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Abstract. Web crawlers are the key component of services running
on Internet and providing searching and indexing support for the en-
tire Web, for corporate Intranets and large portal sites. More recently,
crawlers have also been used as tools to conduct focused Web searches
and to gather data about the characteristics of the WWW. In this pa-
per, we study the employment of crawlers as a programmable, scalable,
and distributed component in future Internet middleware infrastructures
and proxy services. In particular, we present the architecture and imple-
mentation of, and experimentation with WebRACE, a high-performance,
distributed Web crawler, filtering server and object cache. We address the
challenge of designing and implementing modular, open, distributed, and
scalable crawlers, using Java. We describe our design and implementa-
tion decisions, and various optimizations. We discuss the advantages and
disadvantages of using Java to implement the WebRACE-crawler, and
present an evaluation of its performance. WebRACE is designed in the
context of eRACE, an extensible Retrieval Annotation Caching Engine,
which collects, annotates and disseminates information from heteroge-
neous Internet sources and protocols, according to XML-encoded user
profiles that determine the urgency and relevance of collected informa-
tion.

1 Introduction

In this paper we present the design, implementation, and empirical analysis
of WebRACE,, a distributed crawler, filtering processor and object cache. We-
bRACE is part of a more generic system, called eRACFE (extensible Retrieval,
Annotation and Caching Engine), which is a distributed middleware infrastruc-
ture that enables the development and deployment of content-delivery and mo-
bile services on Internet [13]. eRACE collects information from heterogeneous
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Internet sources according to pre-registered, XML-encoded user and service pro-
files. These profiles drive the collection of information and determine the rele-
vance and the urgency of collected information. eRACE offers a functionality
that goes beyond the capabilities of traditional Web servers and proxies, pro-
viding support for intelligent personalization, customization and transcoding of
content, to match the interests and priorities of individual end-users connected
through fixed and mobile terminals. Its goal is to enable the development of new
services and the easy re-targeting of existing services to new terminal devices.

WebRACE is the Web-specific proxy of eRACE. It crawls the Web to re-
trieve documents according to user profiles. The system subsequently caches
and processes retrieved documents. Processing is guided by pre-defined user
queries and consists of keywords-searches, title-extraction, summarizing, classi-
fication based on relevance with respect to user-queries, estimation of priority,
urgency, etc. WebRACE processing results are encoded in a WebRACE-XML
grammar and fed into a dissemination server, which is designed to select dy-
namically among a suite of available choices for information dissemination, such
as “push” vs. “pull,” the formatting and transcoding of data (HTML, WML,
XML), the connection modality (wireless vs. wire-based), the communication
protocol employed (HTTP, GSM/WAP, SMS), etc.

In the following sections we describe our design effort, and implementation
experience with using Java to develop the high-performance Crawler, Annotation
Engine and Object Cache of WebRACE. We also describe a number of techniques
employed to achieve high-performance, such as distributed design to enable the
execution of crawler modules to different machines, support for multithread-
ing, caching of crawling state, customized memory management, employment of
persistent data structures with disk-caching support, optimizations of the Java
core libraries for TCP/IP and HTTP communication, etc. Finally, we provide
performance measurements from typical executions of WebRACE.

The remaining of the paper is organized as follows: Section 2 presents an
overview of the WebRACE system architecture and the challenges addressed in
our work. Sections 3 and 4 describe the design and implementation of a Crawler
and Object Cache, used to retrieve and store content from the Web. Section 5
presents the Filtering Processor that analyzes the collected information, accord-
ing to user-profiles. Finally, Section 7 summarizes our conclusions.

2 WebRACE Design and Implementation Challenges

WebRACE is comprised of two basic components, the Mini-crawler and the
Annotation Engine, which operate independently and asynchronously (see Fig-
ure 1). Both components can be distributed to different computing nodes, ex-
ecute in different Java heap spaces, and communicate through a permanent
socket link; through this socket, the Mini-crawler notifies the Annotation En-
gine every time it fetches and caches a new page in the Object Cache. The
Annotation Engine can then process the fetched page asynchronously, according
to pre-registered user profiles or other criteria.



