
StreamSight: A Query-Driven Framework for
Streaming Analytics in Edge Computing

Zacharias Georgiou, Moysis Symeonides, Demetris Trihinas, George Pallis, Marios D. Dikaiakos

Department of Computer Science
University of Cyprus

Email: { zgeorg03, msymeo03, trihinas, gpallis, mdd }@cs.ucy.ac.cy

Abstract—Edge computing is the emerging architectural
paradigm extending cloud technologies to the logical extremes of
the network for on-demand and delay-sensitive services. However,
once service placement on edge-enabling resources has been dealt
with, a new challenge arises: how to process enormous volumes
of streaming data to provide query-driven analytics while still
satisfying the delay-critical servicing requirements. To overcome
this challenge we introduce StreamSight, a framework for edge-
enabled IoT services which provides a rich and declarative query
model abstraction for expressing complex analytics on monitoring
data streams and then dynamically compiling these queries into
stream processing jobs for continuous execution on distributed
processing engines. To overcome the resource restrictive barriers
in edge computing deployments, StreamSight outputs the query
execution plan so that intermediate results are reused and not
continuously recomputed. In turn, StreamSight enables users
to express various optimization strategies (e.g., approximate
answers, query prioritization) and constraints (e.g., sample size,
error-bounds) so that delay-sensitive requirements relevant to
the deployment are not violated. We evaluate our framework
on Apache Spark with real-world workloads and show that
leveraging StreamSight can significantly increase performance
by at least 4× while still satisfying all accuracy guarantees.

Index Terms—Edge Computing, Cloud Computing, Big Data,
Stream Processing, Query Execution

I. INTRODUCTION

With the prevalence of the Internet of Things (IoT) as
the dominating technology to monitor and understand the
physical world, inevitably both the number of internet-enabled
“things” and the amount of IoT data are exploding. Reports
put the number of connected devices surpassing 20 Billion
by 2020 while these devices will produce more than 500 ZB
of data [1]. In respect to this, IoT services naturally offload
intensive analytic jobs to the cloud, as the computing power
of the cloud outclasses the resource capabilities of mobile and
remote IoT devices [2]. However, with the growing volume
of data generated at the logical extremes of the network,
and the fact that network bandwidth is simply not scaling
at the same speed as with computing power, data mitigation
is becoming a bottleneck constraining the cloud computing
paradigm for delay-sensitive IoT services [3]. Thus, it seems
only inevitable that data must be processed at the edge of the
network for shorter response times, more efficient processing
and significantly less network pressure.

Edge computing refers to the enabling technologies allowing
computation to be performed at the logical extremes of the

network, such as on downstream data, on behalf of cloud
services, and upstream data, on behalf of IoT services [4]. The
rationale of edge computing is that computing should happen
at the proximity of the data source with the “edge” constituting
any computing and network resources along the path between
data sources and the cloud. In this context, sensory data are
converted from raw signals to contextually relevant informa-
tion in proximity of the data source. To this end, a series of
frameworks, such as Hadoop, Apache Spark and Storm, have
contributed to “democratizing” big data analytics by hiding
most of the complexity related to machine communication,
scheduling, and fault tolerance [5]. Thus, as the compute
capabilities of edge servers scale [6], IoT service providers
are now embracing big data frameworks to extract analytic
insights from edge environments although these frameworks
are designed for homogeneous machine clusters usually found
in the cloud rather than in edge realms [7].

However, queries on IoT data usually have near real-time
requirements that need the latency between data generation
and query response to be bounded [8]. Once service placement
on edge-enabling resources has been dealt with [9] [10], a
new challenge arises: How to process enormous volumes of
streaming data to provide query-driven analytic insights while
also minimizing response times? Naively deploying distributed
processing engines without acknowledging the unique charac-
teristics of the “edge” is inefficient and can be error-prone.
For instance, IoT settings usually have high load influxes (e.g.,
road congestion and vehicle safety surveillance). In turn, edge
servers can be geographically distributed across wide areas of
coverage. This means a huge communication penalty for data
exchange to produce intermediate results required for con-
tinuously executing complex analytic queries. Consider also
the case where queries are not envisioned beforehand, but are
rather exploratory and submitted ad-hoc by platform operators
(e.g., one may ask what is the difference in current traffic flow
for a city segment compared to an hour ago). However, this
implies specific knowledge of the programming model of the
underlying processing engine and (usually) requires multiple
lines of code just for a single query (e.g., 26 lines of code in
Spark for the above query). Therefore, the implementation of
abstractions, which are able to model knowledge extraction
from data streams supporting a wide range of exploratory
queries, is still an open research challenge [11] [12].

The focal point of our work is to address these limitations by
introducing StreamSight: a practical framework for monitored
IoT services aimed at simplifying the specification, compila-
tion and execution of analytic queries on distributed processing
engines deployed in edge computing environments.
The main contributions of this work are:

• A declarative query modeling framework, called Stream-
Sight, which abstracts complex analytic insights defini-
tion from the compute capabilities of distributed stream
processing engines. Thanks to StreamSight, data scien-
tists and platform operators can compose complex ana-
lytic queries without any knowledge of the programmable
model of the underlying distributed processing engine by
solely using high-level directives and expressions. In turn,
analytic insight descriptions can also be reused without
any alterations and executed on multiple and different
underlying processing engines.

• A compilation unit for query execution that transparently
maps and compiles the modeled analytic insights de-
scriptions into stream processing jobs for execution on
the underlying distributed processing engine. To make
efficient use of available resources, the query execution
has been optimized so that results are output in time on
the (limited) resources provided to the edge computing
setting. To this end, the compilation unit creates a query
execution plan that allows the reuse of intermediate
results, avoiding continuous re-computations, while users
are allowed to: (i) prioritize query execution so results of
high importance are always output in time (e.g., high load
influx), while low priority insights are scheduled when
resources are available; (ii) request query enforcement
on a sample of the data stream for indicative but in
time responses; and (iii) define constraints such as the
maximum tolerable upper error bounds for approximate
query responses.

• A reference implementation for edge computing settings
integrating Apache Spark as the underlying distributed
processing engine. To illustrate the effectiveness of our
framework, we introduce a thorough evaluation using
real-world data and actual queries of interest from Intel-
ligent Transportation Services and Vehicular Networks.
Our results are reproducible, the reference implementa-
tion is available online1, while users can take advantage
of our Docker Compose extension to deploy the reference
implementation and auto-submit their analytic queries
without any infrastructure re-engineering.

