
Towards Automated Reasoning on ORM Schemes
Mapping ORM into the DLRidf Description Logic

Mustafa Jarrar�

STARLab, Vrije Universiteit Brussels, Belgium
Department of Computer Science, University of Cyprus

Abstract. The goal of this article is to formalize Object Role Modeling (ORM)
using the DLR description logic. This would enable automated reasoning on the
formal properties of ORM diagrams, such as detecting constraint contradictions
and implications. In addition, the expressive, methodological, and graphical ca-
pabilities of ORM make it a good candidate for use as a graphical notation for
most description logic languages. In this way, industrial experts who are not IT
savvy will still be able to build and view axiomatized theories (such as ontolo-
gies, business rules, etc.) without needing to know the logic or reasoning foun-
dations underpinning them. Our formalization in this paper is structured as 29
formalization rules, that map all ORM primitives and constraints into DLR, and
2 exceptions of complex cases. To this end, we illustrate the implementation of
our formalization as an extension to DogmaModeler, which automatically maps
ORM into DIG and uses Racer as a background reasoning engine to reason about
ORM diagrams.

1 Motivation and Background

This article proposes to formalize ORM (Object Role Modeling [8]) using the DLR de-
scription logic. This would enable automated reasoning to be carried out on the formal
properties of ORM diagrams, such as detecting constraint contradictions and implica-
tions. In addition, the expressive, methodological, and graphical power of ORM make
it a good candidate for use as a graphical notation for most description logic languages.
With this, non-IT trained industrial experts will be able to build axiomatized theories
(such as ontologies, business rules, etc.) in a graphical manner, without having to know
the underpinning logic or foundations.

ORM is a conceptual modeling method that allows the semantics of a universe of
discourse to be modeled at a highly conceptual level and in a graphical manner. ORM
has been used commercially for more than 30 years as a database modeling methodol-
ogy, and has recently becoming popular not only for ontology engineering but also as a
graphical notation in other areas such as the modeling of business rules, XML-Schemes,
data warehouses, requirements engineering,web forms, etc1.
� The author is currently moving from Brussels to Nicosia and soon will be affiliated only with

the university of Cyprus.
1 Many commercial and academic tools that support ORM solutions are available, including the

ORM solution within Microsoft’s Visio for Enterprise Architects, VisioModeler, NORMA,
CaseTalk, Infagon, and DogmaModeler. DogmaModeler and its support for ontology engi-
neering will be presented later in this paper.

C. Parent et al. (Eds.): ER 2007, LNCS 4801, pp. 181–197, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

182 M. Jarrar

ORM has an expressive and stable graphical notation. It supports not only n-ary
relations and reification, but as will be shown in this article it supports a fairly com-
prehensive treatment of many “practical” and “standard” business rules and constraint
types. Furthermore, compared with, for example, EER or UML, ORM’s graphical nota-
tion is more stable since it is attribute-free; in other words, object types and value types
are both treated as concepts. This makes ORM immune to changes that cause attributes
to be remodeled as object types or relationships.

ORM diagrams can be automatically verbalized into pseudo natural language sen-
tences. In other words, all rules in a given ORM diagram can be translated into fixed-
syntax sentences. For example, the mandatory constraint in section 2.3 is verbalized
as: “Each Professor must WorksFor at least one University”. The subset constraint in
section 2.8 is verbalized as: “If a Person Drives a Car then this Person must be Au-
thorizedWith a DrivingLicense”. Additional explanation can be found in [21] and [11],
which provide sophisticated and multilingual verbalization templates. From a method-
ological viewpoint, this verbalization capability simplifies communication with non-IT
domain experts and allows them to better understand, validate, or build ORM diagrams.
It is worthwhile to note that ORM is the historical successor of NIAM (Natural Lan-
guage Information Analysis Method), which was explicitly designed (in the early 70’s)
to play the role of a stepwise methodology, that is, to arrive at the ”semantics” of a
business application’s data based on natural language communication.

Indeed, the graphical expressiveness and the methodological and verbalization capa-
bilities of ORM makes it a good candidate for a graphical notation for modeling and
representing ontologies and their underpinning logic.

ORM’s formal specification and semantics are well-defined (see e.g. [7][26][27][5]).
The most comprehensive formalization in first-order logic (FOL) was carried out by
Halpin in [7]. Later on, some specific portions of this formalization were reexamined,
such as subtypes[12], uniqueness[9], objectification[10], and ring constraints [8]. Since
reasoning on first order logic is far complex, namely undecidable[1], the above formal-
izations do not enable automated reasoning on ORM diagrams, which comprises e.g.
detection of constraint contradictions, implications, and inference.

In [19] and [20], we presented a reasoning approach based on heuristics (called
pattern-based reasoning) for detecting the common constraint contradictions in ORM.
This approach was designed to be user friendly and easy to apply in interactive mod-
eling. It indicates not only constraint contradictions, but also a clear explanation about
the detected contradictions, the causes, and suggestions on how to resolve these contra-
dictions. Although this reasoning approach is easy to apply specially by non-IT domain
experts, in comparison with DL-based reasoning, but it cannot be complete. In other
words, there is no guarantee that by passing the predefined patterns, that the ORM
schema is satisfiable. Please refer to [20] for more details on this approach and for
a comparison (and a synergy) between the pattern-based and the DL-based reasoning
mechanisms.