In the development of WebRACE we address a number of challenges: First,
is the design and implementation of a user-driven crawler. Typical crawlers em-
ployed by major search engines such as Google [3], start their crawls from a
carefully chosen fixed set of “seed” URL’s. In contrast, the Mini-crawler of We-
bRACE receives continuously crawling directives which emanate from a queue
of standing eRACE requests (see Figure 1). These requests change with shifting
eRACE-user interests, updates in the base of registered users, changes in the set
of monitored resources, etc.
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Fig. 1. WebRACE System Architecture.

Second, is the design of a crawler that monitors Web-sites exhibiting frequent
updates of their content. WebRACE should follow and capture these updates
so that interested users are notified by eRACE accordingly. Consequently, We-
bRACE is expected to crawl and index parts of the Web under short-term time
constraints and maintain multiple versions of the same Web-page in its store,
until all interested users receive the corresponding alerts.

Similarly to personal and site-specific crawlers like SPHINX [16] and NetAt-
tache Pro [11], WebRACE is customized and targets specific Web-sites. These
features, however, must be sustained in the presence of a large and increasing
user base, with varying interests and different service-level requirements. In this
context, WebRACE must be scalable, sustaining high-performance and short
turn-around times when serving many users and crawling a large portion of



the Web. To this end, it should avoid duplication of effort and combine simi-
lar requests when serving similar user profiles. Furthermore, it should provide
built-in support for QoS policies involving multiple service-levels and service-
level guarantees. Consequently, the scheduling and performance requirements of
WebRACE crawling and filtering face very different constraints than systems
like Google [3], Mercator [9], SPHINX [16] or NetAttache Pro [11].

Finally, WebRACE is implemented entirely in Java. Its implementation con-
sists of approximately 5500 lines of code, 2649 of which correspond to the Mini-
crawler implementation, 1184 to the Annotation Engine, 367 to the SafeQueue
data structure, and 1300 to common I/0O libraries. Java was chosen for a variety
of reasons. Its object-oriented design enhances the software development pro-
cess, supports rapid prototyping and enables the re-use and easy integration of
existing components. Java class libraries provide support for key features of We-
bRACE: platform independence, multithreading, network programming, high-
level programming of distributed applications, string processing, code mobility,
compression, etc. Other Java features, such as automatic garbage collection, per-
sistence and exception handling, are crucial in making our system more tolerant
to run-time faults.

The choice of Java, however, comes with a certain risk-factor that arises
from known performance problems of this programming language and its run-
time environment. Notably, performance and robustness are issues of critical
importance for a system like WebRACE, which is expected to function as a
server, to run continuously and to sustain high-loads at short periods of time. In
our experiments, we found the performance of Java SDK 1.3 satisfactory when
used in combination with the Java HotSpot Server VM [15, 14]. Furthermore,
the Garbage Collector, which seemed to be a problem with earlier Java versions,
has a substantially improved performance and effectiveness under Java v.1.3.

Numerous experiments with earlier versions of WebRACE, however, showed
that memory management cannot rely entirely on Java’s garbage collection.
During long crawls, memory allocation increased with crawl size and duration,
leading to over-allocation of heap space, heap-space overflow exceptions, and sys-
tem crashes. Extensive performance and memory debugging with the Optimizelt
profiler [20] identified a number of Java core classes that allocated new objects
excessively and caused heap-space overflows and performance degradation. Con-
sequently, we had to develop our own data-structures that use a bounded amount
of heap-space regardless of the crawl size, and maintain part of their data on disk.
Furthermore, we re-wrote some of the mission-critical Java classes, streamlining
very frequent operations. More details are given in the sections that follow.

