
Mapping ORM into the SHOIN/OWL Description Logic
-Towards a Methodological and Expressive Graphical Notation for

Ontology Engineering

Mustafa Jarrar

Department of Computer Science, University of Cyprus
STARLab, Vrije Universiteit Brussels, Belgium??

Abstract. We map ORM into the SHOIN /OWL, which is the most common
description logic in ontology engineering. As SHOIN /OWL is known to be
a good compromise between expressiveness and computational complexity, this
implies that the ORM constraints mapped in this paper are the constraints that are
easier to implement and reason about. Our mappings are implemented as an ex-
tension to the DogmaModeler tool, which uses Racer as a background reasoning
engine. Furthermore, the expressive, methodological, and graphical capabilities
of ORM make it a good candidate for use as a graphical notation for ontology
languages. In this way, industrial experts who are not IT savvy will still be able to
build and view ontologies without needing to know the logic or reasoning foun-
dations underpinning them.

Published As: Mustafa Jarrar: Mapping ORM into the SHOIN/OWL Description Logic -Towards
a Methodological and Expressive Graphical Notation for Ontology Engineering. OTM Work-
shops (ORM’07). LNCS 4805, Springer. 2007 http://www.jarrar.info/Publications/

1 Motivation

In a previous work [15] we have mapped ORM into the DLRifd[4], which is one of
the most expressive description logics. Thanks to this expressivity, we have shown that
all ORM constructs and constraints are decidable, except two rare cases1. DLRifd was
developed indeed to allow the majority of the database primitives to be represented [3],
including n-ary relations, identities, and functional dependencies. However, the prob-
lem is that not all DLRifd’s constructs are implemented by current reasoning engines.

In this paper we map ORM into the SHOIN description logic, which is the logic
underpinning OWL, the standard (W3C recommendation) Ontology Web Language.
Compared with DLRifd, SHOIN was developed as a compromise between expres-
sive power and decidability[12]. This implies that the ORM mappings into SHOIN
are easier to implement and exploit. SHOIN /OWL is supported in almost all reason-
ing engines, and it is the most popular language in ontology engineering. However, the
problem is that not all ORM constructs can be represented in SHOIN /OWL. As we
shall explain later, SHOIN /OWL does not support n-ary relations, external unique-
ness, among other things.

As a result, while the ORM mappings into DLRifd in [15] (which are 27 mapping
rules out of the 29 ORM constructs) show which ORM constraints are decidable, the
ORM mappings into SHOIN /OWL in this paper (which are 22 mapping rules) show
which ORM constraints are easier to implement and reason about, in case performance2

is concerned.
?? Soon the author will be affiliated only with the university of Cyprus.

1 These cases are: a frequency spanning more than one role, and the acyclic ring constraint.
2 Notice that performance is critical mostly for ORM query languages, e.g., ConQuer and RDIL.

Our motivation of mapping ORM into SHOIN /OWL is not only to allow auto-
mated reasoning on ORM schemes [15] [20], but also to enable ORM to be used as
graphical notation for ontology engineering. In many domains the ontology building
process is difficult and time consuming. From practical experience, this is not only be-
cause these domains are not well understood or that a consensus cannot be made about
them. In addition, it is usually difficult for domain experts to understand and use on-
tology languages. Current ontology languages (and tools) require an understanding of
their underpinning logic. The limitation of these types of ontology languages is not that
they lack expressiveness or logical foundations, but their suitability for being used by
subject matter experts. The main requirements for an ontology language to be easily
understood by domain experts are: (1)Its constructs should be close to the language that
domain experts speak and the “logic” they use. For example, it is easier for a lawyer
to say “it is mandatory for each Complaint Problem to be testified by at least one Ev-
idence”, than to say “the cardinality between “Complaint Problem“ and “Evidence“
is (1:0)”. (2)The language should have a graphical notation to enable simple and con-
ceptual modeling. By ”graphical notation” here, we refer to not only visualization as
some ontology tools offer, but also a graphical language that allow domain experts to
construct an ontology using a notation for each concept, relation, and axiom. In other
words, such a language should guide experts through its modeling constructs to “think”
conceptually while building, modifying, or validating an ontology.

