce a digital twin system to model
the energy characteristics of robotic components, enabling
the replication and analysis of results within a simulated
environment. Yan et al [17] and Ming et al [18], adopt deep
learning (DL) and transfer learning techniques to to model the
energy profiles of robotic systems, with Yan et al. focusing
on fine-tuning a neural network trained on one robotic arm to
achieve high accuracy on a different system, while Ming et al.
employ a ResNet-based model to evaluate the effectiveness of
transfer learning in energy prediction tasks.

In summary, mathematical formulations cannot model com-
plex robotic systems that involve multiple parameters and
cyber-physical components. Despite offering improved results
in specific scenarios, approaches like digital twins, simula-
tions, and DL, suffer from critical limitations: (i) they do
not offer any methodology generalization; (ii) they are tightly
coupled with simulated environments; or (iii) they utilize

DL models, which offer high-accuracy, but can not provide
explainability, making the optimization of energy consumption
extremely difficult. In contrast, our methodology overcomes
these limitations by offering a generalized, explainable, and
adaptable solution that can be applied across various systems
advancing the field of robotic energy consumption modeling.

III. CYBER-PHYSICAL SETUP

Recognizing the gap in current state-of-the-art, we create
a cyber-physical testbed (Fig. 1-left), which comprises both
actuators of a robotic toolset, namely a robotic arm, suction
cup end-effector, and a conveyor belt, and sensors, namely a
smart camera and three smart plugs. Moreover, a laptop is
used to coordinate execution and retrieve the monitoring data.
Dobot Magician Toolset: Dobot Magician', shown in
Fig. 1 (right), is a multipurpose educational robotic arm [19].
It is composed of a base, rear arm, forearm, and an end-
effector, supports changeable end-effectors such as a suction
cup and a gripper, and comes with kits like the conveyor belt 2,
which allows the implementation of small-scale industrial
production lines. As noted in Dobot’s documentation [19],
the robotic arm achieves a maximum rotational speed of
320°/s for the rear arm, forearm, and base, while the servo
motor can reach a rotational speed of 480°/s with a 250g
payload. Dobot software offers graphic programming methods,
script programming, and more. Users control the robotic arm
using either joint-based movements, defined by motion joints,
or Cartesian movements, defined by X, Y, and Z coordi-
nates. Dobot’s API lets users set velocity and acceleration
as normalized values from O (no movement) to 100 (max
speed or acceleration). Finally, the suction cup actions indi-
cate only whether it is enabled, and the conveyor belt ac-
tions enable movement and set the speed in mm/s.

Our setup is depicted in Fig. 1 and is equipped with a
suction cup end-effector (with air pump) and a conveyor belt.
To use Dobot Magician, we leverage its API to control and
automate the robotic arm, including its movements, conveyor
belt operations, and end-effector actions. In our experiments
we opted to use the joint coordinate system instructions, which
direct the movement of the corresponding joints along with
movement’s velocity and acceleration.

Smart Camera: The selected robotic arm toolset does not
provide any sensor for observing its environment. For that
reason, we introduce a smart camera in our setup, specifically,
a JeVois-A33 3, which includes a camera sensor, an embedded
quad-core computer, and a USB video link in a tiny, self-
contained package of 1.7 cubic inches weighing 17 grams.
The camera can perform various ML vision tasks by loading
algorithms via the JeVois Inventor program, processing each
frame, and outputting the results. It supports popular open-
source computer vision libraries, like OpenCV, TensorFlow,
and Caffe. JeVois camera appears to the host computer as a
conventional USB webcam and is entirely plug-and-play. The

! https://www.dobot.nu/en/product/dobot-magician-basic/
2 https://www.dobot.nu/en/product/dobot-conveyor-belt-kit/
3 http://jevois.org/doc/Hardware.html



communication between JeVois and the application is done
via serial messages, through which the uploaded algorithm
(script) is executed in the JeVois camera, and the output
shares information with the controller program. Examples of
such scripts include object identity (color, type, classification),
location (in 3D space), and detection count, among others. For
example, the color module used in our experiments is a script
that captures camera frames, detects their colors, and sends
the results to the control software.