3 The Mini-crawler of WebRACE

A crawler is a program that traverses the hypertext structure of the Web au-
tomatically, starting from an initial hyper-document and recursively retrieving
all documents accessible from that document. Web crawlers are also referred to
as robots, wanderers, or spiders. Typically, a crawler executes a basic algorithm



that takes a list of “seed” URL’s as its input, and repeatedly executes the fol-
lowing steps [1]: It initializes the crawling engine with the list of seed URL’s
and pops a URL out of the URL list. Then, it determines the IP address of the
chosen URL’s host name, opens a socket connection to the corresponding server,
asks for the particular document, parses the HT'TP response header and de-
cides if this particular document should be downloaded. If this is so, the crawler
downloads the corresponding document and extracts the links contained in it;
otherwise, it proceeds to the next URL. The crawler ensures that each extracted
link corresponds to a valid and absolute URL, invoking a URL-normalizer to
“de-relativize” it, if necessary. Then, the normalized URL is appended to the
list of URL’s scheduled for download, provided this URL has not been fetched
earlier.

In contrast to typical crawlers [16,9], WebRACE refreshes frequently its
URL-seed list from requests posted by the eRACE Request Scheduler. These
requests have the following format:

[Link, ParentLink, Depth, {owners}]
Link is the URL address of the Web resource sought, ParentLink is the URL of
the page that contained Link, Depth defines how deep the crawler should “dig”
starting from the page defined by Link, and {owners} contains the list of eRACE
users whose profile designates an interest for the pages that will be downloaded.

Making the Mini-crawler configurable through these configuration files ren-
ders it adaptable to specific crawl tasks and benchmarks. The crawling algorithm
described in the previous section requires a number of components, which are
listed and described in detail below:

— The URLQueue for storing links that remain to be downloaded.

— The URLFetcher that uses HTTP to download documents from the Web.
The URLFetcher contains also a URL extractor and normalizer that extracts
links from a document and ensures that the extracted links are valid and
absolute URL’s.

— The Object Cache, which stores and indexes downloaded documents, and
ensures that no duplicate documents are maintained in cache. The Object
Cache, however, can maintain multiple versions of the same URL, if its con-
tents have changed with time.

The Mini-crawler is configurable through three files: a) /conf /webrace. conf,
which contains general settings of the engine, such as the crawling start page,
the depth of crawling, intervals between system-state save, the size of key data-
structures maintained in main memory, etc.; b) /conf/mime.types, which con-
trols what Internet media types should be gathered by the crawler;

c) /conf/ignore.types, which controls what file extensions should be blocked
by the engine; URL resources with a suffix listed in ignore.types will not be
downloaded regardless of the actual mime-type of that file’s content.

3.1 The URLQueue

The URLQueue is an implementation of our onw SafeQueue class. We designed
and implemented SafeQueue to guarantee the efficient and robust operation of



WebRACE and to overcome problems of the java.util.LinkList component
of Java [6]. We implemented SafeQueue as a circular array of QueueNode ob-
jects with its own memory-management mechanism, which enables the re-use of
objects and minimizes garbage-collection overhead. Moreover, SafeQueue incor-
porates support for persistence, overflow control, disk caching, multi-threaded
access, and fast indexing to avoid the insertion of duplicate QueueNode entries.
More details on the design and implementation of SafeQueue can be found in
[24].

URLQueue is a SafeQueue comprised of URLQueueN ode, i.e., Java objects
that capture requests coming from the Request Scheduler of eRACE. During
the server’s initialization, WebRACE allocates the full size of the URLQueue on
the heap. The length of the URLQueue is determined during the server’s initial-
ization from WebRACE configuration files. At that time, our program allocates
the heap-space required to store all the nodes of the queue. We chose this ap-
proach instead of allocating Queue Nodes on demand for memory efficiency and
performance. In our experiments, we configured the URLQueue size to two mil-
lion nodes, i.e., two million URL’s. This number corresponds to approximately
27 MB of heap space. A larger URLQueue can be employed, however, at the
expense of heap size available for other components of WebRACE.

