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Abstract Unstructured P2P systems exhibit a great deal of robustnessand self-healing at the
cost of reduced scalability. Resource location is performed using a broadcast-
like process called flooding. The work presented in this paper comprises an
effort to reduce the overwhelming volume of traffic generated by flooding, thus
increasing the scalability of unstructured P2P systems. Using a simple hash-
based content categorization method the Ultrapeer overlaynetwork is partitioned
into a relatively small number of distinct subnetworks. By employing a novel
index splitting technique each leaf peer is effectively connected to each different
subnetwork. The search space of each individual flooding is restricted to a single
partition, and is thus considerably limited. This reduces significantly the volume
of traffic produced by flooding without affecting at all the accuracy of the search
method. Experimental results demonstrate the efficiency ofthe proposed method.
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1. Introduction

Peer-to-peer (P2P) systems have recently gained much popularity in the re-
search community as well as among the general public. Researchers show
an increasing interest in this paradigm because of its inherent scalability and
robustness, which promises to enable the development of global-scale, cooper-
ative, distributed applications. Different entities, under different authoritative
control, interconnect and cooperate to offer services to each other, each of them
acting both as a server and a as a client, thus the termpeersfor the participating
entities.

Existing P2P systems fall into two main categories.StructuredP2P systems
impose a certain order on the connectivity of the participating peers which is
reflected in the structure of the overall network. All files stored in the system
are indexed in a distributed manner by employing a Distributed Hash Table
(DHT), thus enabling efficient resource location in time usually logarithmic
to the number of peers. The drawback of this method however isthat the
maintenance of such a rigid structure limits the ability of structured P2P systems
to heal themselves efficiently in the face of failures and thus render them less
robust, albeit more scalable.

On the other hand,unstructuredP2P systems do not impose a certain struc-
ture to the network. Those systems are aptly named unstructured since each peer
is directly connected to a small set of other peers, calledneighbours, making
the network more ad-hoc in nature. The absence of a structuremakes such sys-
tems much more robust and highly self-healing compared to structured systems,
however, at the cost of reduced scalability. To exploit peerheterogeneity to the
system’s benefit, in [13, 4] a distinction between peers was introduced and a
two level hierarchy of peers was constructed. High bandwidth peers, theUltra-
peers(also known asSuperpeers), form an unstructured overlay network, while
peers with low bandwidth, theLeaves, are connected only to Ultrapeers. Each
Ultrapeer has an index of all the files contained in its Leaves. This modification
allows the system to retain its simplicity while offering improved scalability.

Due to the lack of a particular file indexing method, today’s unstructured P2P
systems employ a broadcast-like process calledfloodingfor resource location.
A peer looking for a file issues a query which is broadcast in the network, until
all peers have received the request or until the query propagates a predefined,
maximum number of hops away from its source (Time-To-Live hops or TTL).
Flooding generates a large number of messages, reducing thescalability of the
method. Due to the completely decentralized nature of flooding, each peer
may receive the same request through a number of different neighbours. Those
duplicate messages often exceed in number the non-duplicate ones. On a flood
aimed to reach the entire network, the number of duplicate messages isd − 2

times the number of non-duplicate messages, whered is the degree of the
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overlay network (average number of peers’ neighbours). Recent work carried
out in P2P systems with the aim of reducing the number of duplicates generated
[8]. However, even if all duplicate messages are eliminated, flooding would
still not scale well, since the cost of flooding a request to the entire network is
relative to the total number of peers. On the other hand, limiting the number of
hops a query propagates, achieves improved scalability at the cost of reduced
network coverage(defined as the percentage of peers that receive a request).
When a two level hierarchy of peers is involved, any request originating at a
Leaf peer is forwarded through the Ultrapeers it is connected to, while flooding
is performed only at the Ultrapeer overlay network.