ORM has been used commercially for more than 30 years as a database modeling
methodology, and has recently become popular not only for ontology engineering but
also as a graphical notation in other areas such as the modeling of business rules, XML-
Schemes design, data warehouses, requirements engineering, web forms, etc3.

ORM has an expressive and stable graphical notation. It supports not only n-ary
relations and reification, but also a fairly comprehensive treatment of many “practical”
and “standard” business rules types. Furthermore, compared with, for example, EER or
UML, ORM’s graphical notation is more stable since it is attribute-free; in other words,
object types and value types are both treated as concepts. This makes ORM immune to
changes that cause attributes to be remodeled as object types or relationships.

Compared with other modeling notations, ORM diagrams can be automatically ver-
balized into pseudo natural language sentences. In other words, all rules in a given
ORM diagram can be translated into fixed-syntax sentences [25]. For example, the sub-
set constraint in section 4.8 is verbalized as: “If a Person Drives a Car then this Person
must be AuthorizedWith a DrivingLicense”. From a methodological viewpoint, this ver-
balization capability simplifies communication with non-IT domain experts and allows
them to better understand, validate, or build ORM diagrams. It is worthwhile to note
that ORM is the historical successor of NIAM (Natural Language Information Analysis
Method), which was explicitly designed (in the early 70’s) to play the role of a stepwise
methodology, that is, to arrive at the “semantics”of a business application’s data, based
on natural language communication.

ORM’s formal specification and semantics are well-defined (see e.g. [9] [10] [26]
[6]). The most comprehensive formalization in first-order logic (FOL) was carried out
by Halpin in [9] and [10]. Since reasoning on FOL is far too complex, namely unde-
cidable[1], these formalizations do not enable automated reasoning on ORM diagrams.
To enable such automated reasoning, we map all ORM semantics into DLRifd and
SHOIN /OWL Description Logics. Our mapping is based on the ORM syntax and
semantics specified in [9] and [10].

3 Many commercial and academic tools that support ORM solutions are available, including the
ORM solution within Microsoft’s Visio for Enterprise Architects, VisioModeler, NORMA,
CaseTalk, Infagon, and DogmaModeler. DogmaModeler and its support for ontology engi-
neering will be presented later in this paper.

The remainder of the paper is organized as follows. Before presenting the technical
details of our mappings, section 2 illustrates the implementation of these mappings as
an extension to DogmaModeler. In section 3, we give a quick overview of related work.
Section 4 maps ORM into SHOIN /OWL. Finally, the conclusions are presented in
section 5.

2 Implementation

Before presenting the technical details of mapping the ORM semantics into SHOIN
/OWL, this section demonstrates the implementation of these mappings as an exten-
sion to the DogmaModeler [13]. DogmaModeler is an ontology modeling tool based on
ORM. In DogmaModeler, ORM diagrams are mapped automatically into DIG, which
is a DL interface, i.e., an XML serialization of DL statements that most reasoners (such
as Racer, FaCT++, etc) support4. DogmaModeler is integrated with the Racer DL rea-
soning server, which acts as a background reasoning engine. In the screenshots below,
the first window shows an ORM diagram, while the second DIG window shows the Tell
and Ask functionalities. While the purpose of Tell is to map an ORM diagram into a
knowledge base inside Racer, The purpose of Ask is to reason about this knowledge
base. The results of the reasoning about the displayed ORM diagram indicate that the
roles “AffiliatedWith” and “Manages” cannot be satisfied, because the mandatory and
the exclusion constraints are conflicting each other. DogmaModeler currently imple-
ments three types of reasoning services: schema satisfiability, concept satisfiability, and
role satisfiability5. Other types of reasoning services that are being implemented or are
scheduled to be implemented include constraint implications, inference, and subsump-
tion. Please refer to [19] for the technical details of mapping ORM into DIG.

