
A FEEDBACK-BASED APPROACH TO REDUCE
DUPLICATE MESSAGES IN UNSTRUCTURED
PEER-TO-PEER NETWORKS

Charis Papadakis, Paraskevi Fragopoulou, Evangelos P. Markatos, and Elias
Athanasopoulos
Institute of Computer Science, Foundation for Research and Technology-Hellas
P.O. Box 1385, 71 110 Heraklion-Crete, Greece
{adanar,fragopou,elathan,markatos}@ ics.forth.gr

Marios Dikaiakos
Department of Computer Science, University of Cyprus, P.O. Box 537, CY-1678 Nicosia, Cyprus
mdd@ucy.ac.cy

Alexandres Labrinidis
Department of Computer Science, University of Pittsburgh, Pittsburgh, PA 15260, USA

labrinid@cs.pitt.edu

Abstract Resource location in unstructured P2P systems is mainly performed by having
each node forward each incoming query message to all of its neighbors, a process
called flooding. Although this algorithm has excellent response time and is very
simple to implement, it creates a large volume of unnecessary traffic in today's
Internet because each node may receive the same query several times through dif
ferent paths. We propose an innovative technique, iht feedback-based approach
that aims to improve the scalability of flooding. The main idea behind our algo
rithm is to monitor the ratio of duplicate messages transmitted over each network
connection, and not forward query messages over connections whose ratio ex
ceeds some threshold. Through extensive simulation we show that this algorithm
exhibits significant reduction of traffic in random and small-world graphs, the
two most common types of graph that have been studied in the context of P2P
systems, while conserving network coverage.

Keywords: Peer-to-peer, resource location, flooding, network coverage, query message.

104 INTEGRATED RESEARCH IN GRID COMPUTING

1. Introduction

In unstructured P2P networks, such as Gnutella and KaZaA, each node is
directly connected to a small set of other nodes, called neighbors. Most of
today's commercial P2P systems are unstructured and rely on random overlay
networks [7, 9]. Unstructured P2P systems have used flooding as their prevail
ing resource location method [7, 9]. A node looking for a file issues a query
which is broadcast in the network. An important parameter in the flooding
algorithm is the Time-To-Live (TTL). The TTL indicates the number of hops
away from its source a query should propagate. The node that initiates the
flooding sets the query's TTL to a small positive integer. Each receiving node
decreases by one the query's TTL value before broadcasting it to its neighbors.
The query propagation terminates when its TTL reaches zero.

The basic problem with the flooding mechanism is that it creates a large vol
ume of unnecessary traffic in the network mainly because a node may receive
the same queries multiple times through different paths. The reason behind the
duplicate messages is the existence of cycles in the underlying network topol
ogy. Duplicates constitute a large percentage of the total number of messages
generated during flooding. In a network of Â nodes and average degree d and
for TTL value equal to the diameter of the graph, there are N{d— 2) duplicate
messages for a single query while only N — 1 messages are needed to reach all
network nodes. The TTL was incorporated in the flooding algorithm in order
to reduce the number of messages produced thus reducing the overall network
traffic. Since the paths traversed by the flooding messages are short, there is
a small probability that those paths will form cycles and thus generate dupli
cates. However, as we will see below, even this observation is not valid for
small-world graphs. Furthermore, a small TTL value can reduce the network
coverage defined as the percentage of network nodes that receive a query.

In an effort to alleviate the large volumes of unnecessary traffic produced
during flooding several variations have been proposed [11]. Most of these rely
on randomly or selectively propagating the query messages to a small num
ber of each node's neighbors. The neighbor selection criteria is the number of
responses received, the node capacity, or the link latency. Although these meth
ods succeed in reducing excessive network traffic, they usually incur significant
loss in network coverage, meaning that only a small part of the network's nodes
are queried, thus a much smaller number of query answers are returned to the
requesting node. This can be a problem especially when the search targets rare
items for which often no response is returned. Other search methods such as
random walks or multiple random walks suffer from slow response time.

