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Abstract Computational Grids like EGEE offer sufficient capacity foreven most
challenging large-scale computational experiments, thusbecoming an indispensable
tool for researchers in various fields. However, the utilityof these infrastructures is
severely hampered by its notoriously low reliability: a recent nine-month long study
found that only 48% of jobs submitted in South-Eastern-Europe completed success-
fully. We attack this problem by means of proactive failure detection. Specifically,
we attempt to predict site failures on short-term time scaleby deploying machine
learning algorithms to discover relationships between site performance variables
and subsequent failures. Such predictions can be used by Resource Brokers for de-
ciding where to submit new jobs, and help operators to take preventive measures.
Our experimental evaluation on a 30-day trace from 197 EGEE queues shows that
the accuracy of results is highly dependent on the selected queue, the type of failure,
the preprocessing and the choice of input variables.

1 Introduction

Detecting and managing failures is an important step towards the goal of a de-
pendable and reliable Grid. Currently, this is an extremelycomplex task that re-
lies on over-provisioning of resources, ad-hoc monitoringand user intervention.
Adapting ideas from other contexts such as cluster computing [11], Internet ser-
vices [9, 10] and software systems [12] is intrinsically difficult due to the unique
characteristics of Grid environments. Firstly, a Grid system is not administered cen-
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trally; thus it is hard to access the remote sites in order to monitor failures. More-
over failure feedback mechanisms cannot be encapsulated inthe application logic
of each individual Grid software, as the Grid is an amalgam ofpre-existing software
libraries, services and components with no centralized control. Secondly, these sys-
tems are extremely large; thus, it is difficult to acquire andanalyze failure feedback
at a fine granularity. Lastly, identifying the overall stateof the system and exclud-
ing the sites with the highest potential for causing failures from the job scheduling
process, can be much more efficient than identifying many individual failures.

In this work, we define the concept ofGrid Tomography1 in order to discover
relationships between Grid site performance variables andsubsequent failures. In
particular, assuming a set of monitoring sources (system statistics, representative
low-level measurements, results of availability tests etc.) that characterize Grid sites
we predict with high accuracy site failures on short-term time scale by deploying
various off-the-shelf machine learning algorithms. Such predictions can be used for
deciding where to submit new jobs and help operators to take preventive measures.

Through this study we manage to answer several questions that have to our
knowledge not been addressed before. Particularly, we provide answers to questions
such as:“How many monitoring sources are necessary to yield a high accuracy?”’;
“Which of them provide the highest predictive information?” , and“How accurately
can we predict the failure of a given Grid site X minutes aheadof time?” Our find-
ings support the argument that Grid tomography data is indeed an indispensable
resource for failure prediction and management. Our experimental evaluation on a
30-day trace from 197 EGEE queues shows that the accuracy of results is highly de-
pendent on the selected queue, the type of failure, the preprocessing and the choice
of input variables.

This paper builds upon on previous work in [20], in which we presented the
preliminary design of FailRank architecture. In FailRank,monitoring data is contin-
uously coalesced into a representative array of numeric vectors, theFailShot Matrix
(FSM). FSM is then continuously ranked in order to identify theK sites with the
highest potential to feature some failure. This allows the Resource Broker to au-
tomatically exclude the respective sites from the job scheduling process. FailRank
is an architecture for on-line failure ranking using linearmodels, while this work
investigates the problem of predicting failures by deploying more advanced, non-
linearclassification algorithmsfrom the domain of machine learning.

In summary, this paper makes the following contributions:

• We propose techniques to predict site failures on short-term time scale by de-
ploying machine learning algorithms to discover relationships between site per-
formance variables and subsequent failures;

• We analyze which sources of monitoring data have the highestpredictive infor-
mation and determine the influence of preprocessing and prediction parameters
on the accuracy of results;

1 Grid Tomographyrefers in our context to the process of capturing the state ofa grid system by
sections, i.e., individual state attributes, (tomosis the Greek word forsection.)
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• We experimentally validate the efficiency of our propositions with an extensive
experimental study that utilizes a 30-day trace of Grid tomography data that we
acquired from the EGEE infrastructure.

The remainder of the paper is organized as follows: Section 2formalizes our
discussion by introducing the terminology. It also describes the data utilized in this
paper, its preprocessing, and the prediction algorithms. Section 3 presents an ex-
tensive experimental evaluation of our findings obtained byusing machine learning
techniques. Finally, Section 4 concludes the paper.