Enable automated and complete reasoning can only be done in description logic.
This papers maps all ORM primitives and constraints into the DLRifd Description
Logic, which is an expressive and decidable fragment of first-order logic. Our mapping
is based on the ORM syntax and semantics specified in [7] and [8].

Towards Automated Reasoning on ORM Schemes 183

The remainder of the paper is organized as follows. In the following section, we give
a quick overview about the DLR description logic. Section 2 presents the complete
formalization of ORM using DLR. In section 3, we illustrate the implementation of
this formalization as an extension to DogmaModeler and present some related work.
Finally, the conclusions and directions for future work are presented in section 4.

Remark: In this paper, we focus only on the logical aspects of reusing ORM for ontol-
ogy modeling. The conceptual aspects (i.e. ontology modeling versus data modeling)
are discussed in [15] [17] [22] [16], while a case study that uses the ORM notation can
be found in [23].

The DLR Description Logic
Description logics are a family of logics concerned with knowledge representation. A
description logic is a decidable fragment of first-order logic, associated with a set of
automatic reasoning procedures. The basic constructs for a description logic are the
notion of a concept and the notion of a relationship. Complex concept and relationship
expressions can be constructed from atomic concepts and relationships with suitable
constructs between them. The expressiveness of a description logic is characterized by
the constructs it offers. The simplest description logic is called FL−[1], which offers
only the intersection of concepts, value restrictions, and a simple form of existential
quantification. In other words, a TBox in FL− is built as a set of inclusion assertions of
the following forms: C, D → A | C � D | ∀R.C | ∃R.

In this paper, we use the DLRifd description logic[3], which is an extension to
DLR. DLRifd is an expressive description logic, and allows the majority of the prim-
itives and constraints used in data modeling to be represented [1], including n-ary
relations, identification, and functional dependencies. The basic constructs of DLR
are concepts and n-ary relations (n ≥ 2). Let A denote an atomic concept, and P
an atomic n-ary relation. Arbitrary concepts, denoted by C in DLR and arbitrary
relations denoted by R, can be built according to the following syntax respectively:
C ::= �1 | A | ¬C | C1�C2 | (≤ k[i]R), and R ::= �n | P | (i/n : C) | ¬R | R1�R2,
where n denotes the arity of the relations P, R, R1 and R2, i denotes a component of
a relationship, and k denotes a non-negative integer. Relations in DLR are well-typed,
which means that only relations of the same arity n can be used in expressions like
R1 �R2 and i ≤ n whenever i denotes a component of a relation of arity n. The follow-
ing are abbreviations: ⊥ for ¬�1; C1
C2 for ¬(¬C1 �¬C2); C1 ⇒ C2 for ¬C1
C2;
(≤ k[i]R) for ¬(≤ k − 1 [i]R); ∃[i]R for (≥ 1[i]R); ∀[i]R for ¬∃[i]¬R; and (i : C)
for (i/n : C) if n is clear from the context.

The semantics of DLR is specified as follows. An interpretation I is constituted
by an interpretation domain �I , and an interpretation function .I that assigns to each
concept C a subset CI of �I and to each R of arity n a subset RI of (�I)n. t[i] denotes
the i-th component of tuple t.

�I
n ⊆ (�I)n �I

1 = �I

P I ⊆ �I
n AI ⊆ �I

(i/n : C)I = {t ∈ �I
n|t[i] ∈ CI} (¬C)I = �I\CI

(¬R)I = �I
n\RI (C1 � C2)I = CI

1 ∩ CI
2

(R1 � R2)I = RI
1 ∩ RI

2 (≤ k[i]R)I = {a ∈ �I | �{t ∈ RI |t[i] = a} ≤ k}

184 M. Jarrar

A DLR TBox is constituted by a finite set of inclusion assertions, where each
assertion has the form: C1 � C2 or R1 � R2 , with R1 and R2 of the same ar-
ity. Beside these inclusion assertions in DLR, DLRifd allows identification id and
functional dependencies fd assertions to be expressed, which have the following form:
(id C [r1]R1, ..., [rn]Rn) and (fd R r1, ..., rh → rj). Furthermore, another use-
ful extension that has been recently included in DLR-Lite [2] which we shall use in
this paper, is inclusion between projections of relations, which has the following form:
R2[rj1 , ..., rjk

] R1[ri1 , ..., rik
]. Inclusion, identification id and functional dependen-

cies fd shall be explained later in this paper.

2 The Formalization of ORM Using DLRifd

2.1 Object-Types

ORM allows a domain to be modelled by using object-types that play certain roles.
There are two kinds of object-types in ORM: Non-Lexical Object-Types (NOLOT) and
Lexical Object-Types (LOT). Both object-types are depicted as ellipses in ORM’s nota-
tion. a LOT is depicted as a dotted-line ellipse and a NOLOT is a solid-line ellipse2. We
represent both NOLOTs and LOTs as classes in DLR. To distinguish between NOLOT
and LOT in a DLR knowledge base, we introduce four classes: LEXICAL, STRING,
NUMBER, and BOOLEAN. The class LEXICAL is considered to be a super-type of
the other three classes, while the other three classes are considered to be disjoint. Un-
less specified, each LOT is mapped by default into the class STRING. We shall return
to this issue later in the paper.