In this paper, we aim to alleviate the excessive network traffic problem while
at the same time maintain high network coverage. Towards this, we devise an
innovative technique, the feedback-based algorithm, that attacks the problem

A Feedback-based Approach 105

by monitoring the number of duplicates on each network connection and trying
to forward queries over connections that do not produce an excessive number
of duplicates. During an initial and relatively short warm-up phase, a feedback
is returned for each duplicate that is encountered on an edge to the upstream
node. Following the warm-up phase, each node decides to forward incoming
messages on each of its incident edges based on whether the percentage of
duplicates on that edge during the warm-up phase does not exceed some pre
defined threshold value. We show through extensive simulation, for different
values of the parameters involved, that this algorithm is very efficient in terms
of traffic reduction in random and small-world graphs, the two most common
types of graph that have been studied in the context of P2P systems, while the
algorithm exhibits minor loss in network coverage.

The remainder of this paper is organized as follows: Following the related
work section, the feedback-based algorithm is presented in Section 3. The two
most common types of graphs that were studied in the context of P2P systems,
and on which we conducted our experiments, are presented in Section 4. The
simulation details and the experimental results on static graphs are presented in
Section 5. Finally, the algorithm's behavior on dynamic graphs, assuming that
nodes can leave the network and new nodes can enter at any time, is presented
in Section 6. We conclude in Section 7 with a summary of the results.

2. Related work
Many algorithms have been proposed in the literature to alleviate the exces

sive traffic problem and to deal with the traffic/coverage trade-off [11]. One
of the first alternatives proposed was random walk. Each node forwards each
query it receives to a single neighboring node chosen at random. In this case
the TTL parameter designates the number of hops the walker should propagate.
Random walks produce very little traffic, just one query message per visited
node, but reduce considerably network coverage and have long response time.
As an alternative, multiple random walks have been proposed. The node that
originates the query forwards it to k of its neighbors. Each node receiving an
incoming query transmits it to a single randomly chosen neighbor. Although
compared to the single random walk this method has better behavior, it still
suffers from low network coverage and slow response time. Hybrid methods
that combine flooding and random walks have been proposed in [5].

In another family of algorithms, query messages are forwarded not randomly
but rather selectively to part of a node's neighbors based on some criteria or
statistical information. For example, each node selects the first k neighbors
that returned the most query responses, or the k highest capacity nodes, or
the k connections with the smallest latency to forward new queries [6]. A
somewhat different approach named forwarding indices [2] builds a structure

106 INTEGRATED RESEARCH IN GRID COMPUTING

that resembles a routing table at each node. This structure stores the number
of responses returned through each neighbor on each one of a pre-selected list
of topics. Other techniques include query caching, and the incorporation of
semantic information in the network [3, 10].

The specific problem we deal with in this paper, namely the problem of
duplicate messages, has been identified and some results appear in the litera
ture. In [12] a randomized and a selective approach is adopted and each query
message is sent to a portion of a node's neighbors. The algorithm is shown to
reduce the number of duplicates and to maintain network coverage. However,
the performance of the algorithm is demonstrated on graphs of limited size. In
another effort to reduce the excessive traffic in flooding, Gkatsidis and Mihail
[5] proposed to direct messages along edges which are parts of shortest paths.
They rely on the use of PING and PONG messages to find the edges that lie on
shortest paths. However, due to PONG caching this is not a reliable technique.
Furthermore, their algorithm degenerates to simple flooding for random graphs,
meaning that in this case no duplicate messages are eliminated. Finally, in [8]
the authors proposed to construct a shortest paths spanning tree rooted at each
network node. However, this algorithm is not very scalable since the state each
network node has to keep is in the order of 0(Nd), where N is the number of
network nodes and d its average degree.

3. The Feedback-based algorithm
The basic idea of the feedback-based algorithm is to identify edges on which

an excessive number of duplicates are produced and to avoid forwarding mes
sages over these edges. In the algorithm's warm-up phase, during which flood
ing is used, a feedback message is returned to the upstream node for each
duplicate message. The objective of the algorithm is to count the number of
duplicates produced on each edge, and during the execution phase, using this
count, to decide whether to forward a query message over an edge or not.