The aim of the work presented in this paper is to improve the scalability of
flooding by reducing the number of peers that need to be contacted on each
request, without decreasing the probability of query success (accuracy of the
search method). The proposed method partitions the Ultrapeer overlay net-
work into distinct subnetworks. Using a simple hash-based categorization of
keywords the Ultrapeer overlay network is partitioned intoa relatively small
number of distinct subnetworks. In general unstructured P2P networks are in-
directly supplied with some information about the possiblelocation of each
resource. By employing a novel index splitting technique each Leaf peer is
effectively connected to each different subnetwork. The search space of each
individual flooding is restricted to a single partition, thus the search space is
considerably limited. This reduces the overwhelming volume of traffic pro-
duced by flooding without affecting at all the accuracy of thesearch method
(network coverage). Experimental results demonstrate theefficiency of the
proposed method.

The remainder of this paper is organized as follows: Following the related
work section, the method used to partition the overlay network is presented
in Section 3. In Section 4 the simulation details along with the experimental
results are presented. We conclude in section 5.

2. Related Work

In an effort to alleviate the large volumes of unnecessary traffic produced
during flooding several variations have been proposed. Schemes like Directed
Breadth First Search (DBFS) [12] forward requests only to those peers that
have often provided results to past requests, under the assumption that they will
continue to do so. Interest-based schemes, like [10] and [5]aim to cluster
together (make neighbours of) peers with similar content, under the assump-
tion that those peers are better suited to provide each other’s needs. Both those
systems try to contact peers that have a higher probability of containing the re-
quested information. Such schemes usually exhibit small gains over traditional
flooding.
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Figure 1. The Gnutella 2-tier architecture

Another technique widely used in unstructured P2P systems today, is 1-
hop replication. One-hop replication dictates that each peer should inform all
of its immediate neighbours of the files it contains. Using this information
during the last hop propagation of a request at the Ultrapeerlevel, the request
is forwarded exclusively to those last hop Ultrapeers that contain the requested
file. One-hop replication reduces number of messages generated during the
last hop of flooding [7]. However, the traffic generated during that last hop
constitutes the overwhelming majority of the traffic generated during the entire
flooding. Simple calculations show that 1-hop replication requiresd times
fewer messages to spread to the whole network compared to naive flooding,
whered is the average degree of the network (average number of connections
for each Ultrapeer). It is easy to prove that in order to flood an entire, randomly
constructed, network that employs 1-hop replication, one need only reach3/d
of the peers during all hops but the last. In today’s Gnutella, where the average
degree is 30, one would need to reach 10% of the peers and then use 1-hop
replication to forward the query to the appropriate last hoppeers, in order to
reach the entire network.

Most of today’s unstructured P2P systems implement 1-hop replication by
having peers exchange bloom filters of their indices. A Bloomfilter [3] is a
space efficient way to represent a set of objects (keys). Theyemploy one or
more uniform hash functions to map each key to a position in anN -sized binary
array, whose bits are initially set to 0. Each key is mapped through each hash
function to an array position which is set to 1. To check for the participation
of some key in the set, the key is hashed to get its array position. If that array
position is set to 1, the bloom filter indicates key membership. Bloom filters



Partitioning Unstructured Peer-to-Peer Systems 5

require much less space than the actual set, there is thus some loss of precision
translated in the possibility offalse positives. This means that a bloom filter
may indicate membership for some key that does not belong to the set (more
than one keys mapped to the same position). It cannot howeverindicate absence
of a key which is in the set (false negative).

In Gnutella 2 [1] which uses a 2-tier architecture, each Leafnode sends its
(list of keywords) in the form of a bloom filter to all Ultrapeers it is connected
to. Each Ultrapeer produced the XOR of all the bloom filters itreceives from its
Laves (approximately 30 Leaf nodes per Ultrapeer) and transmits this collective
bloom filter to all its neighboring Ultrapeers to implement the 1-hop replication.