2.2 Roles and Relationships

ORM supports n-ary relationships, where n ≥ 1. Each argument of a relationship in
ORM is called a role. The examples below show binary and ternary relationships. For
example, the binary relationship has two roles, WorksFor and Employs. The formal-
ization of the general case of an ORM n-ary relationship[7] is: ∀x1...xn(R(x1...xn) →
A1(x1) ∧ ... ∧ An(xn)). DLR supports n-ary relationships, where n ≥ 2. Each argu-
ment of a relationship in DLR is called a component [1]. As shown in the examples
below, we represent a relationship in ORM as a relationship in DLR; thus, a role in
ORM is seen as a component of a relationship in DLR.

For people who are familiar with ORM, the formalization of ORM roles and rela-
tionships shown in the examples seems to be trivial. However, people who are familiar
with description logics may not find it intuitive. This is because, unlike ORM, the com-
ponents of relationships in description logics are typically not used and do not have
linguistic labels. For example, one expects to see the binary relationship in the exam-
ple below represented in description logic as, Person ∀WorksFor.University,
and University ∀Employs.Person. In this case, both WorksFor and Employs

2 Although they are not exactly similar, the notions of LOT and NOLOT in ORM can be, for the
sake of simplicity, compared to the concepts of ’Attribute’ and ’Class’ in UML.

Towards Automated Reasoning on ORM Schemes 185

are two different relationships. This formalization requires an additional axiom to state
that both relations are inverse to each other: WorksFor Employs−. ORM schemes
formalized in this way are not only lengthy, but also become more complex when re-
lationships other than binary are introduced. As will be shown later, our method of
formalizing ORM roles and relationships will make the formalization of the ORM
constraints intuitive and more elegant. Rule-1 formalizes ORM n-ary relations, where
n ≥ 2.

Remark: When mapping an ORM schema into a DLR knowledge base: Each role in
the ORM schema should have a unique label within its relationship. In case a role label
is null, an automatic label is assigned, such as r1, r2, etc. In case of a relationship
having the same labels of its roles, such as ColleagueOf/ColleagueOf , new labels
are assigned to these roles, such as: ColleagueOf − r1, ColleagueOf − r2. Usually,
ORM relationships do not have labels; thus, a unique label is automatically assigned,
such as: R1, R2, etc.

ORM unary roles. Unlike DLR, ORM allows the representation of unary relations.
The relationship in the example below means that a person may smoke. The population
of this role is either true or false. In first-order logic, this fact can be formalized [7] as:
∀x(Smokes(x) → Person(x)). To formalize ORM unary roles in DLR,we introduce
a new class called BOOLEAN, which can take one of two values: either TRUE or
FALSE. Each ORM unary fact is seen as a binary relationship in DLR, where the
second concept is BOOLEAN. Rule-2 presents the general case formalization of ORM
unary fact types.

2.3 Mandatory Constraints

There are two kinds of mandatory constraints in ORM: roles and disjunctive.

Role Mandatory. The role mandatory constraint in ORM is depicted as a dot on the
line connecting a role with an object type. The example below indicates that, in every
interpretation of this schema, each instance of the object-type Professor must work
for at least one University. Rule-3 presents the general case formalization of the role
mandatory constraint.

186 M. Jarrar

Disjunctive Mandatory. The disjunctive mandatory constraint is used to constrain a set
of two or more roles connected to the same object type. It means that each instance of
the object type’s population must play at least one of the constrained roles. For example,
the disjunctive mandatory in the example below means that each account must be owned
by at least a person, a company, or both. Rule-4 presents the general case formalization
of a disjunctive mandatory constraint.

2.4 Uniqueness Constraints

We distinguish between three types of uniqueness constraints in ORM: role uniqueness,
predicate uniqueness, and external uniqueness.

Role Uniqueness. Role uniqueness is represented by an arrow spanning a single role in
a binary relationship. As shown in the example below, the uniqueness constraint states
that, in every interpretation of this schema, each instance of a Professor must work for
at most one University, i.e. each occurrence is unique. Rule-5 presents the general case
formalization of the role uniqueness constraint.

Predicate Uniqueness. An arrow spanning more than a role in a relationship of arity
n represents predicate uniqueness. As shown in the example below, the uniqueness
constraint states that, in any population of this relationship, the person and subject pair
must be unique together. The general case of this constraint is formalized in FOL[7]
as: ∀x1, .., xi, .., xn, y(R(x1, .., xi, .., xn) ∧ R(x1, .., y, xi+1, .., xn) → xi = y). We
formalize this uniqueness constraint using the notion of functional dependency fd in
DLRifd [3], which has the form: (fd R r1, ..., rh → rj); where R is a relation, and
r1, ..., rh, rj denote roles in R. The notion of functional dependency requires two tuples
of a relationship that agree on the constrained components r1, ..., rh to also agree on the
un-constrained component rj . The set of the constrained roles (on the the left-side of
the fd assertion) uniquely determines the un-constrained role (which is on the the right
side of the assertion).

Towards Automated Reasoning on ORM Schemes 187

Notice that our formalization excludes the following cases:

– Role uniqueness in a binary relationship: Although it is theoretically possible to use
the above formalization in case of a binary relationship, we keep the formalization
of this case separate (see rule-5) for implementation reasons. This is because: 1)
rule-5 is supported in most description logic reasoners while rule-6 is not imple-
mented in any reasoner yet, and 2) reasoning on functional dependencies cannot be
performed on TBox only. In other words, as functional dependencies in DLRifd

are seen as extra assertions (i.e. outside the TBox), the reasoning process to check
whether the fd assertions are violated is reduced to ABox satisfiability. If there is
no ABox, one cannot reason over the fd assertions.