3.2 The URLFetcher

The URLFetcher is a WebRACE module that fetches a document from the Web
when provided with a corresponding URL. The URLFetcher is implemented as
a simple Java-thread, supporting both HTTP /1.0 and HTTP/1.1. Similarly to
crawlers like Mercator [9], WebRACE supports multiple URLFetcher threads
running concurrently, grabbing pending requests from the URLQueue, conduct-
ing synchronous I/O to download WWW content, and overlapping I/O with
computation. In the current version of WebRACE, resource management and
thread scheduling is left to Java’s runtime system and the underlying operating
system. The number of available URLFetcher threads, however, can be config-
ured during the initialization of the WebRACE-server. It should be noted that a
very large number of URLFetcher threads can lead to serious performance degra-
dation of our system, due to excessive synchronization and context-switching
overhead.

The URLFetcher supports the Robots Exclusion Protocol (REP) that allows
Web masters to declare parts of their sites off-limits to crawlers. In addition
to supporting the standard Robots Exclusion Protocol, WebRACE supports the
exclusion of particular domains and URL’s. To implement the exclusion protocol,
WebRACE provides a BlockDomain hash table, which contains all domains and
URL’s that should be blocked. In addition to handling HTTP connections, the
URLFetcher processes the documents it downloads from the Web. To this end,
it invokes methods of its URLEzxtractor and normalizer sub-component. The
URLExtractor extracts links (URL’s) out of a page, disregards URL’s pointing
to uninteresting resources, normalizes the URL’s so that they are valid and
absolute and, finally, adds these links to the URLQueue.
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Fig. 2. URL Extractor Architecture.

As shown in Figure 2, the URLExtractor and normalizer works as a 6-step
pipe within the URLFetcher. Extraction and normalization of URL’s works
as follows: in step 1, a fastfind() method identifies candidate URL’s in the
web-page at hand, removes internal links (starting from “#7”), mailto links
(“mailto:”), etc, and extracts the first URL that is candidate for processing.
The efficient implementation of fastfind is challenging due to the abundance
of badly formed HTML code on the Web. As an alternative solution we could
reuse components such as Tidy [18] or its Java port, JTidy [12], to transform
the downloaded Web page into well-formed HTML, and then extract all links
using a generic XML parser. This solution proved to be too slow, in contrast
to our fastfind() method which extracts links from a 70 KB web page in
approximately 80ms.

In step 2, a Proactive Link Filtering (PLF) method is invoked to disregard
links to resources that are of no interest to the particular crawl. PLF uses the
/conf/ignore.types configuration file of WebRACE to determine the file ex-
tensions that should be blocked during the URL extraction phase. Deciding if a
link should be dropped takes less than 1 ms and saves WebRACE of the unnec-
essary effort to normalize a URL, add it to the URLQueue, and open an HTTP
connection, just to see that this document has a media type that is not collected
by the crawler.

Step 3 deals with the normalization of the URL at hand. To this end, we
wrote a URL-normalizer method, which alters links that do not comply to the
scheme-specific syntax of HT'TP URL’s, as defined in the HTTP RFCs. The
URL-normalizer applies a set of heuristic corrections, which give on the average
a 95% of valid and normalized URL’s. If a link cannot be normalized, it is
logged for debugging purposes. The URL-normalizer has been tested succesfully
on a test case of 150 problematic URL strings which did not conform to the
scheme-specific syntax of HTTP URL’s. We are continously upgrading the URL-
normalizer as new problematic HT'TP URL’s appear in our log files.

For each Web page processed, the URL-normalizer makes extensive use of
the java.net .URL library while checking the syntactic validity of the normalized
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URL. This library, however, creates numerous objects that cannot be reused,
resulting to excessive heap-memory consumption, an increased activity of the
garbage collector, and significant performance degradation. To cope with these
problems we implemented webrace.net.fastURL, a streamlined URL class that
enables the reuse of URL objects via its reparse (url) method. reparse(url)
allows the webrace.net.fastURL() class to disregard previously assigned string
values of its private elements host,protocol,port and file, and replace them
by new values that need to be validated for conformance to the syntax of HTTP
URLs.