Another approach that has been used in the literature to makeresource loca-
tion in unstructured P2P systems more efficient is the partitioning of the overlay
network into subnetworks using content categorization methods. A different
subnetwork is formed for each content category. Each subnetwork connects all
peers that posses files belonging to the corresponding category. Subnetworks
are not necessarily distinct. A system that exploits this approach is the Se-
mantic Overlay Networks (SONs) [6]. SONs use a semantic categorization of
music files based on the music genre they belong to. The main drawback of this
method is the semantic categorization of the content. In file-sharing systems
for instance, music files rarely contain information about the genre they belong
to and when they do so, each of them probably uses a different categorization
of music. In SONs, an already existing, online, music categorization database
is used. This database adds a centralized component in the operation of the net-
work. Notice that 1-hop replication can be employed in conjunction with this
scheme, inside each subnetwork. However, the fact that eachpeer may belong
to more than one subnetwork, reduces the average degree of each subnetwork
and thus, the efficiency of the 1-hop replication.

3. The Partitions Design

The system we propose in this paper allows for the partitioning of any type
of content. More specifically, we propose the formation of categories based on
easily applicable rules. Such a simple rule is to apply a uniform hash function
on each keyword describing the files. This hash function mapseach keyword
to an integer, from a small set of integers. Each integer defines a different
category. We thus categorize the keywords instead of the content (files) itself.
Given a small set of integers, it is very likely that each peerwill contain at least
one keyword from each possible category.

Unstructured P2P systems like Gnutella 2 [1] employ a 2-tierstructure. In
those systems Ultrapeers form a random overlay network, while Leaf nodes are
connected to Ultrapeers only. Each Leaf sends to the Ultrapeers it is connected
to its index in the form of a (compressed) bloom filter. Ultrapeers flood queries
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Figure 2. Illustration of the Gnutella network and the Partitions design

to the overlay network on the Leave’s behalf. Flooding is only performed at the
Ultrapeer level where 1-hop replication is implemented. Whenever an Ultrapeer
receives a request this is targetedly forwarded only down tothose Leaves that
contain the desired information (except in the case of falsepositives). Fig. 1
shows a schematic representation of the 2-tier architecture.

The keyword categorization method is used in 2-tier unstructured systems.
In the Partitions design, each Ultrapeer in the system is randomly and uniformly
assigned responsibility for a single keyword category, by randomly selecting
an integer from the range set of the hash function used to categorize the key-
words. Ultrapeers responsible for the same category form a distinct subnetwork.
Leaves connect to one Ultrapeer per subnetwork and send to itall the keywords
belonging to that category. Thus, an innovative index splitting technique is
used. Instead of each Leaf sending its entire index (in the form of a bloom fil-
ter) to an Ultrapeer, each Leaf splits its index (keywords) based on the defined
categories and distributes it to one Ultrapeer per category. Notice that peers op-
erating as Ultrapeers also operate as Leaves at the same time(have a dual role).
Even though in this design each Leaf connects to more than oneUltrapeers, the
volume of information it transmits is roughly the same sinceeach part of its
index is send to a single Ultrapeer. Each Leaf node sends to the Ultrapeer of
a certain category all keywords that belong to the same category (in the form
of a bloom filter). Each Ultrapeer sends to its neighboring Ultrapeers all the
aggregate indices of its Leaf nodes to implement 1-hop replication. In Fig. 2
we can see a schematic representation of the Partitions design.

This separation of Ultrapeers from content has the benefit ofallowing them
to be responsible for a single keyword category. The benefit of this is two-fold.
First, it reduces the size of the subnetworks since they are completely discrete
(at least on the overlay level). Secondly, it allows each Ultrapeer to use all its
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Ultrapeer connections to connect to other Ultrapeers of thesame subnetwork,
increasing the efficiency of 1-hop replication at the Ultrapeer level.