– A single role uniqueness in an n−ary relationship where (n > 2), since it is always
a non-elementary fact type. This case is considered an illegal constraint in ORM
(see [8], chapter 4), with [3] proving that it leads to undecidability in reasoning.
Therefore, this case is ruled out in our formalization.

External Uniqueness. External uniqueness constraints (denoted by “U”) apply to roles
from different relationships. The roles that participate in such a uniqueness constraint
uniquely refer to an object type. As shown in the example below, the combination of
(Author, Title, Edition) must be unique. In other words, different values of (Author,
Title, Edition) refer to different Books. Formalizing this constraint in description logic
is possible using the notion of identity id in DLRifd [3]. In case the external uniqueness
is defined on binary relationships and the common concept to be constrained is directly
connected to these relations, the formalization is direct. In other cases, the formalization
becomes more complex. We shall try to simplify and explain this complexity in the
following.

The notion of identity id in DLRifd has the form: (id C [r1]R1, ..., [rn]Rn), where
C is a concept, each Ri is a relation, and each ri is a role in Ri that is connected to C.
The identity id in DLRifd states that two instances of the concept C cannot agree on
the participation in R1, ..., Rn via their roles r1, ..., rn, respectively. See [3] for more
details on this. In ORM, the intuition of external uniqueness is that the combination of
r1, ..., rn in R1, ..., Rn respectively must be unique. The formalization of the general
case [7] of this constraint (see the figure in rule-7) is: ∀x1, x2, y1..yn(R1(x1, y1) ∧ ... ∧
Rn(x1, yn) ∧ (R1(x2, y1) ∧ ... ∧ Rn(x2, yn) → x1 = x2).

This allows one to define uniqueness on roles that are not directly connected to a
common concept. For example, although the external uniqueness in the second example
below means that the combination of {CountryCode, CityCode} must be unique, it does
not tell us that the combination is unique for which concept. In other words, the notion
of “common concept” is not explicitly regarded, neither in the ORM graphical notation
nor in its underlying semantics [7] [9] [26]. To interpret the external uniqueness (i.e. the

188 M. Jarrar

semantics) in this example, a join path should be performed on R4 − R1 and R5 − R2.
In other words, although the notion of “common concept” does not exist in ORM, it is
assumed that there must be a join path between the constrained roles. If this path cannot
be constructed, then the external uniqueness is considered illegal [9], i.e. an error in the
ORM schema. The construction of such join paths becomes more complex (even for
human eyes) in large schemes or when objectified (i.e. reified) predicates are involved.
[27] shows many cases of complex external uniqueness.

We formalize the general case of external uniqueness using the notion of id in
DLRifd, but we use the concept Top as the common concept C (see rule-7). As shown
in the examples, the formalization (using Top) means that any two individuals must
agree on their participation in roles: [WrittenBy]R1, [Has]R2 and [Has]R3. Although
the use of the Top concept yields a simple and elegant formalization, intensive ABox
reasoning may be required. In practice, we recommend using the Uniquest algorithm
[27]. This algorithm is designed to compute the shortest join path connecting the con-
strained roles for an external uniqueness constraint, no matter what its level of com-
plexity is. The result is a derived relation, which represents the shortest join path. This
derived relation can then be used instead of the concept Top in rule-7.

2.5 Frequency Constraints

In the following we formalize the Frequency Constraints. We distinguish between fre-
quency constraints that span 1) a single role, which we call “role frequency” constraints,
and 2) multiple roles, which we call “multiple-role frequency” constraints.

Role Frequency Constraints. A frequency constraint (min − max) on a role is used
to specify the number of occurrences that this role can be played by its object-type. A
frequency constraint on the ith role of an n-ary relation is formalized [7] as: ∀x[x ∈
R.i → ∃n,mz(R(z) ∧ zi = x)]. For example, the frequency constraint in the exam-
ple below indicates that if a car has wheels, then it must have at least 3 and at most 4
wheels. We formalize this constraint by conjugating ⊥ to the (min − max) cardinal-
ity, i.e. either there is no occurrence, or it must be within the (min−max) range, which

Towards Automated Reasoning on ORM Schemes 189

is the exact meaning in ORM. Rule-8 presents the general case mapping rule of a role
frequency constraint.

Multiple-role Frequency Constraints. A multiple-role frequency constraint spans
more than one role (see the second example). This constrain means that, in the pop-
ulation of this relationship, A and C must occur together (i.e. as a tuple) at least 3 times
and at most 6 times. Up to our knowledge, such a cardinality constraint cannot be for-
malized in description logic. However, this constraint is extremely rare in practice, [8]
presents an example of this constraint and shows that it can be remodeled and achieved
by a combination of uniqueness and single-role frequency constraints, which are in-
deed cheaper to compute and reason about. Exception-1 presents the general case of a
multiple-role frequency constraint and its formalization in first order logic [7].