Smart Plugs: In order to capture the energy consumption of
the setup’s subcomponents, we use four Meross smart plugs 4
We selected this model because it exposes an API easily
accessible over the network. So, we connect each actuator
(Dobot robotic arm, belt, and suction compressor) to a smart
plug. It should be noted that the smart camera of our setup is
powered through a USB connection. So, connecting the camera
directly to a Meross smart plug is not possible. Thus, we used
a USB hub, connected to a smart plug, to power the camera.
As we described in Sec. VI-A1, the JeVois camera has minimal
and stable power consumption, with and without running our
use-case ML algorithm, so, we exclude the camera’s energy
consumption from our results and analysis.

IV. CPS BENCHMARKING METHODOLOGY

Fig. 2 depicts our benchmarking and analysis methodology.
To perform our trials, we build a software-based Control
Layer, between users and physical components, which ab-
stracts the APIs of actuators and sensors allowing users to:
(i) repeatably submit various workloads with different con-
figurations, (ii) easily introduce new workloads and physical
components, and (iii) extract monitoring datasets of each run.

Our methodology starts with users submitting a set of
experiment parameters to the control layer. These parameters
include the selected workload and configuration preferences,
which will be translated into low-level physical deployment
configurations, such as the belt speed, the arm velocity,
arm acceleration, etc. Having these preferences defined, the
Workload Generator loads the code of the selected application
scenario and configures the system. Then, the Execution Con-
troller executes the workload on the physical infrastructure.
To do that, it invokes the Instruction Translator submodule,
which translates a workload into instructions readable from
physical components of the infrastructure. These instructions
are executed by the Execution Controller utilizing the Sensors
& Actuators Adapters, which abstract the APIs of physical
sensors (e.g., camera) and actuators (e.g., robotic arm).

In our implementation, we built three Actuator Adapters
to handle the Dobot equipment, namely: (i) the Arm Adapter,
which is responsible for coordinating the arm movement (joint
movements, acceleration, and speed); (ii) the Belt Adapter,
which controls the belt movement (e.g, on/off, and speed); and
(iii) the Suction Adapter, which enables or disables the suction
end-effector. These components use the Dobot Magician API
in order to send the respective commands to the physical

4 https://www.meross.com/en-gc/smart-plug/alexa- smart-plug/3
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setup. Moreover, we implement two Sensor Adapters: a Smart
Camera and a Smart Plug Adapter. Smart Camera Adapter
allow us to deploy algorithms on the camera and retrieve
their results at runtime. In our experiments, the color detection
module is selected allowing us to extract the color of objects
that are in front of the camera. The Smart Plug Adapter
retrieves the power metrics from the smart plugs using their
API and each plug’s identifier.

At runtime, the Execution Controller not only coordinates
the physical execution, but also logs every command dis-
patched to the physical setup (e.g., the belt is activated), the
status of the physical infrastructure (e.g., robotic arm posi-
tioning), and monitoring metrics (e.g., power measurements
from smart plugs). To this end, the Execution Controller
makes use of its Monitoring Module, which extracts the latter
metrics, introduces respective timestamps, and disseminates
them to the Monitoring Broker Queue. For this component,
we utilize RabbitMQ’ message queue and created a different
topic for each metric. The asynchronous dissemination of
the data to the broker guarantees the non-blocking execution
of the commands on physical deployment. Then, the Data
Exporter module listens to all metric queues and whenever a
new data point is received, creates a new row to a CSV file,
which represents the dataset of a trial and includes physical
deployment “snapshots” (every second), e.g., positioning of
arm, suction status (true/false), belt status (true/false), camera
detection (true/false), power measurements, etc.
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V. CYBER-PHYSICAL WORKLOADS
A. Micro-benchmarks

To evaluate separately the energy needs of each component,
we built simple tasks dedicated to each physical component,
namely: (i) Robotic Arm that includes the movement of the
robotic arm from a position A to a position B and back, with
users being able to change the acceleration and the speed
of this movement; (ii) Camera, which considers the camera
with the color detection algorithm running and includes two
different states of the camera, namely, an object located in
front of the camera and the color detected, and absence of

3 https://www.rabbitmq.com/



any object and color; (iii) Belt that can be started (movement),
with its only parameter being the belt speed; and (iv) Suction
(End-effector), which enables or disables the suction of end-
effector, so the value can be True or False. Finally, a physical
parameter that we manually test, is the payload with different
weights (up to 730g) picked by the end-effector.