2 Analyzing Grid Tomography Data

This section starts out by overviewing the anatomy of the EGEE Grid infrastruc-
ture and introducing our notation and terminology. We then discuss the tomography
data utilized in our study, and continue with the discussionof pre-processing and
modeling steps used in the prediction process.

2.1 The Anatomy of a Grid

A Grid interconnects a number of remote clusters, orsites. Each site features hetero-
geneous resources (hardware and software) and the sites areinterconnected over an
open network such as the Internet. They contribute different capabilities and capac-
ities to the Grid infrastructure. In particular, each site features one or moreWorker
Nodes, which are usually rack-mounted PCs. TheComputing Elementruns various
services responsible for authenticating users, acceptingjobs, performing resource
management and job scheduling. Additionally, each site might feature aLocal Stor-
agesite, on which temporary computation results can reside, and local Software
libraries, that can be utilized by executing processes. Forinstance, a computation
site supporting mathematical operations might feature locally the Linear Algebra
PACKage (LAPACK). The Grid middleware is the component that glues together
local resources and services and exposes high-level programming and communica-
tion functionalities to application programmers and end-users. EGEE uses the gLite
middleware [6], while NSF’s TeraGrid is based on the Globus Toolkit [5].

2.2 The FailBase repository

Our study uses data from ourFailBase Repositorywhich characterizes the EGEE
Grid in respect to failures between 16/3/2007 and 17/4/2007[14]. FailBase paves
the way for the community to systematically uncover new, previously unknown pat-
terns and rules between the multitudes of parameters that can contribute to failures
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in a Grid environment. This database maintains informationfor 2,565 Computing
Element (CE)queueswhich are essentially sites accepting computing jobs. For our
study we use only a subset of queues for which we had the largest number of avail-
able types of monitoring data. For each of them the data can bethought of as atime-
series, i.e., a sequence of pairs (timestamp,value-vector). Eachvalue-vector consists
of 40 values calledattributes, which correspond to various sensors and functional
tests. That comprises theFailShot Matrixthat encapsulates the Grid failure values
for each Grid site for a particular timestamp.

2.3 Types of monitoring data

The attributes are subdivided into four groups A, B, C and D depending of their
source as follows [13]:

A. Information Index Queries (BDII): These 11 attributes have been derived from
LDAP queries on the Information Index hosted onbdii101.grid.ucy.ac.cy. This
yielded metrics such as the number of free CPUs and the maximum number of
running and waiting jobs for each respective CE-queue.

B. Grid Statistics (GStat): The raw basis for this group is data downloaded from the
monitoring web site of Academia Sinica [7]. The obtained 13 attributes contain
information such as the geographical region of a Resource Center, the available
storage space on the Storage Element used by a particular CE,and results from
various tests concerning BDII hosts.

C. Network Statistics (SmokePing): The two attributes in this group have been de-
rived from a snapshot of thegPing database from ICS-FORTH (Greece). The
database contains network monitoring data for all the EGEE sites. From this col-
lection we measured the average round-trip-time (RTT) and the packet loss rate
relevant to each South East Europe CE.

D. Service Availability Monitoring (SAM): These 14 attributes contain information
such as the version number of the middleware running on the CE, results of
various replica manager tests and results from test job submissions. They have
been obtained by downloading raw html from the CE sites and processing them
with scripts [4].

The above attributes have different significance when indicating a site failure.
As group D contains functional and job submission tests, attributes in this group are
particularly useful in this respect. Following the resultsin Section 3.2 we regard two
of thesesam attributes, namelysam-js andsam-rgma as failure indicators. In
other words, in this work we regard certain values of these two attributes as queue
failures, and focus on predicting their values.
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2.4 Preprocessing

The preprocessing of the above data involves several initial steps such as masking
missing values, (time-based) resampling, discretization, and others (these steps are
not a part of this study, see [13, 14]). It is worth mentioningthat data in each group
has been collected with different frequencies (A, C: once a minute, B: every 10
minutes, D: every 30-60 minutes) and resampled to obtain a homogeneous 1-minute
sampling period. For the purpose of this study we have further simplified the data
as follows: all missing or outdated values have been set to−1, and we did not make
difference in severity of errors. Consequently, in our attribute data we use−1 for
“invalid” values, 0 to indicate normal state, and 1 to indicate a faulty state. We call
such a modified vector of (raw and derived) values asample.