There are, however, two obvious drawbacks to this design. The first one
is due to the fact that each Leaf connects to more than one Ultrapeers, one
per content category. Even though each Leaf sends the same amount of index
data to the Ultrapeers upon connection as before, albeit distributed, however it
requires more keepalive messages to ensure that its Ultrapeers are still operating.
Keepalive messages however are very small compared to the average Gnutella
protocol message. In addition, query traffic is used to indicate liveliness most
of the time, thus avoiding sending keepalive messages. The second drawback
arises from the fact that each subnetwork contains information for a specific
keyword category. Requests however may contain more than one keywords
and each result should match all of them. Since each Ultrapeer is aware of
all keywords of its Leaves that belong to a specific category,it may forward a
request to some Leaf that contains one of the keywords but notall of them. This
fact reduces the efficiency of the 1-hop replication at the Ultrapeer level and
at the Ultrapeer to Leaf query propagation. This drawback isbalanced in two
ways. The first is that even though the filtering is performed using one keyword
only, Leaves’ bloom filters also contain one type of keywordsonly, making them
more sparse and thus reducing the probability of a false positive. Furthermore,
the most rare keyword can be used to direct the search, thus further increasing
the effectiveness of the search method. Finally, we also experimented with
sending the bloom filters with all keyword types to every Ultrapeer, regardless
of category, although Ultrapeers still extract and use onlykeywords of the same
category as their own to form their aggregate bloom filter in order to implement
1-hop replication.

All these schemes have varying degrees of maintenance costswhich we
explore in the next section using simulations.

4. Experimental Results

In this section, we shall present the results from the simulations we con-
ducted, in order to measure both the efficiency of the Partitions scheme in
terms of cost of flooding (in messages) and maintenance costs.

We assumed a peer population of 2 million, a number reported by LimeWire
Inc [2]. Each Ultrapeer in the Gnutella network serves 30 Leaves, a number
obtained from real-world measurements [11]. In addition, each peer contains a
number of files (and hence keywords) derived from a distribution also obtained
from real-world measurements in [9].

Each Ultrapeer in the Partitions design serves 300 Leaves since we assume
a number of 10 content categories and thus subnetworks. We perform a large
number of floods, each designed to return at least a thousand query results before
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terminating. Table 1 shows the ratio of the average number ofmessages per
flood for the Partitions design over the average number of messages per flood
in Gnutella. Replication means that each Leaf sends all its keywords to all
Ultrapeers it is connected to, regardless of category. For example, in the case of
replication, flooding in the Partitions design generates 5.5 times less messages
than flooding in Gnutella, in order to return the same number of results per query.
We can see that the drawback of filtering using only one keyword is balanced
by the fact that the sparser Leaf indices (since they containonly one keyword
category) produce less false positives, but mainly outweighed by the message
reduction due to the partitioning of the network and therefore the reduction of
the search space. We would like to emphasize that each Partitions bloom filter
(i.e. containing keywords of a certain category) has the length of a Gnutella
bloom filter. Thus, one can roughly think of all the bloom filters of a single
Partitions leaf as a (distributed) Gnutella bloom filter of 10 times the length
(due to the 10 category types). However the bandwidth neededto transfer such
a bloom filter is not 10 times that of a Gnutella bloom filter, mainly because
sparser bloom filters are compressed more efficiently.

Table 1. Flooding efficiencies.

Ratio

No replication 4.2

Replication 5.5

In order to measure the maintenance cost of Gnutella and Partitions, we focus
on the operation of a single Ultrapeer, because the load of Leaves is negligible
in both systems compared to a Ultrapeers load since flooding is performed at the
Ultrapeer overlay. In both cases we simulated three hours inthe life of a single
Ultrapeer, with Leaves coming and going. Each time a Leaf is connecting to the
Ultrapeer, it sends its index information, which is propagated by the Ultrapeer
to its thirty Ultrapeer neighbors. In addition, we assumed that, periodically ,
each Ultrapeer receives a small keep-alive message from each Leaf and replies
with a similar message to each one of them, unless a query and areply were
exchange during the specified period. For each communication taking place,
we measured the incoming or outgoing traffic in bytes, in order to estimate the
bandwidth requirements.

There are two modifications in this scenario, between Gnutella and Partitions.
In Partitions, the number of Leaves is 300. In addition, the process of computing
the size of the index information sent to the Ultrapeer differs greatly. In the case
of Gnutella, we have used the code by LimeWire [2], the most popular Gnutella
client, to construct the bloom filter of each Leaf. We first randomly decided on
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Figure 3. Maintenance traffic load for
Gnutella and Partitions using Bloom Fil-
ters. Incoming, Outgoing and Total traffic.

Figure 4. Query traffic load for Gnutella
and Partitions using Bloom Filters. Incom-
ing, Outgoing and Total traffic.