B. End-to-end (Sorting) Application

We also evaluate a generic sorting application (convey-pick-
classify-sort) scenario, which is common in many industrial
settings. In this generic sorting task, the conveyor belt moves
objects, one by one in a predefined position. At this position,
the arm grabs an object and puts it in front of a smart camera,
which identifies its properties, and, based on this identification,
the arm grasps and places the object into a designated bucket.

To implement this scenario, we created an end-to-end
sorting application pipeline. First, a colored cube is placed
manually at the beginning of the conveyor belt (Step ). Then,
the controller sends a command to the conveyor belt to transfer
the cube close to the robotic arm (Step 2). After that, the
robotic arm picks the cube from the conveyor belt and places
it in front of the smart camera to detect the color (Step 3).
Once the cube color is detected by the controller (Step 4), a
command is propagated to the robotic arm to pick the cube
and place it into the appropriate box based on the color (Step
5). The process is repeated until no cube is detected by the
smart camera. Since the execution is in loops, we define one
application round as the actions that occur between Step 1
and Step 5. Moreover, the configurations that one can change
in the application execution are: (i) Arm Velocity (30-100);
(i) Arm Acceleration (20-100); and (iii) Belt Speed (10-80).
The ranges are chosen to ensure trial functionality®. Lastly,
we also changed physical parameters, like payload weight.

Our system is modular and flexible, as we can easily imple-
ment new applications by defining the necessary instructions
for their tasks and the parameters for each physical component
involved. For example, switching from a sorting application to
an object selection, a user would only require adjusting specific
tasks (e.g., item recognition camera module) and, potentially,
the physical setup’s organization (e.g., the arm’s end-effector).

VI. EXPLORATORY ANALYSIS

In this Section, we highlight the results of our exploratory
analysis extracting useful insights for the submitted workloads.

A. Component-based Power Requirements

Initially, we explore the power needs of each component
(robotic arm, conveyor belt, and smart camera), by utilizing
our micro-benchmarks (see Sec. V-A). So, we systematically
change components’ configurations and measure their power
needs. By identifying power-hungry components of a CPS,
designers of CPS apps can optimize their power consumption
during the design phase. This approach eliminates the need to
deploy a full application in the field to assess power require-
ments, enabling efficient and proactive power management.

6 For velocity under 30 and acceleration under 20, latency was unacceptable.
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1) Smart Camera Color Detection: To test the power needs
of this module, we manually put a color cube in front of the
camera and captured the power consumption, with and without
the cube. The difference in the power consumption between
detecting and not detecting color is minimal (x2.13 Watts).

2) Robotic Arm Movement Velocity, Acceleration, and Pay-
load: Afterwards, we test the velocity and the acceleration of
the robotic arm. As noted in Sec. III, the API of the robotic arm
allows us to set its velocity and acceleration in a normalized
range 0-100. In this analysis, we change these values in incre-
ments of 10 until reaching the maximum. Fig. 3 and 4 show the
box plots of power consumption measurements for different
velocity and acceleration. Interestingly, medians (/=16.5 Watts)
and distributions of power consumption for these experiments
seem not to be influenced by velocity and acceleration levels.
Similar results appear when we change the weights of the
caring payload (Fig. 5). Even if the Dobot manual determines
the maximum weight being 500 grams [19], we tested with
payloads of up to 730 grams without any problem (0, 195,
340, 535, and 730 grams).