In a static graph, a message transmitted over an edge is a duplicate if this edge
is not on the shortest path from the origin to the downstream node. One of the key
points in the feedback-based algorithm is the following: Each network node A
forms groups of the other nodes, and a different count is kept on each one of ^ ' s
incident edges for duplicate messages originating from nodes of each different
group. The objective is for each node A to group together the other nodes so
that messages originating from nodes of the same group either produce many
duplicates or few duplicates on each one of ^ ' s incident edges. An incident
edge of a node A that produces only a few duplicates for messages originating
from nodes of a group must belong to many shortest paths connecting nodes of
this group to the downstream node. An incident edge of node A that produces
many duplicates for messages originating from nodes of a group must belong

A Feedback-based Approach 107

V̂0

Horj^oii

Figure 1. Illustration of the horizon criterion for node A and for horizon value 3.

to few shortest paths connecting nodes of this group to the downstream node.
Notice that if all duplicate messages produced on an edge were counted together
(independent of their origin), then the algorithm would be inconclusive. In this
case the duplicate count on all edges would be the same since each node would
receive the same query though all of its incident edges. The criteria used by
each node to group together the other nodes are critical for the algorithm's
performance and the intuition for their choice is explained below.

A sketch of the feedback-based algorithm is the following:
• Each node A groups together the rest of the nodes according to some criteria.
• During the warm-up phase, each node A keeps a count of the number of
duplicates on each of its incident edges, originating from nodes of each different
group.
• Subsequently, during the execution phase, messages originating from nodes
of a group are forwarded over an incident edge e of node A, if the percentage
of duplicates for this group on edge e during the warm-up phase is below a
predefined threshold value.

Two different grouping criteria, namely, the hops criterion and the horizon
criterion, as well as a combination of them, horizon+hops, are used that lead
to three variations of the feedback-based algorithm.
• Hops criterion: Each node A keeps a different count on each of its incident
edges for duplicates originating k hops away {k ranges from 1 up to the graph's
diameter). The intuition for this choice is that in random graphs small hops
produce few duplicates and large hops produce mostly duplicates. Thus, mes
sages originating from close by nodes are most probably not duplicates while
most messages originating from distant nodes are duplicates. In order for this
grouping criterion to work each query message should store the number of hops
traversed so far.
• Horizon criterion: The horizon is a small integer. A node is in the horizon
of some node A if its distance in hops from A is less than the horizon value,
while all other nodes are outside A's horizon (Fig. 1). For each node inside A's
horizon a different count is kept by A on each of its incident edges. Duplicate
messages originating from nodes outside A's horizon are added up to the count

108 INTEGRATED RESEARCH IN GRID COMPUTING

of their entry node in A's> horizon. For example, in Fig. 1, duplicates produced
by queries originating from node K are added up to the counters kept for node
J, while duplicates produced by queries originating from nodes E^ F, G, H, I
are added up to the counters kept for node D. The intuition for the choice of
this criterion is that shortest paths differ in the first hops and when they meet
they follow a common route. For this criterion to be effective, a message should
store the identities of the last k nodes visited, where k is the horizon value.
• Horizon+Hops criterion: This criterion combines the two previous ones.
Duplicates are counted separately on each one of A's incident edges for each
node in ^ ' s horizon. Nodes outside A\ horizon are grouped together according
(1) to their distance in hops from A and (2) to the entry node of their messages
in A's horizon.

In what follows, we present three variations of the feedback-based algorithm
that are based on the grouping criteria used. The algorithm using the hops
criterion is shown below. The groups formed by node A in the graph of Fig. 1
according to the hops criterion are shown in Table 1.

Feedback-based algorithm using the Hops criterion
1. Warm-up phase

Each incoming non-duplicate query message is forwarded to all
* neighbors except the upstream one.