2.6 Subtypes

Subtypes in ORM are proper subtypes. For example, we say that B is a proper subtype
of A if and only if the population of B is always a subset of the population of A, and
A �= B. This implies that the subtype relationship is acyclic; hence, loops are illegal
in ORM. To formalize this relationship in DLR, we introduce an additional negation
axiom for each subtype relation. For example, (Man Is-A Person) in ORM is formalized
as: (Man Person) � (Person � Man). Rule-9 presents the general case formal-
ization of ORM subtypes. Notice that “ �” is not part of the DLR syntax. However, it
can be implemented by reasoning on the ABox to make sure that the population of A
and the population B are not equal.

Remark: Subtypes in ORM should be well-defined, which means that users should
introduce some rules explicitly to define a subtype. Such definitions are not part of the
graphical notation and are typically written in the FORMAL language [7]. The idea of
the ORM FORMAL language is similar to the idea the OCL language for UML. For
example: if one states that (Man Is-A Person), then a textual rule on Man is defined e.g.
“who has Gender=’Male”’. Since such rules are not part of the graphical notation, we
do not include them in our formalization. We assume that textual rules that are not part
of the ORM graphical notation are written in DLR directly.

Total Constraint. The total constraint (�) between subtypes means that the population
of the supertype is exactly the union of the population of these subtypes (see rule-10).

Exclusive Constraint. The exclusive constraint (⊗) between subtypes means the pop-
ulation of these subtypes is pairwise distinct, i.e. the intersection of the population of
each pair of the subtypes must be empty (see Rule-11).

190 M. Jarrar

2.7 Value Constraints

The value constraint in ORM indicates the possible values (i.e. instances) for an object
type. A value constraint on an object type A is denoted as a set of values {s1, ..., sn}
depicted near an object type, which indicate that (∀x[A(x) ≡ x ∈ {s1, ..., sn}]) [7].
Value constraints can be declared only on lexical object types LOT, and values should
be well-typed, i.e. its datatype should be either a string such as {′be′,′ 39′,′ it′,′ 32′} or
a number such as {1, 2, 3}. Notice that quotes are used to distinguish string values from
number values. As discussed earlier, if a LOT has no value constraint on it, then it is, by
default, seen as a subtype of LEXICAL. If it has a value constraint, it must be a subtype
of either the STRING or the NUMBER classes.

Outlook: We plan to extend our formalization of the ORM value constraint to include
other data types, such as real, integer, and boolean, which are not discussed in this paper.

2.8 Subset Constraint

The subset constraint (→) between roles (or sequences of roles) is used to restrict the
population of these role(s), since one is a subset of the other. See the examples below.
The first example indicates that each person who drives a car must be authorized by a
driving license: ∀x(x ∈ R2.Drives → x ∈ R1.AuthorizedWith) [7]. If an instance
plays the subsuming role, then this instance must also play the subsumed role. Rule-14
formalizes a subset constraint between two roles. A subset constraint that is declared
between all roles in a relationship and all roles in another relationship implies that the
set of tuples of the subsuming relation is a subset of the tuples of the subsumed rela-
tion. See the second example below. Rule-15 formalizes of a subset constraint between
two relations. ORM also allows subset constraints between tuples of (not necessarily
contiguous) roles as shown in rule-16, where each ith and jth roles must have the same
type. The population of the set of the jth roles is a subset of the population of the set
of the ith roles. The FOL formalization of the general case of this constraint [7] is :
∀x1...xk[∃y(R2(y) ∧ x1 = yi1 ∧ ... ∧ xk = yik) → ∃z(R1(z) ∧ x1 = zj1 ∧ ... ∧ xk = zjk)].

To formalize this constraint in description logic, we use the recent extension to
DLR-Lite [2] that allows inclusion assertions between projections of relations of the
forms: R2[rj1 , ..., rjk

] R1[ri1 , ..., rik
], where R1 is an n-ary relation, ri1 , ..., rik

∈
{r1, ..., rn}, and rip �=riq if rp �=rq; R2 is an m-ary relation, rj1 , ..., rjk

∈ {r1, ..., rm},

Towards Automated Reasoning on ORM Schemes 191

and rjp �= rjq if rp �= rq . Using this extension, any ORM set-comparison constraint for-
malized hereafter between two sets of (not contiguous) roles becomes direct. Rule-16
shows the subset general case.

2.9 Equality Constraint

Similar to the subset constraint, the equality constraint (↔) between roles, relations, or
sequences of roles is formalized in the following rules.

2.10 Exclusion Constraint

Similar to the subset and quality constraints, the exclusion constraint (⊗) between roles,
relations, or sequences of roles is formalized in the following rules.

2.11 Ring Constraint

In the following we formalize the Ring Constraints. ORM allows ring constraints to be
applied to a pair of roles (i.e. on binary relations) that are connected directly to the same
object-type, or indirectly via supertypes. Six types of ring constraints are supported by
ORM: symmetric (sym), asymmetric (as), antisymmetric (ans), acyclic (ac), irreflexive
(ir), and intransitive (it).

192 M. Jarrar

Symmetric Ring Constraint (sym). The symmetric constraint states that if a relation
holds in one direction, it should also hold on the other direction, such as “colleague of”
and “partner of”. R is symmetric over its population iff ∀x, y[R(x, y) −→ R(y, x)].
The example shown in rule-23 illustrates the symmetric constraint and its general case
formalization in DLR.

Asymmetric Ring Constraint (as). The asymmetric constraint is the opposite of the
symmetric constraint. If a relation holds in one direction, it cannot hold on the other;
an example would be “wife of” and “parent of”. R is asymmetric over its population iff
∀xy, R(x, y) −→ ¬R(y, x) The example shown in rule-24 illustrates the asymmetric
constraint and its general case formalization in DLR.