In the last step of the preprocessing, a sample corresponding to timeT is assigned
a(true) labelindicating a future failure as follows. Having decided which of thesam
attributesS represents a failure indicator, we set this label to 1 if any of the values
of S in the interval[T +1,T + p] is 1; otherwise the label of the sample is set to 0.
The parameterp is called thelead time. In other words, the label indicates a future
failure if thesam attributeS takes a fault-indicating value atany time during the
subsequentp minutes.

2.5 Modeling methodology

Our prediction methods aremodel-based. A modelin this sense is a function map-
ping a set of raw and/or preprocessed sensor values to an output, in our case a binary
value indicating whether the queue is expected to be healthy(0) or not (1) in a spec-
ified future time interval. While such models can take a form of a custom formula or
an algorithm created by an expert, we use in this work ameasurement-basedmodel
[17]. In this approach, models are extrapolatedautomaticallyfrom historical rela-
tionships between sensor values and the simulated model output (computed from
offline data). One of the most popular and powerful class of the measurement-based
models areclassification algorithmsor classifiers[19, 3]. They are usually most
appropriate if outputs are discrete [17]. Moreover, they allow the incorporation of
multiple inputs or even functions of data suitable to exposeits information content
in a better way than the raw data. Both conditions apply in oursetting.

A classifier is a function which maps ad-dimensional vector of real or discrete
values calledattributes(or features)to a discrete value calledclass label. In the
context of this paper each such vector is a sample and a class label corresponds
to the true label as defined in Section 2.4. Note that for an error-free classifier the
values of class labels and true labels would be identical foreach sample. Prior to
its usage as a predictive model, a classifier istrained on a set of pairs (sample,
true label). In our case samples have consecutive timestamps. We call these pairs
the training dataand denote byD the maximum amount of samples used to this
purpose.
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Fig. 1 Recall and Precision of eachsam attribute

A trained classifier is used as a predictive model by letting it compute the class
label values for a sequence of samples following the training data. We call these
samplestest data. By comparing the values of the computed class labels against the
corresponding true labels we can estimate the accuracy of the classifier. We also
perform model updates after all samples from the test data have been tested. This
number - expressed in minutes or number of samples - is calledtheupdate time.

In this work we have tested several alternative classifiers such as C4.5, LS,
Stumps, AdaBoost and Naive Bayes. The interested reader is referred to [3, 16]
for a full description of these algorithms.

3 Experimental Results

Each prediction run (also calledexperiment) has a controlled set of preprocessing
parameters. If not stated otherwise, the following defaultvalues of these parameters
are used. The size of the training dataD is set to 15 days or 21600 samples, while
the model update time is fixed to 10 days (14400 samples). We use a lead time
of 15 minutes. The input data groups are A and D, i.e., each sample consists of
11+ 14 attributes from both groups. On this data we performed attribute selection
via the backward branch-and-bound algorithm [16] to find 3 best attributes used as
the classifier input. As classification algorithm we deployed the C4.5 decision tree
algorithm from [15] with the default parameter values.
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Fig. 2 Standard deviation and failure ratio for eachsam attribute

Fig. 3 Recall of attributesam-rgma for all 197 queues

3.1 Evaluation metrics: recall and precision

During preprocessing, each training or test sample is assigned atrue label: a value
of 1 indicates a failure at the corresponding sample time, and a value 0 indicates
no failure. During testing, a classifier assigns to each testsample apredicted label
with analogous values. Obviously, the more frequently bothvalues agree, the higher
the quality of predictions. For the purpose of failure prediction cases with true label
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equal to 1 are especially interesting. This gives rise to thefollowing definitions
common in the field of document retrieval.

For all test examples in a single experiment,recall is the number of examples
with both predicted and true label equal 1 divided by number of cases with true label
equal 1. This metrics estimates the probability that a failure is indeed predicted. The
precisionis the ratio of the number of examples with both predicted andtrue labels
equal 1 to the number of examples with predicted label equal 1. It is interpreted as
the probability that a predicted failure really occurs. We use in the following these
two metrics to evaluate prediction accuracy.

3.2 Analysis of prediction accuracy

We shall next present an extensive experimental study, which focuses on two as-
pects: First, we investigate the influence of monitoring data groups as well as var-
ious preprocessing and mining parameters on the accuracy ofresults. Second, we
seek to determine the highest prediction accuracy (measured in terms of recall and
precision) that can be achieved depending on specific requirements on the predic-
tions. For example, one type of the latter questions is:how accurately can we predict
the behavior of a Grid site X minutes ahead of time?