The rest of the paper is structured as follows: Section II
presents the related work. Section III introduces StreamSight,
and Section IV describes the algorithmic process. Section V
presents our evaluation and Section VI concludes the paper.

II. RELATED WORK

In this Section, we review frameworks for geo-distributed
data processing, edge analytics and declarative query model-
ing. To the best of our knowledge, other than StreamSight, no

1https://github.com/UCY-LINC-LAB/StreamSight

Fig. 1: A High-Level Overview of StreamSight Framework

framework existing incorporates a declarative query interface
for modeling, producing and optimizing execution of edge
analytics across geo-distributed areas of coverage.

Viswanathan et al. introduce Clarinet [13], a framework
which attempts to improve the performance in computing
analytic insights formed as SQL queries in geo-distributed
data centers. In a similar fashion, Hsieh et al. have devel-
oped Gaia [14], a framework which significantly reduces the
communication overhead when introducing machine learning
queries across multiple data centers. However, both frame-
works assume that the computation context of the queries
follows a batch processing model and are not tailored to the
unique characteristics implied in an edge computing realm.

Gupta et al. [15] introduce Sonata, a framework offering
scalable analytic insights for network telemetry. Specifically,
network operators express analytic queries through a declar-
ative interface with Sonata making use of the programmable
data-plane of network switches for query preprocessing and
Spark for query execution. However, Sonata is developed
solely for packet-level network telemetry analytics. In turn,
Trihinas et al. [16] introduce ADMin, a framework that
dynamically adjusts the rate edge devices disseminate data
streams for analytics by suppressing data that can be inferred
with an estimation model capturing the runtime behavior of
the data stream. However, the adaptive strategy is enforced
independently per stream although queries may require data
from multiple streams. More relevant, but lacking a query
expression and compilation model, is the approach followed
by Jonathan et al. [17]. In particular, the authors suggest a
locality-aware technique for edge servers sharing workloads
to maintain the low latency requirements by distributing the
load among each server. In turn, Yang et al. [18] introduce a
framework for designing fog applications which allows users
to define streaming jobs with geographic load partitioning.

In contrast, Satyanarayanan et al. [19] introduce GigaSight,
a platform for fog computing analytics. In turn, Cao et al. [20]
introduce Codiac, an edge analytics platform that provides data
stream pre-processing, summarization and semantic event an-

https://github.com/UCY-LINC-LAB/StreamSight

notation for intelligent transportation services embracing edge
servers running Cisco IOx virtualization. However, GigaSight
is limited to privacy preserving and video stream processing
while Codiac solely targets vehicle traffic analytics. Interest-
ingly, Wen et al. introduce ApproxIoT [21], a data analytics
system for approximate computing in IoT services by provid-
ing online and hierarchical sampling so that edge resources
are exploited to produce approximate outputs with rigorous
error bounds. However, the query model is tightly coupled to
the Apache Kafka domain specification language and holistic
queries (e.g., top-k, kNN) are not supported as approximation
can only be exploited for linear queries. Nonetheless, in
StreamSight we adopt the hierarchical weighted sampling
algorithm introduced by the authors and extend it to support
our wide spectrum of supported analytic queries.

III. THE STREAMSIGHT FRAMEWORK

A. System Overview

StreamSight supports users in composing analytic queries
that are automatically translated and mapped to streaming
operations suitable for running on distributed processing en-
gines deployed in wide areas of coverage. This aids both
advanced and inexperienced users to abstract and rigorously
express complex analytics operations over streaming data,
along with query constraints such as sample size and upper
error-bounds for query execution to output approximate and
in time answers. To date, a user is bounded to follow the
procedural programming paradigm made available by the
distributed processing engine to specify the sequence of the
streaming operations needed to compose the desired query.
Despite the flexibility and control offered by this paradigm,
the increased complexity can cause unnecessary pains, shifting
user attention away from the actual purpose of analytic insight
description. Thus, StreamSight adopts a declarative program-
ming paradigm, allowing users to describe analytic insights
through a simple and powerful query modeling language.

Figure 1 depicts a high-level and abstract overview of the
StreamSight Framework. Users submit, via the StreamSight
API, ad-hoc queries following the declarative query model
which is decoupled from the underlying processing engine.
To ease understanding, let us consider a scenario from the
intelligent transportation domain. Buses are one of the most
common means of transportation and by monitoring bus
activity, traffic operators are able to determine road traffic
conditions and early detect unfortunate incidents [22]. To this
end, buses are equipped with sensors capable of continuously
transmitting their location, speed, operating city segment and
delay from next stop. For instance, an ad-hoc query that can
be submitted to StreamSight by a traffic operator to detect the
traffic congestion in each city segment is the following:

COMPUTE ARITHMETIC_MEAN(bus_delay,10 MINUTES)
BY city_segment EVERY 5 SECONDS

Insight 1: Computes for a 10min sliding window the average bus
delay per city segment with new datapoints considered every 5s.

Having provided the aforementioned query, the Parser
component immediately decomposes it to validate syntactic
correctness, while also detecting circular and antagonizing
expressions which result in error-prone and exhaustive query
execution. If no errors are detected, the decomposed query is
given to the Optimizer. This module performs two types of
optimizations so as to improve runtime execution: (i) system-
based, which are automatically applied to detect phases in
the stream operation pipeline where intermediate results can
be shared instead of recomputed; (ii) user-defined, using the
salience, sampling, error and confidence directives, which are
used to output answers in-time. These directives are described
in detail in Section IV. For thoroughness, we extend the
previous query so that approximate answers are provided to
significantly improve response time by executing the query on
a sample of the data stream:

COMPUTE ARITHMETIC_MEAN(bus_delay,10 MINUTES)
BY city_segment EVERY 5 SECONDS
WITH MAX_ERROR 0.05 AND CONFIDENCE 0.95

Insight 2: Computes the average bus delay per city segment on a
sample of data with the relative error upper-bounded at 5% in a 95%
confidence interval.

The last step is the compilation process, where the Com-
piler recursively traverses the decomposed query structure and
maps each expression into the corresponding streaming oper-
ations (e.g., map, reduce, filter) of the underlying distributed
processing engine. The output is a packaged stream processing
job, which contains the pipeline of streaming operations that
were automatically generated by the Compiler. When this job
is submitted, the distributed processing engine schedules the
optimized query execution plan for the required streaming
operations on the underlying available resources.