Antisymmetric Ring Constraint (ans). The antisymmetric constraint is also an oppo-
site to the symmetric constraint, but not exactly the same as asymmetric; the difference
is that all asymmetric relations must be irreflexive, which is not the case for antisym-
metric. R is antisymmetric over its population iff ∀xy, x �= y ∧ R(x, y) −→ ¬R(y, x)
(see the example in rule-25). To formalize this constraint (and some other constraints
below) in description logic, we use the concept (∃R.Self) that has been introduced re-
cently to the SROIQ description logic and RIQ [13]. The semantics of this concept
simply is: (∃R.Self)I = {x |< x, x >∈ RI}. Notice that this concept is not yet in-
cluded in the DLR description logic that we use in this paper. However, as [13] shows,
this concept can be added without causing difficulties in reasoning. Rule-25 illustrates
the antisymmetric constraint and its general case formalization.

Irreflexive Ring Constraint (ac). The irreflexive constraint on a relation states that
an object cannot participate in this relation with himself. For example, a person can-
not be the “parent of” or “sister of” himself. R is Irreflexive over its population iff
∀x, ¬SisterOf(x, x). As discussed above, formalizing this constraint in description
logic is also possible using the concept ∃R.Self . Rule-26 illustrates the irreflexive
constraint and its general case formalization in description logic.

Acyclic Ring Constraint (ac). The acyclic constraint is a special case of the irreflex-
ive constraint; for example, a Person cannot be directly (or indirectly through a chain)
ParentOf himself. R is acyclic over its population iff ∀x[¬Path(x, x)]. In ORM, this
constraint is preserved as a difficult constraint. “Because of their recursive nature,
acyclic constraints maybe expensive or even impossible to enforce in some database
systems.”[8]. Indeed, even some highly expressive description logics support notions
such as n-tuples and recursive fixed-point structures, from which one can build sim-
ple lists, trees, etc. However, to our knowledge, acyclicity with any depth on binary
relations cannot be represented.

Intransitive Ring Constraint (ac). A relation R is intransitive over its population iff
∀x, y, z[R(x, y) ∧ R(y, z) −→ ¬R(x, z)]. If Person X is FatherOf Person Y , and Y
is FatherOf Z , then it cannot be that X is FatherOf Z . We formalize this constraint
using the notion of role-composition in description logic. The composition of the two

Towards Automated Reasoning on ORM Schemes 193

relations R and S (written as R ◦S) is a relation, such that: RI ◦SI = {(a, c)|∃b.(a, b) ∈
RI ∧ (b, c) ∈ SI}. Hence, any composition with R itself (R ◦ R) should not imply R,
see rule-28.

2.12 Objectified Relations

An objectified relation in ORM is a relation that is regarded as an object type, receives
a new object type name, and is depicted as a rectangle around the relation. To help
explain predicate objects in ORM, we use a familiar example (see figure 26 [8]). In this
example, each (Person, Subject) enrollment is treated as an object that scores a rating.
Predicate objects in ORM are also called objectified relationship types or nested fact
types. The general case of predicate objects in ORM is formalized in [7] as: ∀x[A(x) ≡
∃x1, ..., xn(R(x1, ..., xn) ∧ x = (x1, ..., xn))] In addition to this axiom, it is assumed
that there must be a uniqueness constraint spanning all roles of the objectified relation,
although it is not explicitly stated in the diagram. This is to indicate that e.g. each person
may enroll in many subjects, and the same subject may be enrolled by many persons;
see [8] or the recent [10] for more details.

Predicate objects in ORM can be formalized using the notion of reification in
DLRifd. Reifying an n-ary relationship into a DLRifd concept is done by representing
this concept with n binary relations, with one relationship for each role[4]. To under-
stand this reification, one can imagine the “Enrollment” example by remodeled into two
binary relations, one for the role “Enrolls” and one for the role “EnrolledBy”. The new
concept “Enrollment” is defined in the example below. In this definition: ([$1]Enrolls

and [$1]EnrolledBy) specify that the concept “Enrollment” must have all roles “En-
rolls” and “EnrolledBy” of the relationship, (≤ 1[$1]Enrolls and ≤ 1[$1]EnrolledBy)
specify that each of these roles is single-valued, and (∀[$1](Enrolls ⇒ $2 : Student)
and ∀[$1]((EnrolledBy ⇒ $2 : Subject)) specify the object type each role belong to.
The last identity id assertion is to specify a uniqueness constraint spanning all roles
(i.e. “Enrolls” and “EnrolledBy”). Rule-29 presents the general case formalization of
the objectified predicates in DLRifd.

194 M. Jarrar

3 Implementation and Related Work

In this section, we illustrate the implementation of the formalization presented in this
paper. The formalization is implemented as an extension to the DogmaModeler [15].
DogmaModeler is an ontology modeling tool based on ORM. In DogmaModeler, ORM
diagrams are mapped automatically into DIG, which is a description logic interface
(XML-based language) that most reasoners (such as Racer, FaCT++, etc) support. Dog-
maModeler is integrated with the Racer description logic reasoning server which acts
as a background reasoning engine. See a screen shot of DogmaModeler below. The first
window shows an ORM diagram, while the second window shows the reasoning results
on this digram. The results indicate that the role “Person Reviews Book” cannot be sat-
isfied. DogmaModeler currently implements three types of reasoning services: schema
satisfiability, concept satisfiability, and role satisfiability. The other types of reasoning
services that are being implemented or are scheduled to be implemented include con-
straint implications, inference, and subsumption. Please refer to [18] for the technical
details of DogmaModeler’s mapping into DIG.