This optimization achieves twofold and threefold improvements of the nor-
malization performance under Solaris and Windows NT respectively. Figure 3,
presents the results of a java.net.URL vs. webrace.net.fastURL performance
benchmark. In this benchmark, we evaluated webrace.net.URL by instantiat-
ing up to 10® new URL objects. The benchmark ran on a Sun Enterprise E250
Server with 2 UltraSPARC-II processors at 400M H z, with 512M B memory, run-
ning the Solaris 5.7 operating system. The URL-normalizer took on the average
200ms for 100 URL’s.

Step 4 filters out links that belong to domains that are blocked or excluded by
the Robot Exclusion Protocols. Steps 1 through 4 are executed repeatedly until
all links of the document at hand have been processed. Step 5 logs the URL’s
that failed the normalization process for debugging purposes. Finally, at step 6,
all extracted and normalized URL’s are collectively added to the URL-Queue,
dropping all duplicate URL’s and URL’s that have been visited by the crawler
already. The list of normalized URL’s is also stored in the Meta-Info Store, so
that during re-crawls the Mini-Crawler can avoid URL-extraction of unmodified

pages.
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Fig. 4. URL-fetcher throughput degradation.

The URL extraction and normalization pipe requires an average of 300 ms
to extract the links from a 70 KB HTML page and to normalize them appropri-
ately, when executed on our Sun Enterprise E250 Server. To evaluate the overall
performance of the URLFetcher, we ran a number of experiments, launching
many concurrent fetchers that try to establish TCP connections and fetch doc-
uments from Web servers located on our 10/100Mbits LAN. Each URLFetcher
pre-allocates all of its required resources before the benchmark start-up. The
benchmarks ran on a 360MHz UltraSPARC-IIi, with 128MB RAM and Solaris
5.7. As we can see from Figure 4, the throughput increases with the number of
concurrent URLFetchers, until a peak P is reached. After that point, throughput
drops substantially. This crawling process took a very short time (3 minutes with
only one thread), which is actually the reason why the peak value P is 40. In
this case, URLQueue empties very fast, limiting the utilization of URLFetcher’s
near the benchmark’s end. Running the same benchmark for a lengthy crawl we
observed that 100 concurrent URLFetcher’s achieve optimal crawling through-
put.

Since the optimal crawling throughput can only be determined at runtime
we have implemented a Performance Monitoring mechanism which maintains
various statistics such as the Connection, Processing and I/O delays which al-
low us to approximate the optimal number of URLfetcher’s running in the sys-
tem. URLfetchers are consequently either dropped, by a pre-specified percentage
(drop_pct%), or increased slowly (increase_pct%) on intervals were the system
seems to sustain the current load.
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4 The Object Cache

The Object Cache is the component responsible for managing documents cached
in secondary storage. It is used for storing downloaded documents that will
be retrieved later for processing, annotation and subsequent dissemination to
eRACE users. The Object Cache, moreover, caches the crawling state in order
to coalesce similar crawling requests and to accelerate the re-crawling of WWW
resources that have not changed since their last crawl.

The Object Cache is comprised of an Indez, a Meta-Info Store and an Object
Store (see Figure 1). Although the Index resides in main memory at runtime for
increased performance, it is serialized to secondary storage on regular intervals.
The documents indexed by the Object Cache are stored on disk allowing us in
that way to scale to many billion of documents. The Index of the Object Cache is
implemented as a java.util.HashTable, which contains URL’s that have been
fetched and stored in WebRACE. That way, during re-crawls, URLFetcher’s
can check if a page has been re-fetched, before deciding whether to download
its contents from the Web. The Meta-Info Store collects and maintains meta-
information for cached documents. Finally, the Object Store is a directory in
secondary storage that contains a compressed version of downloaded resources.