For each incoming duplicate query message received, a duplicate
* feedback message is returned to the upstream node.

Each node A, for each incident edge e, counts the percentage of dupli-
c. cate feedback messages produced on edge e for all queries messages

originating k hops away. Let us denote this count by De,k
2, Execution phase

Each node A forwards an incoming non-duplicate query message that
a. originates k hops away over its incident edges e if the count De,k does

not exceed a predefined threshold.

Table L Groups for the Horizon criterion based on the example of Fig. 1.

Hops

Groups formed by node A

1

B

2

C

3

D,J

4

E,K

5

F

6

G,H

7

I

The algorithm using the horizon criterion is shown below. The groups formed
by node A in the graph of Fig. 1 according to the horizon criterion are shown
in Table 2.

A Feedback-based Approach 109

Feedback-based algorithm using the Horizon criterion
1. Warm-up phase

a & b. Same as in the Hops criterion algorithm.
Each node A, for each incident edge e, counts the percentage of dupli
cate messages produced on edge e for all query messages originating

* from a node B inside the horizon, or entered the horizon at node B.
Let us denote this count by De,B-

2. Execution phase
Each node A forwards an incoming non-duplicate query message that
originates at a node B inside the horizon, or which entered the horizon

* at node B over its incident edges e if the count DQ^B does not exceed
a predefined threshold value.

Table 2. Groups for the Horizon criterion based on the example of Fig. 1.

Node in A's horizon B C D J

Groups formed by node A B C D,E,F,G,H,I J,K

The algorithm using the combination of the two criteria described above,
namely the horizon+hops, is shown below. The groups formed by node A in
Fig. 1 for the horizon+hops criterion are shown in Table 3.

Feedback-based algorithm using the Horizon+Hops criterion
1. Warm-up phase

a & b. Same as in the Hops criterion algorithm.
Each node A, for each incident edge e, counts the percentage of dupli
cate messages produced on edge e for all queries messages originating

c. from a node B inside A's horizon, or which entered ^ ' s horizon at
node B and originated k hops away. Let us denote this count by

2. Execution phase
a. Each node A forwards an incoming non-duplicate query message
originating from some node B inside A's horizon, or which entered

' A's horizon at node B and originated k hops away, over its incident
edges e if the count De^B,k does not exceed a predefined threshold.

We should emphasize that in order to avoid increasing the network traffic
due to feedback messages, a single collective feedback message is returned to
each upstream node at the end of the warm-up phase.

110 INTEGRATED RESEARCH IN GRID COMPUTING

Table 3. Groups for the Horizon+Hops criterion based on the example of Fig. 1.

Node in A's horizon and Hop

Groups formed by node A

B 1

B

C2

C

D3

D

D4

E

D5

F

D6

G,H

D7

I

J3

J

J4

K

4. Random vs, small-world graphs
Two types of graphs have been mainly studied in the context of P2P systems.

The first is random graphs which constitute the underlining topology in today's
commercial P2P systems [7, 9]. The second type is small-world graphs which
emerged in the modelling of social networks [4]. It has been demonstrated that
P2P resource location algorithms could benefit from small-world properties.
If the benefit proves to be substantial then the node connection protocol in
P2P systems could be modified so that small-world properties are intentionally
incorporated in their network topologies.

In random graphs each node is randomly connected to a number of other
nodes equal to its degree. Random graphs have small diameter and small
average diameter. The diameter of a graph is the length (number of hops for
unweighted graphs) of the longest among the shortest paths that connect any
pair of nodes. The average diameter of a graph is the average of all longest
shortest paths from any node to any other node.

A clustered graph is a graph that contains densely connected ''neighbor
hoods" of nodes, while nodes that lie in different neighborhoods are more
loosely connected. A metric that captures the degree of clustering that graphs
exhibit is the clustering coefficient. Given a graph G, the clustering coefficient
of a node ^ in G is defined as the ratio of the number of edges that exist be
tween the neighbors of A over the maximum number of edges that can exist
between its neighbors (which equals to k{k — 1) for k neighbors). The cluster
ing coefficient of a graph G is the average of the clustering coefficients of all its
nodes. Clustered graphs have, in general, higher diameter and higher average
diameter than their random counterparts with about the same number of nodes
and degree.

