
Demo: Emulating 5G-Ready Mobile IoT Services

Moysis Symeonides∗, Demetris Trihinas†, George Pallis∗, Marios D. Dikaiakos∗

∗ Department of Computer Science
University of Cyprus

{ msymeo03, gpallis, mdd }@cs.ucy.ac.cy

† Department of Computer Science
University of Nicosia
trihinas.d@unic.ac.cy

I. INTRODUCTION

The majority of IoT devices disseminate harvested data
through the internet for analysis by cloud services. However,
emerging applications, such as autonomous vehicle navigation,
are impacted by the Round-Trip-Time between the IoTs and
cloud. 5G networks and edge computing promise shorter RTTs
by bringing compute and network resources closer to IoT.
Network slicing is a key enabler for 5G networks, dividing
a physical network among a variety of services under their
individual needs. However, the design of a network slice
impacts the performance of the mobile IoT applications with
owners puzzled among the numerous slice configurations and
options. For instance, the placement of network access points
and available compute nodes, the wireless protocols, and
the midhaul and backhaul QoS are crucial factors impacting
service performance with the mobility of entities constituting
this issue even more daunting.

Operators can address this challenge by purchasing a high-
performance 5G network slice that provides radio units with
numerous antenna elements and powerful compute nodes fully
covering operational areas, however the latter is unrealistic
due to the increased operational costs. Consequently, users
have to select the minimum number of computing and network
components that are capable of handling the volatile mobile
workload and place them to maximize the network coverage.
Thus, users need to perform multiple trials on diverse slices
which is a rather time-consuming and costly procedure. In
each trial, users have to design and lease the respective
network slice, configure their physical IoT devices, deploy the
IoT services, and monitor various KPIs.

To alleviate the difficulties in setting up real-world 5G
testbeds, we will demonstrate 5G-Slicer [1], an emulation
framework that facilitates the definition of mobile network
slices through modeling abstractions for radio units, mobile
nodes, trajectories, etc., while also offering realistic network
QoS by dynamically altering -at runtime- signal strength.
Moreover, 5G-Slicer provides an already realized scenario for
a city-scale deployment that smart-city researchers can simply
configure through a “ready-to-use” template, leaving 5G-Slicer
responsible for translating it into an emulated environment.

II. 5G-SLICER FRAMEWORK
Figure 1 provides a high-level overview of 5G-Slicer1. A

typical deployment starts by either describing the application
1 A detailed description of 5G-Slicer’s modeling abstractions, implementation
decisions and extensive experimentation can be found in [1]

Execution Layer

Input Layer

Control Layer

Use-case Templates

NCG

Programming Primitives

Model Validator

Topology Builder

Trajectories Manager

Distance to QoS

Handshake Algorithm

Antenna Selection

Generated Model

Use-case
Parameters

Model
Description

Topology &
Trajectories Models

Emulated Application
Components

Interactive Map &
Metrics Modeling

Fogify
Connector

  name: dublin_network
  midhaul_QoS: 
    latency: { delay:3ms,
deviation:1ms} 
    data_rate: 1000Mbps
  backhaul_QoS: .... 
  wireless_connection_type: MIMO
    parameters:
      transmit_power: 30dBm 
      carrier_frequency: 28GHz 
      bandwidth: 100MHz
      noise_figure: 7.8dB 
      RU_antennas_gain: 8dBi 
      UE_antennas_gain: 3dBi 
      maximum_bitrate: 538.71Mbps 
      minmum_bitrate: 53.87Mbps 
      queuing_delay: 2ms
      RU_antennas: 8 
      UE_antennas: 4
      propagation_loss_func: Friis 
  RUs: ... 

 scenario:
  name: mobility
  actions: 
     -   label: bus-1 
         timestamp: 5s
         order: 0 
         parameters:  
            {lat: 52.51, lon: 13.38, alt: 0} 
     -   label: bus-2 
         timestamp: 5s
         order: 1
         parameters:  
            {lat: 52.53, lon: 13.39, alt: 0}

.... 

1

2

Fig. 1: 5G-Slicer overview
services and network fabric via the 5G-Slicer model specifi-
cation or by parameterizing a “ready-to-use” testbed template.
The model specification can denote a wide range of network
slice parameters, including the position of compute nodes
and RUs, network links and their QoS, mobile node traces,
communication protocols and VNFs applicable on nodes. On
the contrary , parametrizable use-case templates automatically
produce 5G deployments for IoT applications. The output of
each template is a programming view equivalent to a validated
deployment description. The topology and trajectories are
propagated to the control layer. Then, Topology Builder (TB)
extracts from the description the network slice specification
and any signal degradation models defined during the mod-
eling process. With these, the TB produces a Network Con-
ceptual Graph (NCG), which contains the aforementioned
information and will be used by the system for the runtime
state propagation during the experimentation. The graph nodes
represent network and compute devices annotated with infor-
mation about their capabilities and deployed services, while
edges denote the links between the nodes. The weight of each
edge is determined by network QoS, incl. data rate, network
delay, packet and error rate. Then 5G-Slicer translates the
NCG to an emulated environment by utilizing the Emulator
Connector. The connector is responsible for the emulation
environment instantiation, and the deployment of the IoT
application. 5G-Slicer’s prototype offers a connector for the

1



Services
bus-workload

edge-svc

cloud-svc

Nodes
mobile-nodeVM-edge-1

VM-cloud-1

Slices
mobile-slice-1

 services:
    edge-svc: 
        image: edge_svc:latest 
        environment:
             param1: test
       ...... 