4.1 Meta-Info Store

The Meta-Info Store maintains a meta-information file for each Web document
stored in the Object Cache. Furthermore, a key for each meta-info file is kept
with the Index of the Object Cache to allow for fast look-ups. The contents of a
meta-info file are encoded in XML and include:

The URL address of the corresponding document;

The IP address of its origin Web server;

— The document size in KB;

The Last-Modified field returned by the HTTP protocol during download;
The HTTP response header;

All extracted and normalized links contained in this document;

— Information about the different document versions kept in the Object Cache.

An excerpt from a meta-info file is given in Table 1. Normally, a URLFetcher
executes the following algorithm to download a Web page:

1. Retrieve a QueueNode from the URLQueue and extract its URL.

2. Make the HTTP connection, retrieve the URL and analyze the HTTP-header
of the response message. If the host server contains the message “200 Ok,”
proceed to the next step. Otherwise, continue with the next QueueNode.
Download the body of the document and store it in main memory.

Extract and normalize all links contained in the downloaded document.
Compress and save the document in the Object Cache.

Save a generated meta-info file in the Meta-Info Store.

S otk



< webrace:url>http://www.cs.ucy.ac.cy/"epl121/< /webrace:url>
< webrace:ip>194.42.7.2< /webrace:ip>
< webrace:kbytes>1< /webrace:kbytes>
< webrace:ifmodifiedsince>989814504121< /webrace:ifmodifiedsince>
<webrace:header>
HTTP/1.0 200 OK
Server: Netscape-FastTrack/2.01
Date: Fri, 11 May 2001 13:50:10 GMT
Accept-ranges: bytes
Last-modified: Fri, 26 Jan 2001 21:46:08 GMT
Content-length: 1800
Content-type: text/html
< /webrace:header>
<webrace:links>
http://www.cs.ucy.ac.cy/Computing/labs.html
http://www.cs.ucy.ac.cy/
http://www.cs.ucy.ac.cy/helpdeskF
< /webrace:links>

Table 1. Example of meta-information file.

Cache.
stored in the Object Cache.

plicate URL’s in order to avoid leading the crawler into cycles.

11

7. Add the key (hashCode) of the fetched URL to the Index of the Object
8. Notify the Annotation Engine that a new document has been fetched and

9. Add all extracted URL’s to the URLQueue. The URLQueue disregards du-

To avoid the overhead of the repeated downloading and analysis of documents

that have not changed, we alter the above algorithm and use the Meta-Info Store
to decide whether to download a document that is already cached in WebRACE.
More specifically, we change the second and third steps of the above crawling
algorithm as follows:

2. Access the Index of the Object Cache and check if the URL retrieved from

the URLQueue corresponds to a document fetched earlier and cached in

WebRACE.

Otherwise:

3. If the document is not in the Cache, download it and proceed to step 4.

— Load its meta-info file and extract the HTTP Last-Modified time-stamp

assigned by the origin server. Open a socket connection to the origin
server and request the document using a conditional HTTP GET com-
mand (if-modified-then), with the extracted time-stamp as its pa-
rameter.

— If the origin server returns a “304 (not modified)” response and no
message-body, terminate the fetching of this particular resource, extract
the document links from its meta-info file, and proceed to step 8.
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Fig. 5. Crawling vs. Re-Crawling in WebRACE in two different settings.

— Otherwise, download the body of the document, store it in main memory
and proceed to step 4.

If a cached document has not been changed during a re-crawl, the URLFetcher
proceeds with crawling the document’s outgoing links, which are stored in the
Meta-Info Store, and which may have changed.

To assess the performance improvement provided by the use of the Meta-
Info Store, we conducted an experiment with crawling two classes of Web sites.
The first class includes servers that provide content which does not change very
frequently (University sites). The second class consists of popular news-sites,
search-engine sites and portals (cnn.com, yahoo.com, msn.com, etc.). For these
experiments we configured WebRACE to use 150 concurrent URLFetchers and
ran it on our Sun Enterprise E250 Server, with the Annotation Processor running
concurrently on a Sparc 5.