3) End-effector (suction cup): has two stages, namely
suction enabled equal to True or False. The results of our
measurements are depicted in Fig. 6. Interestingly, the suc-
tion effector, due to its pump, consumes the largest portion
of power among the components, namely ~22 watts when
enabled. When the pump is turned off, the system’s power
consumption is reduced to around 16 watts, which is the idle
power of the robotic arm.
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4) Belt Speed: Finally, we evaluate the results when only
the belt is working at different speed levels from 0 to 80
millimeters per second (mm/s). Fig. 7 highlights the results
of power measurements for different speeds. The power con-
sumption of the system is increasing up to a 30-40 mm/s belt
speed. After that point, the power decreases until the speed of
the belt reaches 60 mm/s. Then, the power requirements reach
a low level and remain steady for the rest of the speed levels.
This relation between speed and power may show the effect of
factors such as motor efficiency curves, frictional dynamics,
and mechanical resonance.

5) Key Takeaways: The evaluation of different components
and parameters on deployment’s power needs indicates that:
(i) the smart camera has stable power consumption when
performing color inference; (ii) arm velocity, arm accelera-
tion, and payload parameters have almost zero influence on
the power consumption; (iii) the suction end-effector is the
component with the highest power consumption when enabled
(performing suction); and (iv) the belt speed influences the
power consumption in an unexpected way, most probably due
to physical interaction between the belt’s components.

B. Evaluation of the End-to-End Application

In this part, we focus on the end-to-end (sorting) application
as it is described in Sec. V-B. Specifically, we executed the
application workload with different input configurations, like
arm velocity, arm acceleration, and belt speed. When we
change the values of one parameter, the rest remain constant.

Having performed a large number of trials and capturing the
power consumption for every second of operation allows us
to create a dataset with over 22k data points. With this dataset
in hand, we first evaluate how the configurations of different
subcomponents impact the overall power requirements during
end-to-end application execution. Then, we explore how varia-
tions in parameters affect both power and energy consumption
(energy = power x duration), providing insights into how
different configurations can optimize energy efficiency.

1) Component contribution in Application Power needs::
Fig. 8 and 9 show that the changing arm velocity and
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acceleration do not alter the distribution of the power with
median power to be slightly less than 17.5 Watts, and the
large majority of the values being between 16 and 22.5 Watts,
in all cases. When we change the belt speed, keeping a static
velocity and acceleration of the robotic arm, we observe the
median power consumption in Fig. 10 to follow a similar trend,
like the values of Fig. 7. However, this does not significantly
affect the range and distribution of power consumption values
during the trials, with the exception of cases where the belt
speed is set to 10 mm/s and 20 mm/s. At a belt speed of
10 mm/s, we observe a large number of outliers, and at 20
mm/s, the upper quantile is slightly lower compared to the
other results. Intuitively, this may indicate that at lower belt
speeds, the rest of the system is relatively idle. When the
cube reaches the designated point, and the robotic arm and the
end-effector activate, there is a noticeable increase in power
consumption, resulting in these outliers. In the remaining
trials, such anomalies are not observed because low-power
consumption points (when only the belt is moving) are less
frequent. Thus, the power needs of specific components may
be absorbed during the execution of a CPS app.

2) Energy and Power needs for different configurations:
Here, we compute the energy consumption per application
round for different parameterizations (arm velocity, arm accel-
eration, and belt speed). The energy of a round is computed
by multiplying the mean power usage of the system with the
duration of the round measured in seconds. Fig. 11, 12, and 13
highlight the results for the arm speed, arm acceleration,
and belt speed, respectively. The primary y-axis depicts the
computed energy in Joules and the secondary y-axis depicts
the mean power consumption during the round in Watts. As



we can see, the power consumption of the overall deployment
is relatively stable independently from the configuration of
Arm Velocity and Acceleration. For the Belt Speed, the power
consumption increases for speeds up to 40mm/s and, after that,
the power becomes stable at about 19Watts. Interestingly, the
energy is dominated by the speed and acceleration of physical
components, and its drop follows a logarithmic trend.

3) Energy & Peak Power per Object vs Throughput: The
plots in Fig. 14 illustrate the relationship between the appli-
cation throughput for different input configurations, measured
in objects per minute, and two key performance metrics: peak
power consumption (Watts) per object and energy consump-
tion (Joules) per object. The left plot shows that peak power
is slowly increasing within a narrow range of approximately
22.5 to 24 watts, following the variations in the objects’
processing speed. This suggests that the system’s peak power
demands are not significantly influenced by the application
throughput. Moreover, the right plot demonstrates a clear
inverse relationship between processed objects per minute and
energy consumption per object. Specifically, configurations
that increase the number of objects processed per minute lead
to a reduction in energy consumption per object. This trend
was illustrated also in previous experiments, and highlights the
energy efficiency gains achieved at higher processing speeds.