A small-world graph is a graph with high clustering coefficient yet low aver
age diameter. The small-world graphs we use in our experiments are constructed
according to the Strogatz-Watts model [4]. Initially, a regular, clustered graph
of N nodes is constructed as follows: each node is assigned a unique identi
fier from 0 io N — 1. Two nodes are connected if their identity difference is
less than or equal to k (in modN arithmetic). Subsequently, each edge of the
graph is rewired to a random node according to a given rewiring probability
p. If the rewiring probability of edges is relatively small, a small-world graph

A Feedback-based Approach 111

Percentage of duplicates per hop

- random -i^- small-world

^• .̂...>>f...>^v„. . H — ^ - X

0% * — • -
N ^ ^ ^ <i fe ^ " b . <?> f ^ K N V V <b • > » ^

hop
NV» K> X " K^ N " K? N^

Figure 2. Percentage of duplicate messages per hop in random and small-world graphs.

is produced (high clustering coefficient and small average diameter). As the
rewiring probability increases the graph becomes more random (the clustering
coefficient decreases). For rewiring probability p = 1, all graph edges are
rewired to random nodes, and this results in a random graph.

The clustering coefficient of each graph is normalized with respect to the
maximum clustering coefficient of a graph with the same number of nodes and
average degree. In what follows, when we refer to the clustering coefficient of
a graph with N nodes and average degree d, denoted by CC, we refer to the
percentage of its clustering coefficient over the maximum clustering coefficient
of a graph with the same number of nodes and average degree. The maximum
clustering coefficient of a graph with Â nodes and average degree d is the
clustering coefficient of the clustered graph defined according to the Strogatz-
Watts model, before any edge rewiring takes place.

Fig. 2 shows the percentage of duplicates messages generated per hop over
the messages generated on that hop on a random and on a small-world graph
of 2000 nodes and average degree 6. We can see from this figure that in a
random graph there are very few duplicate messages in the first few hops (1-4),
while almost all messages in the last hops (6-7) are duplicates. On the contrary,
in small-world graphs duplicate messages appear from the first hops and their
percentage remains almost constant till the last hops.

5. Experimental results on static graphs

Our evaluation study was performed using sP2Ps (simple P2P simulator)
developed at our lab. The experiments were conducted on graphs with 2000
nodes and average degree of 6. The clustering coefficient (CC) ranged from
0.0001 to 0.6, which is the maximum clustering coefficient of a graph with Â =

112 INTEGRATED RESEARCH IN GRID COMPUTING

Evaluation of Horizon criterion (tlireshold=100%)

£ 1 0 0 ^
-»~CC = 0.I6
• CC = 50 i_

^^^•{ir A. . . . -

40 GO 80 100 120

p e r c o i n a y e ot nodes in t io i i zon

Evaluation o(Horizon = 1 (thrcfshoid = 100%)

irt 1 0 0

g 40

1 "•-^

1 '*̂ ^
1 ' " ' • • ,

' ^ • * ^ - .

~"'*

c lus te r ing coeff ic ient

Figure 3. Percentage of duplicates as a
function of the percentage of graph nodes
in the horizon for three graphs with clus
tering coefficients 0.16, 50, and 91.6, and
threshold value 100%.

Figure 4. Percentage of duplicates as
a function of the clustering coefficient for
horizon value 1 and threshold value 100%.

2000 and d = Q. We shall refer to CC values from now on, as percentages of that
max value. We conducted experiments for different values of the algorithm's
parameters. The horizon value varied from 0 (were practically the horizon
criterion is not used) up to the diameter of the graph. Furthermore, we used two
different threshold values, namely 75% and 100%, to select the connections
over which messages are forwarded. The TTL value is set to the diameter of
the graph.