The diagram of Figure ba presents the progress of the crawl and re-crawl
operations for the first class of sites. The time interval between the crawl and the
subsequent re-crawl was one hour; within that hour the crawled documents had
not changed at all. The delay observed for the re-crawl operation is attributed
to the HTTP “if-modified-since” validation messages and the overhead of the
Object Cache. As we can see from this diagram, the employment of the Meta-Info
Store results to an almost three-fold improvement in the crawling performance.
Moreover, it reduces substantially the network traffic and the Web-servers’ load
generated because of the crawl.

The diagram of Figure 5b presents our measurements from the crawl and
re-crawl operations for the second class of sites. Here, almost 10% of the 993
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downloaded documents change between subsequent re-crawls. From this diagram
we can easily see the performance advantage gained by using the Meta-Info
Store to cache crawling meta-information. It should be noted, however, that
within the first 100msecs of all crawl operations, crawling and re-crawling exhibit
practically the same performance behavior. This is attributed to the fact that
most of the crawled portals reply to our HTTP GET requests with “301 (Moved
Permanently) ’’ responses, and re-direct our crawler to other URL’s. In these
cases, the crawler terminates the connection and schedules immediately a new
HTTP GET operation to fetch the requested documents from the re-directed
address.

5 The Annotation Engine (AE)

The Annotation Engine processes documents that have been downloaded and
cached in the Object Cache of WebRACE. Its purpose is to “classify” collected
content according to user-interests described in eRACE profiles. The meta-
information produced by the processing of the Annotation Engine is stored in
WebRACE as annotation linked to the cached content. Pages that are not rele-
vant to any user-profile are dropped from the cache.

Personalized annotation engines are not used in typical Search Engines [1],
which employ general-purpose indices instead. To avoid the overhead of incor-
porating a generic look-up index in WebRACE that will be updated dynami-
cally as resources are downloaded from the Web, we designed the AE so that it
processes downloaded pages “on the fly.”. Therefore, each time the Annotation
Engine receives a ¢ ‘process(file,{users})’’ request through the established
socket connection with the Mini-crawler, it inserts the request in the Coordi-
nator, which is a SafeQueue data structure (see Figure 6). Multiple Filtering
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Processors remove requests from the Coordinator and process them according
to the Unified Resource Descriptions (URD’s) of eRACE users contained in the
request. Currently, the annotation engine implements a simple pattern-matching
algorithm looking for weighted keywords that are included in the user-profiles,
similar to that of [22].

<urd>
<uri timing= “600000” lastcheck = “97876750000” port= “80”
http://www.cs.ucy.ac.cy/default.html< /uri>
<type protocol= “http” method= “pull” processtype= “filter”/ >
<keywords>
<keyword key= “ibm” weight= “1” / >
<keyword key= “research” weight= “3” / >
<keyword key= “java” weight= “4” / >
<keyword key= “xmlp4j” weight= “5” / >
< /keywords>
<depth level= “4”/ >
<urgency urgent= “1”/ >
< [urd>

Table 2. A typical URD.