3 Related work

Remark: In this paper, we focus only on the logical aspects of reusing ORM for on-
tology modeling. The conceptual aspects (i.e. ontology modeling versus data modeling)
are discussed in [22] [13] [14] [18] [21], while a case study that uses the ORM notation

4 Notice that DogmaModeler maps ORM into DIG directly, i.e., it does not map ORM into the
OWL syntax at first place. This is because reasoning about an OWL ontology requires mapping
it to DIG anyway. However, a functionality to export OWL syntax in DogmaModeler will be
released the near future.

5 These types of TBox reasoning in DgomaModeler are indeed very fast, we have evaluated this
by reasoning on the CContology, a medium-size ontology about customer complaints[16] (200
concepts, 300 relations, 100 constraints). The reasoning took less than a second.

can be found in [17]. Similar to our work, there have been several efforts to reuse the
graphical notation of UML and EER for ontology modeling. Some approaches, such
as [23], considered this to be a visualization issue and did not consider the underpin-
ning semantics. Others (e.g. [24]) are motivated only to detect consistency problems
in conceptual diagrams. We have found the most decent work in formalizing UML in
[2] and formalizing EER in [1]. These two formalization efforts have studied the FOL
semantics of UML and EER and mapped it into DLRifd. It is also worth noting that
the ICOM tool was one of the first tools to enable automated reasoning with conceptual
modeling. ICOM [7] supports ontology modeling using a graphical notation that is a
mix of the UML and the EER notations. ICOM is fully integrated with the FaCT rea-
soning server, which acts as a background inference engine.

4 Mapping the ORM semantics into SHOIN /OWL

This section presents the ORM semantics in details. Every construct in ORM is dis-
cussed and mapped into SHOIN with a clear motivation for the mapping choices. In
the following paragraphs we give a quick overview of SHOIN .

Description logics are a family of knowledge representation formalisms. Descrip-
tion logics are decidable fragments of first-order logic, associated with a set of auto-
matic reasoning procedures. The basic primitives of a description logic are the notion
of a concept and the notion of a relationship. Complex concept and relationship ex-
pressions can be built from atomic concepts and relationships. For example, one can
define HumanMother as Female u ∃HasChild.Person. The expressiveness of a
description logic is characterized by the set of constructors it offers.

SHOIN is an expressive description logic [12]. It is the logic underpinning OWL,
the standard (W3C recommendation) Ontology Web Language. SHOIN was devel-
oped as a compromise between expressive power and decidability. The SHOIN syntax
is described as follows. If C and D are concepts and R is a binary relation (also called
role), then (C uD), (C tD), (¬C), (∀R.C), and (∃R.C) are also concepts. If R is sim-
ple (i.e., neither transitive nor has any transitive sub relations), then (≤ nR) and (≥ nR)
are also concepts, where n is a non-negative integer. For C and D (possibly complex)
concepts, C v D is called a general concept inclusion. SHOIN also allows hierar-
chies of relations (R v S), transitivity (R+), and inverse (S v R−). A recent extension
[11] of SHOIN (called SROIQ) enables representing more advanced constructs on
relations, such as complex inclusions (e.g. S ◦ R v R), disjointness, negation (¬R),
and local reflexivity (∃R.Self). Please refer to [12] for the semantics of SHOIN , and
[11] for more details on SROIQ.

ORM supports n-ary relationships, where n ≥ 1. Each argument of a relationship
in ORM is called a role. For example, the binary relationship below has two roles,
WorksFor and Employs. The formalization of the general case of an ORM n-ary
relationship[9] is: ∀x1...xn(R(x1...xn) → A1(x1)∧ ...∧An(xn)). SHOIN supports
only binary relationships. As shown in the example below, we represent a role in ORM
as a relationship in SHOIN ; thus to represent a relation in ORM an additional axiom
is required to state that both relations are inverse to each other. Rule R-1 maps ORM
binary relations into SHOIN . C-1 shows the general case of an ORM n-ary relations,
which cannot be represented into SHOIN ; see [15] on how to represent this case using
the DLR description logic.6.