4) Key Takeaways: Analyzing our datasets, we found that:
(i) changes in end-to-end application parameters, such as
belt speed, may slightly affect the median power requirement
without altering the overall power demand distribution; and
(ii) the mean and peak power requirement for a complete
cycle of the end-to-end application remains stable despite
variations in speed of sub-components, but per-round energy
consumption decreases logarithmically with belt speed.

VII. ENERGY AND PERFORMANCE MODELING

In this section, we evaluate the potential use of ML/AI
models to accurately estimate power requirements, predict en-
ergy consumption and latency based on end-to-end application
parameters, and extract insights from feature importance anal-
ysis. Using a combined dataset of 22,384 rows representing
the physical deployment state through 16 features, we trained
20 regression models, including linear regression, tree-based
models, and ensembles, with the support of the PyCaret library.
PyCaret optimized the models via hyperparameter tuning and
provided metrics such as Mean Absolute Error (MAE), Mean
Squared Error (MSE), Root Mean Squared Error (RMSE),
Root Mean Squared Logarithmic Error (RMSLE), and Mean
Absolute Percentage Error (MAPE), while also facilitating
post-training feature importance analysis to explain the results.
Moreover, k-fold cross-validation with stratified sampling was
employed, ensuring balanced representation of configurations
across training and testing sets.

A. Power Requirements Modeling

In this part, we train AI/ML models that take as input the
system’s state, e.g., positioning of the arm, its acceleration, its
velocity, statuses of the belt and the suction (enabled or not),
and predict the system’s instantaneous power demand.

Model [ MAE [ MSE [ RMSE[ R2 [ RMSLE[ MAPE
Models for Power State
Random Forest | 0.69 1.66 1.29 0.78 0.06 0.036
Extra Trees 0.70 1.88 1.37 0.75 0.06 0.036
XGBoost 0.83 1.91 1.38 0.75 0.06 0.044
LightGBM 0.88 1.99 1.41 0.74 0.06 0.046
Decision Tree 0.74 2.60 1.61 0.66 0.07 0.038
Models for Round Energy
Random Forest | 20.14 | 744.99| 27.22 | 0.9722| 0.0537 | 0.0423
XGBoost 20.21 751.06| 27.32 | 0.9720| 0.0537 | 0.0423
Extra Trees 20.23 751.42| 27.33 | 0.9720| 0.0537 | 0.0424
Decision Tree 20.21 751.11| 27.32 | 0.9720| 0.0537 | 0.0424
Gradient Boost | 20.49 760.38 | 27.51 | 0.9717| 0.0544 | 0.0431
Models for Round Duration
Random Forest | 1.0699 | 2.1431| 1.4598| 0.9712| 0.0524 | 0.0423
Extra Trees 1.0714 | 2.1644| 1.4667| 0.9710| 0.0524 | 0.0422
Decision Tree 1.0709 | 2.1643| 1.4666| 0.9710| 0.0524 | 0.0422
XGBoost 1.0728 | 2.1661| 1.4672| 0.9709| 0.0524 | 0.0423
Gradient Boost 1.0904 | 2.1872| 1.4755| 0.9707| 0.0530 | 0.0431
TABLE T

PERFORMANCE METRICS FOR VARIOUS MODELS ACROSS THREE TASKS

1) Modeling Performance: Table 1 illustrates the top-5
models based on their R? and their performance. The best
model is the Random Forest providing a MAPE of approxi-
mately 3.6%, followed by Extra Trees regressor and Extreme
Gradient Boosting (XGBoost) with their MAPEs being 3.6
and 4.5%, respectively. Even if Extreme Trees have the same
MAPE as the Random Forest model, the latter has a higher
R? value, which indicates a better fitting on the predicted data
distribution. Finally, Light Gradient Boosting (LightGBM) and
Decision Tree regressors offer lower performance with 0.74
and 0.66 R? scores, respectively.