B. Query Model

The StreamSight query model offers users the ability to
construct insights, namely, new high-level and complex ana-
lytics out of raw metric streams. Thus, at the basis, an insight
can be seen as another metric stream that is produced from
the composition, transformation and aggregation of multiple
metric streams. Grammar 1 presents in EBNF format the
expressivity of the query model language syntax.

An insight at its core is composed by: (i) a COMPUTE
statement applied to a composite expression; (ii) an EVERY
statement denoting the time interval at which the composite is
periodically evaluated; and (iii) an optional WITH statement
capturing an AND-separated list of user-defined optimizations
and constraints. A CompositeExpr is either a simple ex-
pression, denoted as Expr, or is recursively constructed via
left and right-hand composite expressions operated by a binary
operation (e.g., ADD, DIV). An Expr can be an Aggregate
function (e.g., MEDIAN(bus delay)), a MetricStream
or a Number. Optionally, a Filter can be attached to
an Expr so that left-hand operations are only processed if
the filter predicate evaluates to true. As such, a Filter is
composed from applying on a metric a relational operation
and a CompositeExpr, with users also able to concatenate

〈Insight〉 ::= COMPUTE 〈Composition〉 EVERY 〈Interval〉 [WITH
〈Optimizations〉]

〈Composition〉 ::= 〈CompositeExpr〉 [BY 〈Metric〉]
〈CompositeExpr〉 ::= (〈CompositeExpr〉 〈BinOp〉 〈CompositeExpr〉)

| 〈Expr〉 | 〈MapOp〉 (〈Expr〉)
〈BinOp〉 ::= ADD | MUL | SUB | DIV
〈Expr〉 ::= 〈Aggregate〉 [WHEN 〈Filters〉] | 〈MetricStream〉 |

〈Number〉
〈Aggregate〉 ::= 〈WindowedFunc〉 (〈MetricStream〉, 〈Window〉)

| 〈AccumFunc〉 (〈MetricStream〉)
〈WindowedFunc〉 ::= SUM | COUNT | PRODUCT | ARITHMETIC MEAN

| GEOMETRIC MEAN | MIN | MAX | VARIANCE |
SDEV | MEDIAN | MODE | PERCENTILE[〈Percent〉] |
TOP K〈PositiveInt〉|

〈AccumFunc〉 ::= RUNNING SDEV | RUNNING MEAN |
RUNNING MAX | RUNNING MIN | EWMA[〈Percent〉]
| PEWMA[〈Percent〉]

〈MetricStream〉 ::= 〈Metrics〉 [FROM 〈Membership〉] [WHEN 〈Filters〉]
〈Metrics〉 ::= 〈Metric〉 { , 〈Metric〉 }
〈Membership〉 ::= (〈MemberID〉 {, 〈MemberID〉 })
〈MemberID〉 ::= 〈String〉
〈Filters〉 ::= 〈Filter〉 { AND 〈Filter〉 }
〈Filter〉 ::= 〈Metric〉 〈RelOp〉 〈CompositeExpr〉
〈RelOp〉 ::= ‘>’ | ‘>=’ | ‘==’ | ‘!=’ | ‘<’ | ‘<=’
〈Metric〉 ::= 〈String〉
〈Window〉 ::= 〈TimePeriod〉
〈Interval〉 ::= 〈TimePeriod〉
〈TimePeriod〉 ::= 〈PositiveInt〉 〈TimeUnit〉
〈TimeUnit〉 ::= MILLIS | SECONDS | MINUTES | HOURS
〈Optimizations〉 ::= [SALIENCE〈PositiveInt〉] [(MAX ERROR〈Percent〉

AND CONFIDENCE〈Percent〉 | SAMPLE〈Percent〉)]
〈MapOp〉 ::= ABS | SQR | SQRT

Grammar 1: StreamSight Query Model Language Syntax in EBNF

multiple filters with the AND logical operator. In turn, an
Aggregate is either window-based or accumulated. The
difference is in the application of the aggregate on the metric
stream. For window-based aggregates, a window is needed
to denote the time interval of interest for aggregating values,
while for accumulated aggregates the result is computed solely
based on previous values. Table I provides a description of
the currently supported windowed functions, while Table II
describes the accumulative operations.

Both windowed and accumulated functions require as in-
put a MetricStream, which is composed from a list of
Metrics and optionally a Membership description. As
such, other than the bus delay and city segment metrics, the
bus stream of our example can emit more metrics to the
processing engine to be used as query variables. In turn, the
membership description is used when metrics are compiled
as aggregates from multiple monitoring sources. When the
membership is omitted, measurements satisfying the metric
description from all monitoring sources are considered in the
insight computation. In the case of Insight 1, as no FROM
statement is used, the delay of all buses will be used in
the computation. What is more, Filters can be attached
and applied directly to the metric stream. Furthermore, in the
composition definition, an optional BY statement is available,
which permits grouping the expression evaluation based on a

Function Description
SUM The sum of all values within a window

COUNT The number of values within a window
PRODUCT The product between all values within a window

MIN The minimum value of the window
MAX The maximum value of the window

ARITHMETIC MEAN The mean of all values within a window
GEOMETRIC MEAN The geometric mean within a window

VARIANCE The variance of all values within a window
SDEV The standard deviation of all values within a

window
MODE The most common value within a window
MEDIAN The median value with a window

PERCENTILE The value below which a given percentage of
measurements fall within a window

TOP K The top k values from a window

TABLE I: StreamSight Window-Based Supported Functions

Function Description
RUNNING MEAN The running average of all values in the stream
RUNNING SDEV The running standard deviation of the stream

EWMA The exponential weighted moving average
PEWMA The probabilistic weighted moving average

RUNNING MAX The max value of all values
RUNNING MIN The min value of all values

TABLE II: StreamSight Accumulative Supported Functions

given Metric key. For Insight 1, “grouping” is applied to
compute the average bus delay per city segment.

Finally, the optional WITH statement allows the user to de-
fine certain optimization strategies and constraints to improve
runtime performance. Specifically, SALIENCE denotes the
importance of an insight, allowing the user to prioritize query
execution over other queries. In turn, SAMPLE allows users to
specify that query execution can be applied on a percentage
of the available measurements so that an approximate answer
is given in a fraction of the time required to execute the
query on the entire data. StreamSight also supports users to set
the MAX ERROR and CONFIDENCE which are optimization
constraints allowing for the query to be executed on a sample
of the data, where the constructed sample must satisfy the
aforementioned constraints.