6 There are 22 mapping rules (R-1...R-22) in this paper that maps ORM into SHOIN . The
cases that cannot be mapped into SHOIN but can be mapped into DLR are labeled as
(C-1...C-7). There are 2 cases that lead to undecidability (thus cannot be mapped into any
description logic) which are labeled as Exception-1 and Exception-2.

ORM allows unary roles, which is not allowed in SHOIN . The example below
means that a person may smoke; or in FOL [9]: ∀x(Smokes(x) → Person(x)). The
population of this fact is either true or false. To map ORM unary roles into SHOIN ,
we introduce a new class called BOOLEAN, which takes one of two values: {TRUE,
FALSE}. Each ORM unary fact is seen as a binary relationship in SHOIN , where the
second concept is BOOLEAN. Rule R-2 presents the general case mapping of ORM
unary fact types.

Remark: When mapping an ORM schema into a SHOIN knowledge base: Each role
in ORM should have a unique label within its relation. In case a role label is null, an
automatic label is assigned, such as r1, r2. In case of a relation having the same labels
of its roles, e.g., ColleagueOf/ColleagueOf , new labels are assigned to these roles,
such as: ColleagueOf1, ColleagueOf2.

4.1 Subtypes
Subtypes in ORM are proper subtypes. We say B is a proper subtype of A iff the pop-
ulation of B is always a subset of the population of A, and A 6= B. This implies that
the subtype relationship is acyclic; hence, loops are illegal in ORM. To map this in
SHOIN , we introduce an additional negation axiom for each subtype. For example,
(Man Is-A Person) in ORM is mapped as: (Man v Person)u(Person 6v Man). Rule
R-3 presents the general case mapping of ORM subtypes. Notice that “6v” is not part of
the SHOIN syntax. However, it can be implemented by reasoning on the ABox7 to
make sure that the population of A and the population B are not equal.

4.2 Total Constraint The total constraint (¯) between subtypes means: the population
of the supertype is exactly the union of the population of these subtypes (see rule R-4).

4.3 Exclusive Constraint The exclusive constraint (⊗) between subtypes means the
population of these subtypes is pairwise distinct, i.e. the intersection of the population
of each pair of the subtypes must be empty (see rule R-5).

4.4 Mandatory Constraints
7 Abox is a set of instantiation assertions, or in other words it is the set of instances (i.e. not the

schema, which is called the TBox).

4.4.1 Role Mandatory. The role mandatory constraint is depicted as a dot on the line
connecting a role with an object type. The example below indicates that, in every in-
terpretation of this schema, each instance of the object-type Professor must work for at
least one University. Rule R-6 presents the general case mapping.

4.4.2 Disjunctive Mandatory. The disjunctive mandatory constraint is used to con-
strain a set of two or more roles connected to the same object type. It means that each
instance of the object type’s population must play at least one of the constrained roles.
For example, the disjunctive mandatory in the example below means: each account must
be owned by at least a person, a company, or both. Rule R-7 presents the general case.

4.5 Uniqueness Constraints
4.5.1 Role Uniqueness. Role uniqueness is represented by an arrow spanning a single
role in a binary relationship. As shown in the example, the uniqueness states that, in
every interpretation of this schema, each instance of a Professor must work for at most
one University, i.e. each occurrence is unique. (See rule R-8).

4.5.2 Predicate Uniqueness. An arrow spanning more than a role in a relationship of
arity n represents predicate uniqueness. As shown in the example below, the uniqueness
constraint states that, in any population of this relationship, the person and subject pair
must be unique together. The general case of this constraint C-2 is formalized in FOL[9]
as: ∀x1, .., xi, .., xn, y(R(x1, .., xi, .., xn) ∧ R(x1, .., y, xi+1, .., xn) → xi = y). This
case cannot be represented in SHOIN , but it can be represented using the notion of
functional dependency in DLRidf (See [15]).