2) Key Takeaways: Out of the various models explored
with our experimentation datasets, the tree-based regressors
demonstrate better accuracy on this task, with the Random
Forest regressor providing the best results with a 3.6% MAPE.

B. Energy and Duration Estimators

Having the end-to-end application working on rounds (see
Sec. V-B), next we build models that take as input round’s pa-
rameters (velocity, acceleration, belt speed, and cube weight),
and predict the energy consumption and the round duration.

1) Modeling Performance: Table I also illustrate the top 5
models for energy consumption and round duration. In both
cases, random forest is the best model with its MAPE being
4.23% and R? being 97%. The results are too similar because,
at the computation of the energy, we multiply the duration of
the round by the average power needs of the system. Since
the average power needs of the system are relatively static
(compared to the duration), the dominant parameter seems to
be the duration of the workload. Another observation is that
all of the top-5 models utilize Decision Tree alterations in
order to predict their results. In the case of the energy of each
round, Extreme Gradient Boosting provides the same MAPE
as Random Forest, but the rest of the metrics are slightly
lower (e.g., R? is 0.972 and MAE is 20.21). Extra trees,
Decision Tree, and Gradient Boosting follows with slightly
lower MAPE (4.24%, 4.24%, 4.31%). Generally, all models
provide good results and their differences are negligible. For
the round duration predictors, the Extra Trees model is in the
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Fig. 15. Feature Importance for Duration Model & Energy Model

second place with a MAPE equal to 4.22% and R? equal to
97.10%. Then, we have the Decision Tree, Extreme Gradient
Boosting, and Gradient Boosting models to provide marginally
lower results (e.g., MAPE 4.22%, 4.23%, 4.31%).

2) Key Takeaways: Our methodology generated accurate
models for round energy and duration, with the best of them
(Random Forest) having an error up to 4.23% in both target
metrics, with other models providing comparable results.

C. Feature Importance and Explainability

Next, we extracted from the best model of each case its
feature importance and we depict them in Fig. 15. Interest-
ingly, the most important feature in every case is the arm
acceleration, with its importance being between 0.60 and
0.58, for energy and duration models, respectively. In both
cases, acceleration is followed by the arm velocity with 0.29
importance, and the third feature is the belt speed, with
its importance being 0.08 and 0.11 for energy and duration
models, respectively. Finally, the cube weight is the least
important feature, with almost no contribution. The dominance
of arm acceleration and velocity in feature importance likely
stems from their impact on task timing rather than direct power
requirements. In our setup, acceleration and velocity define
the duration of specific actions, indirectly influencing the
overall energy consumption of an application cycle (energy =
power X time). The relatively constant power demands of
other components amplify this effect, making acceleration
appear as a key determinant of energy consumption.

1) Key Takeaways: The most important feature for both
energy and round duration is the robotic arm acceleration
followed by arm velocity. Belt speed slightly influences the
models and cube weight does not have any contribution.

VIII. CONCLUSION

In this paper we introduce and implement a methodology
to benchmark and analyze CPS applications, focusing on
power needs, energy consumption, and performance. Using
component- and application-based workloads on a robotic-
arm/conveyor belt/smart camera-based system, we collected
and analyzed an extensive dataset, revealing key insights:
parameters like arm velocity, acceleration, and payload have
minimal impact on power consumption, while the end-effector
(pump) is the most power-intensive component. Overall power
consumption was stable, but power needs varied across differ-
ent application operations and energy per application round
decreased logarithmically with higher speed and acceleration.
For AI/ML prediction modeling, our best models accurately
estimated power, energy, and duration, achieving MAPE errors
of ~3.6% for power prediction and 4.23% for energy and
duration prediction. Beyond accurate predictions, our ML

approach helps optimize IIoT setups by identifying power-
hungry components like the suction end-effector, enabling
targeted cost reductions and energy-efficient adjustments.
Our future work includes validating our approach in larger,
real-world industrial setups and integrating domain knowledge
to enhance prediction accuracy. We also plan to explore ad-

vanced ML methods and benchmark against other approaches.
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