C. Query Model Expressivity

The following examples illustrate the expressivity and main
features of the StreamSight query model.
Window Operations: the query model supports the aggrega-
tion of values that fall within a time window. The window is
the period of time that specifies how far in the past values are
considered. Insight 1 illustrates such an example, where the
values from a 10 minute time window are aggregated every 5
seconds to compute the average bus delay.
Temporal Compositions: the query model allows the user
to compose insights from multiple expressions that may even
have different time windows. This is particularly useful when
the intention is to reveal the metric stream evolution over
time. Insight 3 outputs, per city segment, the ratio between the
current 10 minute average delay and the current hourly average
which is updated with new data every 5 seconds. When the
output is over 1, this means that the particular city segment is
experiencing an increase in buses’ delay.

Fig. 2: The Abstract Syntax Tree for Insight 1

COMPUTE (ARITHMETIC_MEAN(bus_delay, 10 MINUTES)
DIV
ARITHMETIC_MEAN(bus_delay, 60 MINUTES)

) BY city_segment EVERY 5 SECONDS

Insight 3: Computes per city segment the ratio between the current
10 min and the current hour average bus delay

Accumulated Operations: these differ from window opera-
tions by not requiring a time sliding window. Instead, results
are updated only when new measurements are available, using
previously computed data. A prominent example is an Expo-
nential Weighted Moving Average (EWMA), with Insight 4
depicting how the number of passengers is accumulated per
bus stop using an EWMA. These operations are often param-
eterized; in this case a denotes the discounting rate of past
observations and is set to 0.85. Insight 4 uses a membership
ruling to only aggregate data FROM night bus streams.

COMPUTE EWMA[a=0.85](passengers FROM NightBuses)
BY bus_stop EVERY 5 SECONDS

Insight 4: Computes an exponential weighted moving average of the
number of passengers from night buses per bus stop.

Hybrid Compositions: the query model supports the combi-
nation of window and accumulated operations, thus enriching
the tool-set of possible analytic operations. A valuable insight
constructed from our scenario, is shown in Insight 5. This
insight returns the difference of the average delay of the last
10 minutes from the EWMA.

COMPUTE (
ARITHMETIC_MEAN(bus_delay, 10 MINUTES)
SUB
EWMA[a=0.65](bus_delay)

) BY city_segment EVERY 5 SECONDS

Insight 5: Computes the difference between the 10 minute average
delay and the EWMA per city segment.

Filtered Compositions: these operations support the appli-
cation of filter predicates on both input and output streams.
For example, Insight 6 is used to count, per city segment, the
number of times a bus was delayed for more than 2 minutes
in a 1 hour sliding window, but outputs results only when the
counter is greater than 10. With this query, false positives are
reduced with traffic operators only notified to take action when
a substantial number of delays are actually reported.

COMPUTE (
COUNT(bus_delay WHEN bus_delay >= 2, 1 HOUR)

) WHEN >= 10 BY city_segment EVERY 1 MINUTES

Insight 6: Counts the number of bus delays exceeding 2 min per city
segment, but only outputs result if more than 10 delays are detected.

In turn, Insight 7 can be used to detect, per city segment,
abnormal bus delays which exceed more than 3 standard
deviations from the current mean.

COMPUTE bus_delay
WHEN bus_delay > (RUNNING_MEAN(bus_delay)

+ 3 * RUNNING_SDEV(bus_delay))
EVERY 5 SECONDS BY city_segment

Insight 7: Report, per city segment, bus delays exceeding more than
3 standard deviations from the current mean.

User-defined Optimizations: allow users to: (i) prioritize
query execution over other queries so that when there is a
high load influx, high priority queries are not delayed; and
(ii) enforce query execution over a sample of the available
measurements to output immediate results. For the latter, users
can denote either the exact sample size as a percentage from
the available measurements or denote the maximum tolerable
relative error and confidence interval the sampling technique
must obey when constructing the sample. For example, Insight
8 features a salience of 4 to denote that in the case of a high
load influx, it is prioritized over queries with a lower priority
(default salience is 0). Thus, high priority queries are executed
first, until resource saturation, and other queries are queued
until resources are released. In turn, Insight 8 is computed
over 20% of the available measurements.

COMPUTE ARITHMETIC_MEAN(bus_delay, 10 MINUTES)
BY city_segment EVERY 5 SECONDS
WITH SALIENCE 4 AND SAMPLE 0.20

Insight 8: Insight for average bus delay with denoted salience and
sampling size.

IV. ALGORITHMIC IMPLEMENTATION

This section provides details of the algorithmic process. We
describe the steps for mapping insights into stream operations
and elaborate on key aspects of the compilation phase.
Parsing Phase: The initial step that takes as input the insight
description from the user and constructs the query model.
Specifically, the query model is decomposed and represented
as an Abstract Syntax Tree (AST) that materializes the
syntactic rules of Grammar 1. Figure 2 depicts the AST for
Insight 1. Each subtree (inner node) corresponds to a grammar
rule while the leaves are the tokens and symbols of the
language. An insight is syntactically correct when the tree
can be successfully constructed, meaning that the grammar
rules have been matched. In the case of a syntax error, the
process stops and returns a message to the user containing
the identified syntax mistakes. For our prototype, we adopt
ANTLR [23], a Java framework for creating the grammar
parser. The output of this process contains the constructed
ASTs for all analytic queries submitted by the user.
Compilation Phase: This phase constructs the Query Ex-
ecution Plan capturing the pipeline of stream operations

Algorithm 1 Update Insight Stream
function updInsight (Composite comp, MetricStream stream)

cached← getInsightStreamFromCache(comp)
if cached not null then

return cached //cached insight stream already updated
end if
if comp is CompositeExpr then

op← comp.getOperator()
lStream← updInsight(comp.getLeft(), stream)
rStream← updInsight(comp.getRight(), stream)
newStream← merge(lStream, rStream, op)

else if comp is Aggregate then
aggr ← comp.getAggFuntion()
newStream← applyAggregate(aggr, stream)

else if comp is MetricStream then
memb← comp.getMembership()
newStream← applyMembership(memb, stream)

else if comp is Number then
num← comp.getNumericV al()
newStream← genNumericStream(num, stream)

end if
if comp.hasF ilter() then

op← filter.getOperator()
expr ← comp.getF ilterExpr()
fStream← updInsight(expr, stream)
newStream← applyF ilter(newStream, fStream, op)

end if
addCompositeToCache(comp)
return newStream

end function

that transform raw data into valuable insights based on the
AST representation for the given queries. To achieve this, the
compilation process requires as input the AST for each query
and the initial input stream. The input stream is a logical
representation of all the relevant data and metrics streamed
by monitoring sources to the processing engine (e.g., bus
streams). With this, a query execution plan can be constructed
by naively mapping the AST to a pipeline of stream operations,
allowing StreamSight to enclose the pipeline to the final query
plan for execution by the processing engine.