URD is an XML-encoded data structure that encapsulates, within an eR-
ACE user-profile, source information, processing directives and urgency infor-
mation for Web services monitored by eRACE [23]. A typical URD request is
shown in Table 2. URD’s are stored in a single XML-encoded document, which
is managed by a persistent DOM data manager (PDOM) [10]. The Annotation
Engine fetches the necessary URD’s from the PDOM data manager issuing XQL
queries (eXtensible Query Language) to a GMD-IPSI XQL engine [10,17]. The
GMD-IPSI XQL engine is a Java-based storage and query application devel-
oped by Darmstadt GMD for handling large XML documents. This engine is
based on two key mechanisms: a) a persistent implementation of W3C-DOM
Document objects [21]; b) a full implementation of the XQL query language.
GMD-IPSI provides an efficient and reliable way to handle large XML docu-
ments through PDOM, which is a thread-safe and persistent XML-DOM imple-
mentation. PDOM supports main-memory caching of XML nodes, enabling fast
searches in the DOM tree. A PDOM file is organized in pages, each containing
128 DOM nodes of variable length. When a PDOM node is accessed by a W3C-
DOM method, its page is loaded into a main memory cache. The default cache
size is 100 pages (12800 DOM nodes). Documents are parsed once and stored
in Java serialized binary form on secondary storage. The generated document is
accessible to DOM operations directly, without re-parsing. The XQL processor
is used to query PDOM files.

The output of a filtering process in the Annotation Engine is encoded in
XML and called an ACT (Annotated Cache Information) [23]; ACT’s are stored
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Fig. 7. The Filtering Processor.

in an XML-ACI PDOM database. ACI is an extensible data structure that en-
capsulates information about the Web source that corresponds to the ACI, the
potential user-recipient(s) of the “alert” that will be generated by eRACE’s Con-
tent Distribution Agents according to the ACI, a pointer to the cached content,
a description of the content (format, file size, extension), a classification of this
content according to its urgency and/or expiration time, and a classification of
the document’s relevance with respect to the semantic interests of its potential
recipient(s). The XML description of the ACI’s is extendible and therefore we
can easily include additional information in it without having to change the
architecture of WebRACE.

Filtering Processor (FP) is the component responsible for evaluating if a
document matches the interests of a particular eRACE-user, and for generating
an ACI out of a crawled page (see Figure 7). The Filtering Processor works as
a pipe of filters: At step 1, FP loads and decompresses the appropriate file from
the Object Cache of WebRACE. At step 2, it removes all links contained in the
document and proceeds to step 3, where all special HTML characters are also re-
moved. At step 4, any remaining text is added to a Keyword HashTable. Finally,
at step 5, a pattern-matching mechanism loads sequentially all the required URD
elements from the URD-PDOM and generates ACI meta-information, which is
stored in the ACI-PDOM (step 6). This pipe requires an average of 200 msecs
to calculate the ACI for a 70K B Web page, with 3 potential recipients.

In our experiments, we have configured the SafeQueue size of the Annotation
Engine to 1000 nodes, which is more than enough, since it is almost every time
clear if the AE operates with 10 Filtering Processors and the Mini-crawler with
100 URL-fetchers. We have also observed that the number of pending requests
in the AE SafeQueue has reached a peak of 55 pending requests at a particular
run of our system.
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6 Conclusions

Although a number of papers have been published on Web crawlers [16,9,5,
4,19], proxy services and Internet middleware [2, 8], the issue of incorporating
flexible, scalable and user-driven crawlers in middleware infrastructures remains
open. Furthermore, the adoption of Java as the language of choice in the design
of Internet middleware and servers raises many doubts, primarily because of
performance and scalability questions. There is no question, however, that Web
crawlers written in Java will be an important component of such systems, along
with modules that process collected content.

In our work, we addressed the challenge of designing and implementing a
user-driven, distributed, and scalable crawler and filtering processor, in the con-
text of the eRACE middleware. We described our design and implementation
decisions, and various optimizations. Furthermore, we discussed the advantages
and disadvantages of using Java to implement the crawler, and presented an
evaluation of its performance. To assess WebRACE’s performance and robust-
ness we ran numerous experiments and crawls; several of our crawls lasted for
days. Our system worked efficiently and with no failures when crawling local
Webs in our LAN and University WAN, and the global Internet. Our experi-
ments showed that our implementation is robust and reliable. Furthermore, that
caching meta-information about the crawling state can result to significant im-
provements in crawling performance. Further optimizations will be included in
the near future, such as the employment of distributed data structures [7] to
make the Mini-crawler itself distributed.
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