The main problem we faced during the implementation is that several ORM con-
straints cannot be mapped into DIG; that is, these constraints were not yet supported by
any description logic reasoner. Each formalization rule that could not be implemented
is marked by “Not supported by any DL reasoner yet” in the previous section.

One may notice that, in the first place, we did not map ORM into OWL, the stan-
dard web ontology language. The reason is that OWL is based on a description logic
called SHOIN [14], rather than the DLRifd that we use in this paper. Compared
with DLRifd, SHOIN does not support n-ary relations, identification, functional de-
pendencies, and projection of relations, among other things. This implies that several
ORM constraints cannot be formalized in SHOIN , and thus cannot be supported in
OWL. These constraints are: predicate uniqueness, external uniqueness, set-comparison

Towards Automated Reasoning on ORM Schemes 195

constraints (subset, equality, and exclusion) between single roles and between not con-
tiguous roles, objectification, as well as n-ary relationships.

Notice that without these constraints, mapping ORM into OWL becomes direct,
based on our formalization. In other words, formalizing ORM using SHOIN /OWL
can be seen as a subset of the formalization presented in this paper. All formaliza-
tion rules can hold for SHOIN /OWL except {rules-6,7,14,16,17,19,20,22, and 29}.
The syntax of some rules need to be modified such as Rule-1: A1 ∀R.A2, Rule-2:
A ∀R.BOOLEAN , Rule-4: A ∃R1.C1

 ∃Rn.Cn, etc. Actually, what
DogmaModeler currently maps into DIG is what can be mapped into OWL. A Dog-
maModeler functionality to export OWL in this way (i.e. as a subset of ORM) will be
released in the near future.

3.1 Related Work

Similar to our work, there have been several efforts to reuse the graphical notation of
UML and EER for ontology modeling. Some approaches, such as [24], considered this
to be a visualization issue and did not consider the underpinning semantics. Others
(e.g. [25]) are motivated only to detect consistency problems in conceptual diagrams.
We have found the most decent work in formalizing UML in [4], and in [1] for EER.
These two formalization efforts have studied the FOL semantics of UML and EER and
mapped it into the DLRifd description logic, which we use in this paper. It is also worth
noting that the ICOM tool was one of the first tools to enable automated reasoning with
conceptual modeling. ICOM [6] supports ontology modeling using a graphical notation
that is a mix of the UML and the EER notations. ICOM is fully integrated with the
FaCT description logic reasoning server, which acts as a background inference engine.

4 Conclusion and Future Work

In this paper, we have formalized ORM using the DLRifd description logic. Our for-
malization is structured into 29 formalization rules which map all ORM primitives and
constraints, except for two complex cases (see exception 1 and 2). We have shown
which formalization rules can be implemented by current description logic reasoning
engines, and which can be mapped into SHOIN /OWL. We have illustrated the imple-
mentation of our formalization as an extension to the DogmaModeler. Hence, we have
explained how ORM can be used as as a graphical notation for ontology modeling with
the reasoning being carried out by a background reasoning engine.

Various issues remain to be addressed. These include extending our formalization
to cover more datatypes besides the String, Number, and Boolean types; implement-
ing additional types of reasoning services, specifically constraint implications and in-
ferencing; developing a functionality in DogmaModeler to export OWL; studying the
computational complexity of ORM constraints; and last but least, is to extend the ORM
graphical notation to include some description of logical notions, such as the composi-
tion of relations and intersection and union between relations.

Acknowledgment. This research was initiated during my visit to Enrico Franconi at the
Free University of Bozen-Bolzano, which was funded by the Knowledge Web project

196 M. Jarrar

(FP6-507482). I am indebted to Enrico for his very valuable suggestions, contribu-
tions, and encouragement. I am also indebted to Sergio Tessaris, Terry Halpin, and Rob
Shearer for their valuable comments and feedback on the final version of this paper.
I wish to thank Diego Calvanese, Maurizio Lenzerini, Stijn Heymans, Robert Meers-
man, Ian Horrocks, Alessandro Artale, Erik Proper, Marijke Keet, and Jeff Pan for their
comments and suggestions during this research. This research is partially funded by the
SEARCHiN project (FP6-042467, Marie Curie Actions).

References

1. Baader, F., Calvanese, D., McGuinness, D., Patel-Schneider, D.N.P.: The Description Logic
Handbook: Theory, Implementation and Applications. Cambridge University Press, Cam-
bridge (2003)

2. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Data complexity of
query answering in description logics. In: Doherty, P., Mylopoulos, J., Welty, C. (eds.) Pro-
ceedings of the 10th International Conference on Principles of KnowledgeRepresentation
and Reasoning (KR2006), Menlo Park, California, pp. 178–218. AAAI Press, Stanford, Cal-
ifornia, USA (2006)

3. Calvanese, D., De Giacomo, G., Lenzerini, M.: Identification constraints and functional de-
pendencies in description logics. In: Proceedings of the 17th Int. Joint Conf. on Artificial
Intelligence (IJCAI2001), pp. 155–160 (2001)