Figure 5. Operational traffic load for Gnutella and Partitions using Bloom Filters. Incoming,
Outgoing and Total traffic.
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the number of files shared by each Leaf, based on the file sharing distribution
per peer presented in [9]. We then extracted this number of files from a list of
filenames obtained from the network by a Gnutella crawler developed in out
lab. Those filenames were fed to the LimeWire bloom filter generation code,
which produced the corresponding bloom filter in compressedform, i.e., the
way it is sent over the network by LimeWire servents. Thus we constructed the
actual bloom filter, although what we really need in this caseis just its size. In
the case of Partitions, we likewise computed the number of files to be shared
by each Leaf. We extracted again the same number of filenames from the list
of available filenames.

We subdivided the Partitions scheme depending on the form ofthe index
information sent by Leaves to Ultrapeers. Two experiments were run with the
Partitions scheme using bloom filters. In the first, each bloom filter sent to
an Ultrapeer only contained appropriate keywords (of the same category as
the corresponding Ultrapeer). In the second experiment, weused replication,
i.e. each bloom filter contained all the keywords of the Leaf,regardless of
category. In addition, positions of keywords of the corresponding category as
the Ultrapeer were set in the bloom filter to the value of two instead of one.
(This bloom filter essentially distinguishes between keywords of the appropriate
category and the rest of the categories).

Fig. 3 shows the results of the simulation for the cost of maintaining the
structures of Gnutella and Partitions, without any query (flood) traffic. From
this figure it is obvious that, as expected, the maintenance cost of partitions
is higher than that of Gnutella, but not that much. As we will see in the next
paragraph the gains incurred during the operational phase of the two systems
outweighs the increased maintenance costs.

We then focused our attention to the query traffic load. Measurements con-
ducted in our lab showed that, on the average, each Ultrapeergenerates 36
queries per hour (i.e., queries initiated by itself or its Leaves). This adds up
to approximately 2000 queries per second generated anywhere in the Gnutella
network. In addition, we observed a large number of Gnutellaqueries in order
to find the distribution of the number of keywords in each query. Thus, accord-
ing to those observations, during the simulations we assumed that 20% of the
queries contain 1 keyword, 30% contain two, another 20% contain three and
finally a 30% contain 4 keywords.

In our simulation, we assumed that the aim of each flood (both in Gnutella and
Partitions) is to reach the entire network, or produce a fixednumber of results,
whichever comes first. As we mentioned before, such a flood that aims to reach
the entire network would need to reach1

10
th of the Gnutella’s network (or a

Partitions’ subnetwork) during all hops of flooding except the last. This means
that the Ultrapeer in our simulations has a probability of 0.1 to receiving each
query. In addition, every time this does not occur, it has another opportunity
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to receive the query during the last hop, depending on its bloom filter (in case
the searched keywords match in the bloom filter). Should the Ultrapeer receive
a query, it is assumed to propagate it to its Leaves, again depending on their
bloom filters or index (again depending on a possible keywordmatch by the
bloom filter). Fig. 5 shows the comparison in the traffic load of Gnutella and
Partitions, including maintenance and query traffic. We used a size of 40 bytes
for each query. In reality, the size of a query can be up to a fewhundred bytes,
if XML extensions are used. This means that the performance gains described
here are smaller compared to the ones we expect to see in the real world. In
addition, for every 1400 bytes for each message sent, we added 40 bytes for the
TCP and IP header. From these figures it is evident that Partitions outperform
Gnutella in operational costs, in every case. Finally in Fig. 4 one can see the
query traffic load alone (without the maintenance traffic) for both the Gnutella
and the Partitions Ultrapeer.

5. Conclusions

In this paper, we have described a novel approach to reducingthe message
costs of querying an unstructured network. A simple model has been described
to illustrate that the benefits obtained from our scheme can be as high as an
order of magnitude. Work is being carried out to measure the performance of
our scheme, while varying the number of partitions. Furthermore, the benefit of
Leaves communicating their full index (actual keywords) toUltrapeers instead
of bloom filter is currently exploited.
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