4.5.3 External Uniqueness. External uniqueness constraints (denoted by “U”) apply to
roles from different relationships. The roles that participate in such a uniqueness con-
straint uniquely refer to an object type. As shown in the example below, the combination
of (Author, Title, Edition) must be unique. In other words, different values of (Author,
Title, Edition) refer to different Books. The formalization of the general case [9] of this
constraint(see C-3) is: ∀x1, x2, y1..yn(R1(x1, y1) ∧ ... ∧ Rn(x1, yn) ∧ (R1(x2, y1) ∧ ... ∧
Rn(x2, yn) → x1 = x2). Also this case cannot be represented in SHOIN , but it can be
represented using the notion of identity in DLRidf (See [15]).

4.6 Frequency Constraints
4.6.1 Role Frequency Constraints. A frequency constraint (min −max) on a role is
used to specify the number of occurrences that this role can be played by its object-
type. A frequency constraint on the ith role of an n-ary relation is formalized [9] as:
∀x[x ∈ R.i → ∃n,mz(R(z) ∧ zi = x)]. For example, the frequency constraint in the
example below indicates that if a car has wheels, then it must have at least 3 and at most
4 wheels. We map this constraint by conjugating⊥ to the (min−max) cardinality, i.e.
either there is no occurrence, or it must be within the (min−max) range, which is the
exact meaning in ORM. Rule R-9 presents the general case mapping.

4.6.2 Multiple-role Frequency Constraints. A multiple-role frequency constraint spans
more than one role (see the second example). This constrain means that, in the popu-
lation of this relationship, A and C must occur together (i.e. as a tuple) at least 3 times
and at most 6 times. Up to our knowledge, such a cardinality constraint cannot be for-
malized in description logic. However, this constraint is extremely rare in practice, [10]
presents an example of this constraint and shows that it can be remodeled and achieved
by a combination of uniqueness and single-role frequency constraints, which are in-
deed cheaper to compute and reason about. Exception-1 presents the general case of a
multiple-role frequency constraint and its formalization in first order logic [9].

4.7 Value Constraints
The value constraint in ORM indicates the possible values (i.e. instances) for an object
type. A value constraint on an object type A is denoted as a set of values {s1, ..., sn}
depicted near an object type, which indicate that (∀x[A(x) ≡ x ∈ {s1, ..., sn}]) [9].
Value constraints can be declared only on lexical object types LOT, and values should
be well-typed, i.e. its datatype should be either a string such as {′be′,′ 39′,′ it′,′ 32′} or
a number such as {1, 2, 3}. Notice that quotes are used to distinguish string values from
number values. If a LOT has no value constraint on it, then it is, by default, seen as
a subtype of LEXICAL. If it has a value constraint, it must be a subtype of either the
STRING or the NUMBER classes.

4.8 Subset Constraint
The subset constraint (→) between two roles is used to restrict the population of these
roles as one is a subset of the other. The first example below indicates that each person
who drives a car must be authorized by a driving license: ∀x(x ∈ R2.Drives →
x ∈ R1.AuthorizedWith) [9]. Rule R-12 presents the general case mapping into
SHOIN . The second example indicates a subset between two relations, i.e., the set of
tuples of the subsuming relation is a subset of the tuples of the subsumed relation (see
R-13).

ORM also allows subset constraints between tuples of (not necessarily contigu-
ous) roles as shown in case C-3, where each ith and jth roles must have the same
type. The population of the set of the jth roles is a subset of the population of the set
of the ith roles. The FOL formalization of the general case of this constraint [9] is :
∀x1...xk[∃y(R2(y) ∧ x1 = yi1 ∧ ... ∧ xk = yik)→ ∃z(R1(z) ∧ x1 = zj1 ∧ ... ∧ xk = zjk)].
This type of constraints cannot be represented in SHOIN , not only because SHOIN
does not support n-ary relations but also because SHOIN does not support projections
on relations. See our mappings of this constraint into DLRLite [15].