4. Berardi, D., Calvanese, D., Giacomo, G.D.: Reasoning on uml class diagrams. Artificial
Intelligence 168(1), 70–118 (2005)

5. de Troyer, O.: A formalization of the binary object-role model based on logic. Data and
Knowledge Engineering 19, 1–37 (1996)

6. Franconi, E., Ng, G.: The i.com tool for intelligent conceptual modelling. In: 7th Int. WS on
Knowledge Representation meets Databases(KRDB’00), Springer, Heidelberg (2000)

7. Halpin, T.: A logical analysis of information systems: static aspects of the data-oriented
perspective. PhD thesis, University of Queensland, Brisbane, Australia (1989)

8. Halpin, T.: Information Modeling and Relational Databases. Morgan Kaufmann, San Fran-
cisco (2001)

9. Halpin, T.: Join constraints. In: Halpin, T., Siau, K., Krogstie, J. (eds.) Proceedings of the 7th
International IFIP WG8.1 Workshop on Evaluation ofModeling Methods in Systems Analy-
sis and Design (EMMSAD’02) (June 2002)

10. Halpin, T.: Objectification. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS,
vol. 3520, Springer, Heidelberg (2005)

11. Halpin, T., Curland, M.: Automated verbalization for orm 2. In: Meersman, R., Tari, Z. (eds.).
OTM 2006 Workshops, Springer, Heidelberg (2006)

12. Halpin, T., Proper, E.: Subtyping and polymorphism in object-role modelling. Data and
Knowledge Engineering 15(3), 251–281 (1995)

13. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: Proceeding of the
10th International Conference on Principles of Knowledge Representation and Reasoning
(KR 2006) (2006)

14. Horrocks, I., Sattler, U., Tobies, S.: Practical reasoning for expressive description logics.
In: Ganzinger, H., McAllester, D., Voronkov, A. (eds.) LPAR 1999. LNCS, vol. 1705, pp.
161–180. Springer, Heidelberg (1999)

15. Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD thesis, Vrije
Universiteit Brussel, Brussels, Belgium (May 2005)

Towards Automated Reasoning on ORM Schemes 197

16. Jarrar, M.: Towards the notion of gloss, and the adoption of linguistic resources informal
ontology engineering. In: Proceedings of the 15th international conference on World Wide
Web (WWW2006), May 2006, pp. 497–503. ACM Press, New York (2006)

17. Jarrar, M., Demey, J., Meersman, R.: On using conceptual data modeling for ontol-
ogy engineering. Journal on Data Semantics (Special issue on Best papers from the
ER/ODBASE/COOPIS2002 Conferences) 2800, 185–207 (2003)

18. Jarrar, M., Eldammagh, M.: Reasoning on orm using racer. Technical report, Vrije Univer-
siteit Brussel, Brussels, Belgium (August 2006)

19. Jarrar, M., Heymans, S.: Unsatisfiability reasoning in orm conceptual schemes. In: Illarra-
mendi, A., Srivastava, D. (eds.) Proceeeding of International Conference on Semantics of a
Networked World, Munich, Germany, March 2006, vol. LNCS, Springer, Heidelberg (2006)

20. Jarrar, M., Heymans, S.: On pattern-based ontological reasoning. International Journal on
Artificial Intelligence Tools (2007)

21. Jarrar, M., Keet, M., Dongilli, P.: Multilingual verbalization of orm conceptual models
and axiomatized ontologies. Technical report, Vrije Universiteit Brussel, Brussels, Belgium
(February 2006)

22. Jarrar, M., Meersman, R.: Formal ontology engineering in the dogma approach. In: Meers-
man, R., Tari, Z. (eds.). OTM 2002. LNCS, vol. 2519, pp. 1238–1254. Springer, Heidelberg
(2002)

23. Jarrar, M., Verlinden, R., Meersman, R.: Ontology-based customer complaint management.
In: Meersman, R., Tari, Z. (eds.). OTM 2003 Workshops. LNCS, vol. 2889, pp. 594–606.
Springer, Heidelberg (2003)

24. Cranefield, P.S., Hart, L., Dutra, M., Baclawski, K., Kokar, M., Smith, J.: Uml for ontology
development. Knowl. Eng. Rev. 17(1), 61–64 (2002)

25. Simmonds, J., Bastarrica, M.C.: A tool for automatic uml model consistency checking. In:
Proceedings of the 20th IEEE/ACM international Conference on Automated softwareengi-
neering, pp. 431–432. ACM Press, New York (2005)

26. van Bommel, P., ter Hofstede, A.H.M., van der Weide, T.P.: Semantics and verification of
object-role models. Information Systems 16(5), 471–495 (1991)

27. van der Weide, T.P., ter Hofstede, A.H.M., van Bommel, P.: Uniquest: determining the se-
mantics of complex uniqueness constraints. Comput. J. 35(2), 148–156 (1992)

	Towards Automated Reasoning on ORM Schemes Mapping ORM into the DLR_idf Description Logic
	Motivation and Background
	The Formalization of ORM Using DLRifd
	Object-Types
	Roles and Relationships
	Mandatory Constraints
	Uniqueness Constraints
	Frequency Constraints
	Subtypes
	Value Constraints
	Subset Constraint
	Equality Constraint
	Exclusion Constraint
	Ring Constraint
	Objectified Relations

	Implementation and Related Work
	Related Work

	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