The efficiency of our algorithm is evaluated based on two metrics: (1) the
percentage of duplicates sent by the algorithm, compared to the naive flood
ing and (2) the network coverage defined as the percentage of network nodes
reached by the query. Thus, the lower the duplicates percentage and the higher
the coverage percentage is, the better. Notice that a threshold value of 100%
indicates that messages originating from the nodes of a group are not forwarded
only over edges that produce exclusively (100%) duplicates for all nodes of that
group during the warm-up phase. In this case we do not experience any loss
in network coverage, but the efficiency of the algorithm in duplicate elimina
tion could be limited. In all experiments on static graphs, the warm-up phase
included one flooding from each node. In the execution phase, during which
the feedback-based algorithm is applied, again one flooding is performed from
each node in order to gather the results of the simulation experiment.

In Figs 3-6 we can see the experimental results for the feedback-based al
gorithm with the horizon criterion. In Fig. 3 we can see the percentage of
duplicates produced as a function of the percentage of graph nodes in the hori
zon for three graphs (random with CC — 0.16, clustered with CC — 50, and
small-world with CC — 91.6) and for threshold value 100%, which means
that there is no loss in network coverage. We can deduce from this figure that

A Feedback-based Approach 113

Evaluation of Horizon criterton (threshold = 75%)

percentage of nodes in horizon

Evaluation of Horizon criterion (threshold = 75%)

-•- cc = 0.16
• CC-50

- i - CC - 91.6

percentage of nodes In horizon

Figure 5. Network coverage as a func
tion of the percentage of graph nodes in the
horizon for three graphs with clustering co
efficients 0.16, 50, and 91.6 and threshold
75%.

Figure 6. Percentage of duplicates as a
function of the percentage of graph nodes in
the horizon for three graphs with clustering
coefficients 0.16,50, and 91.6 and threshold
75%.

the efficiency of this algorithm is high for clustered graphs and increases with
the percentage of graph nodes in the horizon. Notice that in clustered graphs,
with a small horizon value a larger percentage of the graph is in the horizon
as compared to random graphs. In Fig. 4 we plot the percentage of duplicates
produced by the algorithm as a function of the clustering coefficient for horizon
value 1 and threshold 100%. We can see that even for such a small horizon value
the efficiency of the algorithm increases linearly with the clustering coefficient
of the graph. We can thus conclude that the feedback-based algorithm with the
horizon criterion is efficient for clustered and small-world graphs.

Even if the percentage of graph nodes in the horizon decreases, in case the
graph size increases and the horizon value remains constant, the efficiency of
the algorithm will remain unchanged, because in clustered graphs the clustering
coefficient does change significantly with the graph size. Thus, the horizon
criterion is scalable for clustered graphs. In contrast, in random graphs, in
order to maintain the same efficiency as the graph size increases, one would
need to increase the horizon value, in order to maintain the same percentage
of graph nodes in the horizon. Thus the horizon criterion is not scalable on
random graphs.

Figs 5 and 6 show the efficiency of the algorithm with the horizon criterion
in duplicate elimination for threshold 75%. We can see from these figures that
the algorithm is very efficient on clustered graphs. From the same figures we
can see that with this threshold value in random graphs (CC — 0.16) most
duplicate messages are eliminated but there is loss in network coverage. Thus,
even if we lower the threshold value, the horizon criterion does not work well
for random graphs.

114 INTEGRATED RESEARCH IN GRID COMPUTING

Evaluation of Hops criterion

'°l

«

> -ft- E<lici«Ky 1

• N . . . ^ * - ^ ^ - ^

L ^ " • < ^

<-^'^A~ ' • .

'"-A._ .^-^-.vw-A. X
•a

^ * • - •
• • •

X \
X \

• - • - • .^v
^ . . Z i ^

clustering coafficient

Evaluartlon of Hops+Horlzon
{Horizon * 1, threshold - 75%)

i
S.40

- ^ Cav«iaga
• Duplicatoj
-£r Efflcltncy

, < ^ ^

»J»-*—»--.