Selecting the target attributes.

First we study whichsam attributes are most interesting in terms of prediction accu-
racy and variance. We compute recall and precision for each combination of queue
/ sam attribute. Figure 1 shows these results for each particularsam attribute av-
eraged over all queues. The preliminary conclusion from thefigure is that most of
thesam attributes (i.e., 12 out of the 14) are good choices for yielding a high re-
call/precision.

Consequently, we also considered thefailure ratio: the ratio of all samples in-
dicating a failure (in respect to the chosen target attribute) to all samples. Figure
2 shows these values for eachsam attribute, averaged over all queues. The at-
tributessam-bi, sam-gfal, sam-csh, sam-ver andsam-swdir had a
low failure ratio and standard deviation and were consequently excluded from fur-
ther consideration.

We additionally ranked the remaining attributes accordingto their importance
and their recall values, and consequently decided to only focus on the following two
attributes:

• sam-js: This is a test that submits a simple job for execution to the Grid and then
seeks to retrieve that job’s output from the UI. The test succeeds only if the job
finishes successfully and the output is retrieved.

• sam-rgma: R-GMA [2] is the Relational Grid Monitoring Architecture which
makes all Grid monitoring data appear like one large Relational Database that
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may be queried in order to find the information required. Thesam-rgma test
tries to insert a tuple and run a query for that tuple. The testreturns success if all
operations are successful.

Figure 3 shows that the recall ofsam-rgma varies strongly among the queues.
We observed a similar behavior for the failure indicatorsam-js but omit these
results for brevity.

Data characteristics and accuracy.

Fig. 4 Recall vs. sorted failure ratio ofsam-js for all 197 queues

Next, we investigated the key characteristics of the data and how their variations
influence the prediction accuracy. For each of the 197 queuesand for the two tar-
get attributes (sam-js andsam-rgma) we computed the failure ratio as defined
above. We then sorted all queues by increasing failure ratios and plotted the cor-
responding recall values for predictions with standard values. As seen in Figure 4
there is obviously no relationship between failure ratio and prediction accuracy. The
same conclusions apply for thesam-rgma attribute.

We have also inspected visually the failure patterns over time in our data. Typ-
ically, an occurrence of a failure or non-failure is followed by a large number of
samples of the same kind, i.e., the failure state does not change frequently; see top
graph in Figure 5. Also typically the prediction errors occur right after the change
in the failure state. This indicates that the value of the last historical sample of the
target attribute was a good indicator of its future value.
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Fig. 5 Comparison of true and predicted failures for a typical interval of data (queue number 6,
attributesam-js, samples 27100 to 27500)

Effects of different classification algorithms.

Despite the theoretical knowledge and practical evidence that no classification algo-
rithm can perform significantly better than others [8, 1] we experienced substantial
deviations in recall and precision values for different algorithms, in the absence of
attribute selection. We attribute this to the potentially high dimensionality of the in-
put data (up to 40 attributes if all input groups are used) anda relatively large noise
in the data. Figure 6 shows the recall values of five classification algorithms (see
[15]) for the attribute sam-js averaged over 10 randomly selected queues (indexes
6, 9, 19, 54, 62, 75, 86, 137, 163, 188) without and with an attribute selection al-
gorithm. Other algorithms such as k-nearest neighbor classifier or Support Vector
Machine did not produce representative results due to memory or implementation
problems in the used libraries [16, 15]. Figure 6 tells us that the AdaBoost algorithm
(combined with Stumps) yielded best recall values. Furthermore, attribute selection
improved the accuracy in all cases but for C4.5. Despite of this fact, C4.5 has been
used as it had very small running time compared e.g. to AdaBoost.

4 Conclusions

In this paper we attack the problem of low reliability in job completion of Grid
systems by means of proactive failure detection. Specifically, we predict site fail-
ures on short-term time scale by deploying classification algorithms that discover
the relationships between site performance variables and subsequent failures. Our
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Fig. 6 Recall (sam-js) for five different classification algorithms without and with attribute se-
lection (averaged over 10 queues)

experimental evaluation on a 30-day trace from 197 EGEE queues shows that the
accuracy of results can be significantly high in many cases.
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