1

mobile-slice-2 name: VM-edge-1
 processor:
     cores: 4
     clock_speed: 2.4GHz
 memory: 8GB     
 disk:
     type: SSD
     size: 64GB

2

Fig. 2: Services & Compute Nodes Fig. 3: 5G-Slicer Interactive Map

Device in RU coverage Device out of RU coverage

Fig. 4: 5G-Slicer profiling-kit (radar plot)

Fogify Framework, which is an interactive, multi-host, and
scalable fog emulator [2]. However, 5G-Slicer is not bounded
on Fogify, and users can extend the connector’s interface
to encapsulate other underlying emulators. Furthermore, the
Trajectory Manager parses the traces and applies the updates
on the NCG, and, in turn propagates these to the running
emulated environment. One can view through an interactive
map (Fig. 3) the traces of mobile nodes, their performance
(i.e. cpu, energy), and the load imposed to MECs.

III. DEMONSTRATION

We will demonstrate the usability of 5G-Slicer by rapidly
designing an emulation testbed, conducting repeatable experi-
ments, and showing insights from a real-world IoT application.
Scenario. Let us suppose that a bus operator develops an
IoT application that analyzes on-time streaming data from
its fleet, and would like to evaluate the service’s response
time on various 5G network slices to select the most efficient
solution. Towards that, the operator should communicate with
local network providers, lease different 5G network slices in
the operational area, configure each time the IoT devices,
conduct multiple experiments, and monitor the deployments.
However, taking advantage of the 5G-Slicer template, the
operator simply introduces a smart bus network testbed. The
template utilizes real-world mobility data from the Dublin
smart city project2. In this, buses continuously report their
locations and other attributes (i.e., environment conditions) to
a central ITS to perform location-based analytic tasks (i.e., bus
delay reporting), in collaboration with employed MECs that
act as local data aggregators and are placed nearby bus stops.
1 from 5GSlicerSDK import 5GSlicerSDK
2 from experiment_repo import BusExperiment
3 5g_slicer_sdk = 5GSlicerSDK(
4 ’http://controller:5000’,
5 ’docker-compose.yaml’)
6 bus_exp = BusExperiment(
7 5g_slicer_sdk, num_of_RUs=5, num_of_edge=5,
8 num_of_buses=10, bounding_box=(...) )
9 5g_slicer_sdk = bus_exp.generate_experiment()

10 5g_slicer_sdk.generate_mobile_networks()
11 5g_slicer_sdk.deploy()
12 5g_slicer_sdk.generate_map(’dublin_network’)
13 5g_slicer_sdk.scenario_execution(’mobility’)
14 5g_slicer_sdk.undeploy()

Snippet 1: Smart Bus Testbed Scenario and Template
Snippet 1 depicts a brief example of how 5G-Slicer pro-

gramming abstractions are used in the demo. Lines 1-2
import the 5G-Slicer SDK and the parameterizable smart
bus testbed template. In Lines 3-5, the user introduces the
2 https://data.smartdublin.ie

Fogify Controller address (experiment orchestrator) and the
docker-compose file, describing the available infrastructure
and network resources along with the emulation configuration.
An example of a mobile network configuration is shown in
Fig. 1 1⃝ while Fig. 2 1⃝ and 2⃝ illustrate the definitions of
services and compute nodes, respectively. Lines 6-8 configure
the testbed according to user preferences, including the number
of radio units, MECs, and buses, along with the operational
bounding box. The generate experiment method produces
a new SDK object that captures a programming view of
the 5G-Slicer model and materializes the testbed with the
mobility scenarios. Line 11 deploys the testbed and Line 12
generates the interactive map, as presented in Fig. 3. With the
scenario execution method in Line 13, the user can run the
mobility scenario that is generated from the datasets. Fig 1 2⃝
depicts a excerpt from a bus mobility trace configuration. Fi-
nally, Line 14 finishes the emulation and releases all resources.

To assess different deployment settings, the demo will
showcase the monitoring and analytics capabilities of 5G-
Slicer that can be exploited through ipython notebooks for
each experiment run. Our particular interest will be in showing
how to optimize the placement of the MECs when their
number, resource capabilities and network coverage change,
so that the MEC nodes consume the majority of the mobile
workload, rather than being routed to the, slower but more
powerful, ITS cloud service. For instance, Fig. 4 depicts two
utilization profiles of the IoT devices (bus data generators),
namely when the device is in range of an RU and disseminates
the IoT data, and when it is disconnected, storing data in-
memory. The utilization profiles are illustrated via percentage-
based (0-100%) radar charts, including CPU and memory
usage, network traffic, and energy consumption.
Demo reproducibility.5G-Slicer (and all libraries used in
this demo) are open-source and can run on a laptop. Thus,
attendees can deploy both 5G-Slicer and the demo scenarios
on their laptop, perform refinements to the experiments and
see in real-time their impact on the running deployment.
Demo link. https://github.com/UCY-LINC-LAB/5G-Slicer-demo
Acknowledgement. This work is partially supported by the EU Com-
mission through RAINBOW 871403 (ICT-15-2019-2020) project and
by the Cyprus Research and Innovation Foundation through the
COMPLEMENTARY/0916/0916/0171 project.

REFERENCES

[1] M. Symeonides, D. Trihinas, G. Pallis, M. D. Dikaiakos, C. Psomas, and
I. Krikidis, “5g-slicer: An emulator for mobile iot applications deployed
over 5g network slices,” in IEEE/ACM IoTDI, 2022.

[2] M. Symeonides, Z. Georgiou, D. Trihinas, G. Pallis, and M. D. Dikaiakos,
“Fogify: A fog computing emulation framework,” in IEEE/ACM SEC,
2020.

2