4.9 Equality Constraint
Similar to the subset constraint, the equality constraint (↔) between roles or relations
are mapped as shown in rules R-14 and R-15 respectively.

4.10 Exclusion Constraint
Similar to the subset and quality constraints, the exclusion constraint (⊗)between roles
or relations are mapped as shown in rules R-16 and R-17.

4.11 Ring Constraints
ORM allows ring constraints to be applied to a pair of roles (i.e. on binary relations) that
are connected directly to the same object-type, or indirectly via supertypes. Six types
of ring constraints are supported by ORM.
4.11.1 Symmetric (sym). This constraint states that if a relation holds in one direction,
it should also hold on the other, such as “colleague of”. R is symmetric over its popu-
lation iff ∀x, y[R(x, y) −→ R(y, x)]. The example shown in rule R-18 illustrates the

symmetric constraint and its general case mapping into SHOIN .
4.11.2 Asymmetric (as). Asymmetric is opposite of symmetric. If a relation holds in
one direction, it cannot hold on the other; e.g., “wife of” and “parent of”. R is asym-
metric over its population iff ∀xy, R(x, y) −→ ¬R(y, x) The example shown in rule
R-19 illustrates the asymmetric constraint and its general case mapping into SHOIN .
4.11.3 Antisymmetric (ans). The antisymmetric constraint is also an opposite to the
symmetric constraint, but not exactly the same as asymmetric; the difference is that all
asymmetric relations must be irreflexive, which is not the case for antisymmetric. R
is antisymmetric over its population iff ∀xy, x 6= y ∧ R(x, y) −→ ¬R(y, x) (see the
example in rule R-20). To map this constraint we use the concept (∃R.Self) that has
been introduced recently to the SROIQ description logic [11]. The semantics of this
concept simply is: (∃R.Self)I = {x |< x, x >∈ RI}.
4.11.4 Irreflexive (ac). This constraint states that an object cannot participate in a re-
lation with himself. For example, a person cannot be the “parent of” himself. R is Ir-
reflexive over its population iff ∀x,¬SisterOf(x, x). As discussed above, mapping
this constraint into DL is also possible using the concept ∃R.Self . See rule R-21.
4.11.5 Acyclic (ac). The acyclic constraint is a special case of the irreflexive constraint;
for example, a Person cannot be directly (or indirectly through a chain) ParentOf him-
self. R is acyclic over its population iff ∀x[¬Path(x, x)]. In ORM, this constraint is pre-
served as a difficult constraint. “Because of their recursive nature, acyclic constraints
maybe expensive or even impossible to enforce in some database systems.”[10]. In-
deed, even some highly expressive DLs support notions such as n-tuples and recursive
fixed-point structures, from which one can build simple lists, trees, etc. However, to our
knowledge, acyclicity with any depth on binary relations cannot be represented.
4.11.6 Intransitive (ac). A relation R is intransitive over its population iff ∀x, y, z[R(x, y)∧
R(y, z) −→ ¬R(x, z)]. If Person X is FatherOf Person Y , and Y is FatherOf Z, then
it cannot be that X is FatherOf Z. We map this constraint using the notion of role-
composition. The composition of the two relations R and S (written as R ◦ S) is a
relation, such that: RI ◦ SI = {(a, c)|∃b.(a, b) ∈ RI ∧ (b, c) ∈ SI}. Hence, any composi-
tion with R itself (R ◦R) should not imply R, see rule R-22.

4.12 Objectified Relations An objectified relation in ORM is a relation that is regarded
as an object type, receives a new object type name, and is depicted as a rectangle around
the relation. In the following example, each (Person, Subject) enrollment is treated as
an object type that scores a rating. The general case of predicate objects (see C-7) in
ORM is formalized in [9] as: ∀x[A(x) ≡ ∃x1, ..., xn(R(x1, ..., xn) ∧ x = (x1, ..., xn))]. In

addition to this axiom, it is assumed that there must be a uniqueness constraint spanning
all roles of the objectified relation, although it is not explicitly stated in the diagram,
see [10] for more details. Objectified relations cannot be represented in SHOIN as
the additional uniqueness axiom cannot be represented in SHOIN ; See [15] on how
to represent objectified relations in DLR.