However, a naive mapping is extremely inefficient as it
results in increased data movement and unnecessary inter-
mediate re-computations. Towards this, StreamSight performs
the following to improve the query execution plan. Input
stream filtering is performed first to clean the the stream
from monitoring sources and metric data not required from
any of the given queries. As such, the compilation process
selects only the set of metrics that are denoted within the
membership description of each insight to form the new input
stream. Next, StreamSight groups streams that will be used
together to update composite expressions in (intermediate)
insight computations and present overlapping updating time
intervals. Afterwards, the compilation process derives and
schedules the application of user optimizations to further
reduce the volume of streamed data and segregate identical
metrics streams but comprised with different data points (e.g.,
the same bus stream used in two queries but with different
sampling rate applied). Thus, with the application of the above
steps early on, the optimized query plan prohibits redundant
data to pass for further processing, saving valuable network

Algorithm 2 Reuse Intermediate Insight Streams
function getInsightStreamFromCache(Composite comp)

cached← cachedComposites[comp] //matching composites
if cached is empty then

return null //no matching composite
end if
intrv ← comp.getInterval()
if cached.intervals[intrv] is empty then

return null //comp in cache but not same interval
end if
uOpts← comp.getUserOpts()
if cached.userOpts[uOpts] is empty then

return null //comp in cache but not same optimizations
end if
return cached.getInsightStream(comp, intrv, uOpts)

end function

and computational resources.
Update Insight Stream: Having enforced the above, Stream-
Sight proceeds to define the pipeline of stream operations. This
step is a recursive procedure and is introduced in Algorithm 1.
The procedure takes as input a composition and the current
stream, to derive or update the insights based on the operations
denoted in the AST nodes of each query. As presented earlier,
a composition can be numerical, a metric stream, an aggregate
or a new composite expression. In the case of a composite
expression, the algorithm takes the left- and right-hand sides
of the expression and recursively applies the same procedure.
The result from both sides is then operated using the binary
operation taken from the composite expression, forming a new
insight stream. The other cases (i.e., aggregate, numerical) act
as the terminary base cases of the recursive process. When the
recursion reaches an aggregate, it applies the aggregation func-
tion and returns the updated insight stream. In turn, numeri-
cal expressions generate numeric streams while membership
expressions can be applied on metric streams to cleanse the
stream from monitoring sources not of interest (e.g., Insight 4).
Finally, if a filter is attached to the composite, the algorithm
will derive the filter expression and discard datapoints in the
current stream not satisfying the filter expression.
Aggregates: These functions are predefined code snippets
enforced by stream operators on metric streams to derive a
new stream capturing aggregated values for a denoted time-
window. Here we show how StreamSight compiles high-level
aggregates into low-level streaming operations supported by
the programming model of the underlying processing engine.
For instance, the ARITHMETIC MEAN will generate the
following code for Apache Spark Streaming:

stream.map((k,v) -> (k, (v,1)))
.reduceByKey(((v1,c1), (v2,c2))

-> (v1+v2, c1 + c2])
.map((k, (sum, count)) -> {

if (count != 0) {
avg = sum / count
return (key, avg)

} else {
return (key, 0)

}
})

In the above, the input stream is transformed by mapping
each value to a (value, 1) tuple and then reduction is applied

to group values and apply the intended aggregate function.
Another example is illustrated below for the RUNNING MAX
aggregate. The auto-generated code will first derive in parallel
the max value between tuple pairs by applying reduction. This
value is then compared to the current max with an update
emitted, for further reduction, only if the pairwise max exceeds
the previously acknowledged max value.

stream.reduceByKey(
(v1, v2) -> MAX(v1,v2)

).updateStateByKey(
(pairMax, curMax) -> {

if (pairMax > curMax) {
return max = pairMax

}
});

Reusing Intermediate Results: StreamSight generates and
combines data streams recursively, until the complex insight
stream is created. This procedure will take place for every
insight submitted by the user. Nonetheless, distributed process-
ing engines, such as Apache Spark, consider and evaluate both
analytic queries and composite expressions as independent
processes. Thus, execution is completely isolated, even if
two or more queries/composites feature pipeline components
which operate on the same composite ruling and data. This is
illustrated in the example below, where although two insight
descriptions feature the 10min arithmetic mean from the same
input stream, both pipelines must recompute the aggregate
every time. However, this incurs a huge compute penalty from
having to execute the same streaming operations on the same
data. It also incurs a communication penalty if these tasks are
scheduled for execution on multiple and different machines.

COMPUTE
ARITHMETIC_MEAN(bus_delay, 10 MINUTES)
BY city_segment EVERY 5 SECONDS

COMPUTE(
ARITHMETIC_MEAN(bus_delay, 10 MINUTES)
DIV
ARITHMETIC_MEAN(bus_delay, 60 MINUTES)

) BY city_segment EVERY 5 SECONDS

For Apache Spark, users can request for in memory caching
of stream results, but for clusters deployed across wide areas of
geographic coverage, persistent storage must be enabled (e.g.,
HDFS) with the analogous compute and disk access penalty.
To address this, StreamSight: (i) detects at the compilation
phase pipeline operations executed on the same input stream;
(ii) parameterizes and enables caching; and (iii) outputs the
optimized query execution. Thus, before Algorithm 1 attempts
to update a composition, it checks via Algorithm 2 if a
cached result exists. However, to determine if a composition is
cached, it is not enough to find the same cached expression,
but rather both the updating interval and the enforced user
optimizations must also match so that the composition operates
on the same data. Hence, the execution plan notifies the
task scheduler of the underlying processing engine which
queries and composite expressions share results. Based on this,
the task scheduler at runtime will enforce worker nodes to
cache and checkpoint streaming operation results in memory

Fig. 3: Reusing Intermediate Results

and then broadcast results to the workers nodes that will
require them (Fig. 3). Thus, by leveraging StreamSight to
coordinate the query optimization process, intermediate result
dissemination is enabled which significantly reduces redundant
and complex computations (e.g., sorting, joins, etc.).
Sampling: enables the execution of an insight description on a
portion of the streamed measurements to receive approximate
but in time answers with two popular sampling techniques
(reservoir and stratified sampling). In reservoir sampling, a
random sample of fixed size (reservoir) is probabilistically
selected without replacement from a dataset of unknown
size. This property and the fact that it can be performed
online makes it ideal for streaming analytics. However, each
measurement is selected with equal probability which can
significantly alter the sample statistical quality, if multiple and
heterogeneous monitoring sources comprise the input stream.
Thus, reservoir sampling is applied only when the user denotes
through the insight description the exact sample size.

To overcome this challenge, stratified sampling is also
used, where each monitoring source is sampled independently.
This reduces the sampling error and improves sample quality,
but works only if the statistics of all streams are known
(e.g., stream length). However, this assumption is unrealistic
in practice. Thus, for StreamSight we adopt the Weighted
Hierarchical Reservoir Sampling (WHRS) approach proposed
in [21] which combines Reservoir and Stratified Sampling.
In this approach, we first “stratify” the input stream on each
worker node receiving measurements into monitoring streams.
Then, reservoir sampling is applied but with the difference
that the reservoir size of each independent monitoring source
is dynamically adjusted at runtime. This is achieved through a
weighting mechanism, where the significance of each stratified
reservoir is periodically updated. Updating the weighting that
adjusts the sample size of each reservoir allows StreamSight
to adhere to user-defined constraints for sample error-bounds
and confidence intervals. Specifically, by notifying the Task
Scheduler through the query plan to keep track of the input
rate per monitoring stream the weighting per reservoir can be
updated efficiently without any additional data movement.

V. EVALUATION

In this section, we introduce a comprehensive study to eval-
uate StreamSight performance when integrated with Apache
Spark as the distributed processing engine and configured in
an emulated edge computing environment. We realize our
testbed on an Openstack private cloud and use Docker to
completely isolate and cap compute, memory and network

Workload Insight ID LoC (Spark)
I1 14
I2 16
I4 26

Dublin Buses I5 38
I6 13
I7 41
I8 14
T1 10

NYC Taxis T2 22
T3 17
T4 22

TABLE III: Insights Used in Experiments

resources for deployed edge servers. Specifically, edge servers
are configured with 1 VCPU clocked at 2.66GHz, 1 GB RAM
and linked with a 2Mbps upload and 16Mbps download wifi
interface. We use tc-tool [24] to introduce an artificial network
latency of ∼ 15ms among edge servers and ∼ 65ms between
these servers and monitoring sources. We opt for these specific
capabilities to resemble actual edge servers deployed in smart
transportation services [22]. As our intent is not on service
placement, all edge servers are placed in equal network dis-
tance. Hence, the distributed processing engine is comprised of
16 worker nodes deployed on the aforementioned edge servers
and one master node responsible for job submission and
coordination. The master node is configured with 4 VCPUs
and 4GB RAM to avoid any potential bottlenecks.
A. Workload and Insight Description

To stress the Spark engine, we develop an IoT workload
emulator 2. The emulator takes as input the workload descrip-
tion (e.g., request rate, IoT source type) and the dataset to
use when monitoring data are not randomly generated. For
our evaluation, instead of trivial and random data, we select
two publicly available and real-world workloads to truly reveal
the strengths of our framework. These workloads are:

• Dublin Smart City Buses Network [22]: This workload
is comprised of 1 month of data (Jan. 2014) from 968
buses. Each bus is equipped with a GPS tracking device
and periodically sends data to the Intelligent Transporta-
tion Service. A record in the monitoring stream features
16 metrics, including: bus id, location coordinates, oper-
ating city region, etc. Moreover, in each record there is
an estimation of the current bus route delay.

• NYC Taxis [25]: This workload is comprised of routes
from 10, 000 taxis and limousines in New York in 2017.
Each vehicle is equipped with GPS tracking to record
data for each route, including: passenger number, charged
amount, tip amount, payment type, pickup/dropoff loca-
tion, etc. In total, each record captures 18 metrics.

Table III lists the analytic insights applied for both work-
loads, along with the lines of code required for an expert
developer to compose optimized versions of these queries
using the Apache Spark programming model3. For the Dublin
bus workload we use 7 of the insight descriptions introduced in

2 https://github.com/dtrihinas/JobEmulator
3 We only count lines of code for the actual query and omit any stream

and cluster configurations.

Section III. For the NYC workload we introduce 4 new insight
descriptions, denoted as T1−4, which are of actual interest to
taxi companies and drivers for selecting areas of the city to
operate. Specifically, T1 computes the maximum tip amount
per city region in a 3 hour sliding window with new data
included every 5 seconds. A filter is applied on this insight so
that only cash and credit card payments are included. In the
dataset these payment types are listed as options 1-2.

COMPUTE
MAX(tip_amount FROM yellow_Cab_List

WHEN payment_type <= 2, 3 HOURS)
BY city_region EVERY 5 SECONDS

For brevity, we omit depicting T2− T4 which adopt the same
3 hour sliding window, but compute: the average tip amount
(T2), the 95th percentile for the tip amount (T3), and the top 5
tips (T4). All these insights are computed per city region and
include the aforementioned filter.

B. Performance Evaluation

In this scenario we evaluate the performance of StreamSight
Framework on an increasing volume of data without allocating
any new resources. This scenario is extremely important in
edge deployments, since installing new physical servers in-
place every time load fluctuates, is usually not an option.
Evaluation Metric: We evaluate the performance growth that
can be achieved by the examined configurations compared
to the Baseline, where insight descriptions are deployed to
the Spark without any optimizations. To evaluate growth
we monitor both the workload request rate and the Spark
cluster total delay. The total delay metric includes both the
Spark cluster processing and scheduling time. Processing time,
denotes the time required to execute the query on a batch
of data points (e.g., sliding window), while scheduling time
designates the time from which a batch is queued, up to
the time it starts being processed. The cluster is considered
stable when the total delay is beneath the batch time, which
in our case is 10s. Otherwise, when the delay is continuously
increasing, batches are queued and not processed immediately
as the system is unable to keep up and therefore the system
is considered unstable.
Configurations: For both datasets, we evaluate the follow-
ing configurations: (i) Spark with StreamSight deployed to
optimize intermediate result reusability; (ii) WHRS Sampling,
which introduces weighted hierarchical reservoir sampling to
Spark; and (iii) Streamsight enabled with WHRS sampling.
In regards to workload enforcement, we apply an increasing
linear workload through the Workload Emulator by starting
our testbed with 50 monitoring sources (buses, taxis) and in-
creasing this number every 3 minutes which, in turn, increases
the data input rate to the distributed processing engine.
Results: Figure 4 depicts the total delay for the Baseline
and StreamSight configuration when applying the linear work-
load for the Bus dataset without sampling. We observe that
Streamsight can handle 38% more requests per second than the
Baseline before the cluster becomes unstable. This translates
to a 1.4× performance growth and can be explained by the

https://github.com/dtrihinas/JobEmulator

T
o

ta
l
D

e
la

y
 (

s
)