5 Conclusions and future work

We have mapped an extensive set of the ORM constructs into SHOIN , which is the
most poplar description logic and the logic underpinning the standard Ontology Web
Language (OWL). Although SHOIN does not allow all ORM constructs to be rep-
resented, but as SHOIN is known to be a good a compromise between expressive
power and decidability/computation, this implies that this set of ORM (i.e. the 22 map-
ping rules) is easy to implement and reason about. Indeed, ORM based query languages
would inherit this compromise in their expressiveness and query processing.

The mappings presented in this paper would not only empower ORM with reasoning
services, but they also empower SHOIN /OWL itself with an expressive and method-
ological graphical notation. Using ORM as a graphical notation to model SHOIN /OWL
ontologies would simplify the ontology modeling process, specially because ORM -
unlike other graphical notations- is an expressive and attribute-free language, and can
be verbalized into natural language sentences. Indeed, we experienced this power of
ORM in modeling the CContology (an e-business ontology of customer complaints),
which we have developed with about 50 lawyers and domain experts (see [16]). These
people were able to build this ontology with only 2 tutorials (each is 1 hour) about
ORM, and without needing to know the underpinning logic behind this ontology.

In the future, we plan to study the reasoning complexity of each ORM constraint;
extend the ORM graphical notation to include some SHOIN notions that are not sup-
ported in ORM, such as, the composition of relations, transitive closure, equivalent-
Class, datatypes, and intersection and union between relations. We also plan to im-
plement additional types of reasoning services, specifically constraint implications and
inferencing; and, develop a functionality in DogmaModeler to export and import OWL,
experiments in [5] are valuable for this functionality.

From our experience, the 22 ORM constructs in this paper are the most popular in
ontology engineering. However, we plan to run an experiment on the Swoogle8 ontolo-
gies to know how much ORM is capable of representing these ontologies. We expect
ORM to be powerful in domains such as Business, Finance, and Human Resources,
where ontologies are taxonomies or knowledge schemes. ORM (and even SHOIN)
might not be powerful enough in domains such as Life Sciences, where axiomatiza-
tions are very fine-grained. See our report [8] on future OWL extensions.

Acknowledgment: I am indebted to Enrico Franconi for his valuable suggestions and
contributions, and to Sergio Tessaris, Rob Shearer, and Terry Halpin for their valu-
able comments and feedback on some parts of this paper. I wish to thank Diego Cal-
vanese, Maurizio Lenzerini, Robert Meersman, Alessandro Artale, Erik Proper, Mari-
jke Keet, Ian Horrocks, and Stijn Heymans for their comments and suggestions during
this research. This research is partially supported by the Knowledge Web project (FP6-
507482) and the SEARCHiN project (FP6-042467, Marie Curie Actions).

8 http://swoogle.umbc.edu/ (visited Septemebr 2007)

References

1. Franz Baader, Diego Calvanese, Deborah McGuinness, and Daniele Nardiand Peter Patel-
Schneider. The Description Logic Handbook. Cambridge University Press, 2003.

2. Daniela Berardi, Diego Calvanese, and Giuseppe De Giacomo. Reasoning on uml class
diagrams. Artificial Intelligence, 168(1):70–118, 2005.

3. D. Calvanese, G. De Giacomo, and M. Lenzerini. On the decidability of query containment
under constraints. Proc. of the ACM SIGACT-SIGMOD-SIGART, pages 149–158, 1998.

4. Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. Identification constraints
and functional dependencies in description logics. In the IJCAI’01, pages 155–160, 2001.

5. Bach D., Meersman R., Spyns P., and Trog D. Mapping owl-dl into orm/ridl, (to appear). In
OTM 2007 Workshops, proceeding of ORM’07. Springer Verlag, November 2007.