Workload (req/s)

Baseline
Streamsight

 0

 5

 10

 15

 20

 25

 30

 0 200 400 600 800 1000

Fig. 4: Bus Workload: Baseline vs StreamSight

T
o

ta
l
D

e
la

y
 (

s
)

Workload (req/s)

WHRS Sampling
StreamSight

 0

 5

 10

 15

 20

 25

 30

 0 500 1000 1500 2000 2500 3000

Fig. 5: Bus Workload: WHRS Sampling vs StreamSight

T
o

ta
l
D

e
la

y
 (

s
)

Workload (req/s)

Baseline
Streamsight

 0

 5

 10

 15

 20

 25

 30

 0 2000 4000 6000 8000 10000

Fig. 6: Taxi Workload: Baseline vs StreamSight

T
o

ta
l
D

e
la

y
 (

s
)

Workload (req/s)

WHRS Sampling
StreamSight

 0

 5

 10

 15

 20

 25

 30

 0 2000 4000 6000 8000 10000 12000 14000

Fig. 7: Taxi Workload: WHRS Sampling vs StreamSight

fact that the reusage of intermediate streams, alleviates the
system from further re-computations, thus allowing more load
to be handled with the same processing capabilities. Next,
Figure 5 shows the total delay for the bus dataset while
applying the linear workload and user optimizations take
place by enabling sampling with a 20% fixed sample size.
In regards to the previous results, WHRS achieves only a
1.7× performance growth compared to the Baseline, although
it operates on 20% of the data. On the other hand, StreamSight
achieves a 4.3× performance growth from the Baseline and
when directly compared to WHRS, we immediately observe
that StreamSight is able to handle almost three times more
workload. This significantly highlights the importance of not
requiring constant data movement across worker nodes for in-
termediate computations, even when enabling highly efficient
approximation techniques.

Similarly, Figures 6 and 7 show the total delay under a linear
workload for the NYC dataset. In this setup, Figure 6 depicts
the performance growth of StreamSight (no sampling) over
the baseline which is 1.3×. In turn, for the results depicted in
Figure 7, user optimizations are enabled with the max error
bounded to 10% with a 95% confidence interval. This resulted
to a sample size fluctuating between 24% and 39%. Thus,
compared to the Baseline, WHRS was only able to achieve
a 1.5× performance growth, while StreamSight managed a
2.4× performance growth. In regards to the Dublin workload,
the performance growth is comparably lower. However, this
is due to the fact that the number of monitoring sources is
significantly higher and the lower sampling rate. Additionally,
the query composition overlap ratio is lower for this dataset
and choice of queries. The Dublin workload has a 23% overlap

#Insights Overlap
Ratio

Baseline
(ms)

StreamSight
(ms)

Performance
Growth Rate

1 0% 1426 1451 −1.8%
2 0% 2888 2815 2.6%
3 0% 5134 5087 0.9%
4 11% 5985 5171 13.6%
5 23% 8664 7043 19.7%
6 25% - 7318 > 26.8%

TABLE IV: Reused Results at Different Overlap Ratios

between compositions, while the NYC a mere 12% overlap.
Still, StreamSight is able to handle almost two times more
workload compared to WHRS, primarily due to eliminating
redundant sorting operations for T3 and T4, which again
highlights the importance of reusing intermediate streams.

C. Re-usage of Intermediate Streams

Motivated by the previous findings, the purpose of this
experiment is to explore the effect of reusing intermediate
computations at different overlap levels. In this experiment,
we fixed the workload input rate for the Dublin dataset and
examined insights with different overlap levels.
Evaluation Metric: The average processing time, measured
in milliseconds for the Baseline and StreamSight.
Results: The results are depicted in Table IV. The last column
shows the performance growth of StreamSight compared to the
Baseline. The first three insights have zero overlap between
them and the difference between the performance is statisti-
cally insignificant. This shows that using StreamSight does not
incur a performance overhead, even for expert users capable
of deriving optimized versions for insight descriptions. On the
contrary, for a 11% overlap the increment of performance is
13.6% and for a 23% overlap we have a 19.7% increment
of performance. Finally, for six insights at a 25% overlap,

T
o
ta

l
D

e
la

y
 (

s
)

Time Interval

Non-Prioritized Insghts
Prioritized Insights

 0

 2

 4

 6

 8

 10

 0 10 20 30 40 50 60 70

Fig. 8: Priority vs Non-Priority Insights

Streamsight succeeded processing the entire dataset but the
Baseline configuration failed. For this reason, we set the
Baseline value to the processing time just before the system
failed. Thus, for a 25% overlap StreamSight achieved at least
a 26, 8% increase in performance.
D. Insight Prioritization Evaluation

The final experiment aims to evaluate the performance of
insights when prioritization is used. For this, we use insights
I1, I2, I4 and I5 from the Dublin dataset, in which I1 and
I2 are prioritized (SALIENCE 5) and fix the workload to an
input rate that allows the cluster to remain stable. The initial
topology is comprised of 16 workers and at t = 20 we double
the network latency between workers to cause an overall delay
increment in insight computation. Figure 8 depicts the total
delay for both prioritized and non-prioritized insights. We
observe that up to t = 20 the total delay was kept on average
below 4s. When workers are suddenly stressed and for about
12 time intervals, the delay increases for all insights until the
distributed processing engine is stabilized. After stabilization,
thanks to the StreamSight optimized query execution plan,
the Task Scheduler of the processing engine allocates more
resources to prioritized insights, with their delay falling back
to 4s, while non priority insights stabilize close to 8s.

VI. CONCLUSION

In this paper, we have presented StreamSight, a novel
framework for simplifying the specification, compilation and
execution of analytic queries on distributed processing en-
gines deployed in edge computing environments. To this end,
platform operators can rapidly compose analytic queries with
StreamSight automatically compiling and scheduling these
queries into stream processing jobs to derive runtime analytic
insights. With StreamSight, query definition is decoupled
from the programming model of the underlying distributed
processing engine, while query execution response time is
kept at permissible limits. Our evaluation on Apache Spark,
with real-world data and queries of actual interest, shows
that performance is significantly improved when intermediate
streams are reused. In turn, user-defined optimizations (ap-
proximate answers and prioritization) can be decisive for the
proper execution of stream processing operations in an edge
computing environment with limited resources.
Acknowledgement. This work is partially supported by the EU
Commission in terms of Unicorn 731846 (H2020-ICT-2016-1).

REFERENCES

[1] Ericsson, “Internet of Things 2018 Forecasts,” https://www.ericsson.
com/en/mobility-report/internet-of-things-forecast, 2018.

[2] B. Zhang, N. Mor, J. Kolb, D. S. Chan, K. Lutz, E. Allman,
J. Wawrzynek, E. Lee, and J. Kubiatowicz, “The cloud is not enough:
Saving iot from the cloud,” in 7th USENIX Workshop on Hot Topics in
Cloud Computing (HotCloud 15), Santa Clara, CA, Jul. 2015.

[3] D. Trihinas, G. Pallis, and M. Dikaiakos, “Low-Cost Adaptive Mon-
itoring Techniques for the Internet of Things,” IEEE Transactions on
Services Computing, pp. 1–1, 2018.

[4] W. Shi and S. Dustdar, “The promise of edge computing,” Computer,
vol. 49, no. 5, pp. 78–81, May 2016.

[5] K. Kloudas, M. Mamede, N. Preguiça, and R. Rodrigues, “Pixida:
Optimizing data parallel jobs in wide-area data analytics,” Proc. VLDB
Endow., vol. 9, no. 2, pp. 72–83, Oct. 2015.

[6] X. Sun and N. Ansari, “Edgeiot: Mobile edge computing for the internet
of things,” IEEE Communications, vol. 54, no. 12, pp. 22–29, 2016.

[7] J. Ren, H. Guo, C. Xu, and Y. Zhang, “Serving at the edge: A scalable
iot architecture based on transparent computing,” IEEE Network, vol. 31,
no. 5, pp. 96–105, 2017.

[8] D. Trihinas, L. F. Chiroque, G. Pallis, A. F. Anta, and M. D. Dika-
iakos, “ATMoN: Adapting the ”Temporality” in Large-Scale Dynamic
Networks,” in 2018 IEEE 38th International Conference on Distributed
Computing Systems (ICDCS), July 2018, pp. 400–410.

[9] L. Wang, L. Jiao, J. Li, and M. Mhlhuser, “Online resource allocation for
arbitrary user mobility in distributed edge clouds,” in 2017 IEEE 37th
International Conference on Distributed Computing Systems (ICDCS),
June 2017, pp. 1281–1290.

[10] V. D. Maio and I. Brandic, “First hop mobile offloading of dag
computations,” in 2018 18th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGRID), May 2018, pp. 83–92.

[11] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp.
637–646, Oct 2016.

[12] S. Nastic, S. Sehic, M. Vgler, H. L. Truong, and S. Dustdar, “Patricia –
a novel programming model for iot applications on cloud platforms,” in
2013 IEEE 6th International Conference on Service-Oriented Computing
and Applications, Dec 2013, pp. 53–60.

[13] R. Viswanathan, G. Ananthanarayanan, and A. Akella, “CLARINET:
Wan-aware optimization for analytics queries,” in 12th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI 16),
Savannah, GA, 2016, pp. 435–450.

[14] K. Hsieh, A. Harlap, N. Vijaykumar, D. Konomis, G. R. Ganger,
P. B. Gibbons, and O. Mutlu, “Gaia: Geo-distributed machine learning
approaching LAN speeds,” in 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 17). Boston, MA: USENIX
Association, 2017, pp. 629–647.

[15] A. Gupta, R. Harrison, M. Canini, N. Feamster, J. Rexford, and
W. Willinger, “Sonata: Query-Driven Streaming Network Telemetry,”
in Proceedings of SIGCOMM’18, Aug 2018.

[16] D. Trihinas, G. Pallis, and M. Dikaiakos, “ADMin: adaptive monitoring
dissemination for the internet of things,” in IEEE Conference on Com-
puter Communications (INFOCOM 2017), Atlanta, USA, May 2017.

[17] A. Jonathan, A. Chandra, and J. Weissman, “Locality-aware load sharing
in mobile cloud computing,” in Proceedings of the10th International
Conference on Utility and Cloud Computing, ser. UCC ’17. New York,
NY, USA: ACM, 2017, pp. 141–150.

[18] S. Yang, “Iot stream processing and analytics in the fog,” IEEE Com-
munications Magazine, vol. 55, no. 8, pp. 21–27, 2017.

[19] M. Satyanarayanan, P. Simoens, Y. Xiao, P. Pillai, Z. Chen, K. Ha,
W. Hu, and B. Amos, “Edge analytics in the internet of things,” IEEE
Pervasive Computing, vol. 14, no. 2, pp. 24–31, Apr.-June 2015.

[20] H. Cao, M. Wachowicz, and S. Cha, “Developing an edge computing
platform for real-time descriptive analytics,” in 2017 IEEE International
Conference on Big Data (Big Data), Dec 2017, pp. 4546–4554.

[21] Z. Wen, D. Quoc, P. Bhatotia, R. Chen, and M. Lee, “ApproxIoT: Ap-
proximate Analytics for Edge Computing,” in 38th IEEE International
Conference on Distributed Computing Systems (ICDCS 2018), 2018.

[22] Dublin, “Smart City ITS,” https://data.smartdublin.ie/, 2018.
[23] ANTLR, “parser generator,” http://www.antlr.org, 2018.
[24] B. Hubert et al., “Linux advanced routing & traffic control howto,” 2002.
[25] NYC, “Taxi & Limousine Commision,” https://goo.gl/X9rCpq, 2018.

https://www.ericsson.com/en/mobility-report/internet-of-things-forecast
https://www.ericsson.com/en/mobility-report/internet-of-things-forecast
https://data.smartdublin.ie/
http://www.antlr.org
https://goo.gl/X9rCpq