6. Olga de Troyer. A formalization of the binary object-role model based on logic. Data and
Knowledge Engineering, 19:1–37, 1996.

7. Enrico Franconi and Gary Ng. The i.com tool for intelligent conceptual modelling. In 7th
Int. WS on Knowledge Representation meets Databases. Springer, 2000.

8. Stoilos G, Stamou G, Shearer S, Horrocks I, Pan J, and Jarrar M. Requirements for further
language extensions, d2.5.4. Technical report, KnowledgeWeb-IST-2004-507482, 2006.

9. Terry Halpin. A logical analysis of information systems: static aspects of the data-
orientedperspective. PhD thesis, University of Queensland, Brisbane, Australia, 1989.

10. Terry Halpin. Information Modeling and Relational Databases. Morgan-Kaufmann, 2001.
11. Ian Horrocks, Oliver Kutz, and Ulrike Sattler. The even more irresistible SROIQ. In Proc.

of the 10th Int. Conf. on Principles of Knowledge Representation and Reasoning, 2006.
12. Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Practical reasoning for expressive descrip-

tion logics. In Proceedings of the (LPAR’99), pages 161–180. Springer, 1999.
13. Mustafa Jarrar. Towards Methodological Principles for Ontology Engineering. PhD thesis,

Vrije Universiteit Brussel, Brussels, Belgium, May 2005.
14. Mustafa Jarrar. Towards the notion of gloss, and the adoption of linguistic resources informal

ontology engineering. In Proceedings of the 15th international conference on World Wide
Web (WWW2006), pages 497–503, Edinburgh, Scotland., May 2006. ACM Press.

15. Mustafa Jarrar. Towards automated reasoning on orm schemes. In Proceedings of the 26th
International Conference on Conceptual Modeling (ER 2007). Springer, 2007.

16. Mustafa Jarrar. Towards Effectiveness and Transparency in e-Business Transactions, An
Ontology for Customer Complaint Management, chapter 8. Idea Group Inc., 2007.

17. Mustafa Jarrar. Towards Effectiveness and Transparency in e-Business Transactions, An
Ontology for Customer Complaint Management. Idea Group Inc., 2007.

18. Mustafa Jarrar, Jan Demey, and Robert Meersman. On using conceptual data modeling for
ontology engineering. Journal on Data Semantics (Special issue on Best papers from the
ER/ODBASE/COOPIS2002 Conferences.), 2800:185–207, October 2003.

19. Mustafa Jarrar and Mohammed Eldammagh. Reasoning on orm using racer. Technical
report, Vrije Universiteit Brussel, Brussels, Belgium, August 2006.

20. Mustafa Jarrar and Stijn Heymans. Towards pattern-based reasoning for friendly ontology
debugging. International Journal on Artificial Intelligence Tools, 17(4), August 2008.

21. Mustafa Jarrar and Robert Meersman. Formal ontology engineering in the dogma approach.
In Robert Meersman and Zahir Tari, editors, Proceedings of the International Conference on
Ontologies, Databases andApplications of Semantics (ODBase 02)., volume LNCS 2519,
pages 1238–1254. Springer Verlag, 2002.

22. Mustafa Jarrar and Robert Meersman. Ontology Engineering -The DOGMA Approach, vol-
ume 1 of Advances in Web Semantics, chapter 3. Springer, 2008.

23. P., S. Cranefield, L. Hart, M. Dutra, K.Baclawski, M. Kokar, and J. Smith. Uml for ontology
development. Knowl. Eng. Rev., 17(1):61–64, 2002.

24. J. Simmonds and M.C. Bastarrica. A tool for automatic uml model consistency checking.
Proc of the IEEE/ACM on Automated software engineering, pages 431–432, 2005.

25. Halpin T. and Curland M. Automated verbalization for orm 2. In OTM’06 Workshops.
26. Proper-H. van der Weide T ter Hofstede, A. Formal definition of a conceptual language for

the description and manipulationof information models. Info Sys, 18(7):471–495, 1993.