Clustering coefficient

Figure 7. Network coverage, percentage
of duplicates, and efficiency of the algo-
ritlim with the hops criterion as a function
of the clustering coefficient.

Figure 8. Network coverage, percentage
of duplicates, and efficiency of the algo
rithm with the horizon+hops criterion as a
function of the clustering coefficient.

In Fig. 7 we can see the experimental results for the algorithm with the
hops criterion while varying the clustering coefficient. We can see in this
figure that the hops criterion is very efficient in duplicate elimination, while
maintaining high network coverage, for graphs with small clustering coefficient.
This means that this criterion exhibits very good behavior on random graphs.
As the clustering coefficient increases, the performance of the algorithm with
the hops criterion decreases. This behavior can be easily explained from Fig.
2, where the percentage of duplicates per hop is plotted for random and small-
world graphs. We can see from this figure that in random graphs, the small
hops produce very few duplicates, while large hops produce too many. Thus,
based on the hops criterion only, we were able to eliminate a large percentage
of duplicates without greatly sacrificing network coverage.

As mentioned before, the hops criterion works better for random graphs.
In case the graph size increases, the number of hops also increases (recall
that the diameter of a random graph with N nodes and average degree d is
log{N)/log{d)). Thus, the hops criterion is scalable on random graphs.

In Fig. 8, we see the efficiency of the algorithm for the horizon+hops cri
terion. As we can see from this figure this combination of criteria constitutes
the feedback based algorithm efficient in graphs with all clustering coefficients,
random and small-world. In Fig. 8, three different metrics are plotted, the
network coverage, the percentage of duplicates, and the efficiency as a function
of the clustering coefficient of the graph. If we denote the duplicate elimination
by D and the network coverage by C, the efficiency of the algorithm is defined
as C^D. We can see that for any clustering coefficient the network coverage is
always above 80%, while the percentage of duplicate messages not eliminated
is always less than 20%. This behavior is achieved for random and small-world

A Feedback-based Approach 115

graphs for horizon value of only 1. Thus the horizon+hops criterion is scalable
on all types of graphs.

6. Experimental results on dynamic graphs

In what follows, we introduce dynamic changes to the graph, meaning that a
graph node can leave and some other node can enter the graph, and we monitor
how these changes influence the algorithm's efficiency. We introduced a new
parameter to our experiments in order to capture the rate of graph change. This
parameter measures in query-floods the lifetime of a node in the graph. A graph
rate change of r means that each node will initiate, on the average, r query-
floods before leaving the network. Insertion of new nodes is performed so as
to preserve the clustering coefficient of the graph.

We also introduce a dynamic way to determine when the warm-up phase can
terminate, meaning that we have collected enough measurements. The warm-
up phase for a group of nodes terminates after the percentage of duplicates
seen on an edge for messages originating from nodes of the group stops to
oscillate significantly. More specifically, the warm-up phase terminates on an
edge for a group of nodes, if in each of the last 20 rounds the change in the
count (percentage of the number of duplicates seen on that edge for messages
originating from nodes of the that group) was smaller that 2% and the total
change over the last 20 rounds was smaller that 1%.

We perform experiments for random graphs and for small-world graphs with
clustering coefficient CC = 33 and CC — 84. For each of these graphs, the
value of the change rate equals 0 (static graph), 1, 50, and 200. A change
rate of 200 indicates that each node will make 200 query-floods before leaving
the network, which is a reasonable assumption for Gnutella 2 [7]. This is
because each Ultrapeer contains, on the average, 30 leaves. A leaf node has in
general much smaller average lifetime than an Ultrapeer, which means that each
Ultrapeer will "see" more than 30 unique leaves in its lifetime. If we assume
that each leaf node will send one query through the Ultrapeer, this explains the
fact that real-world measures with an Ultrapeer show that each Ultrapeer sends
about 100 queries per hour. For each of these graphs and change rates, we run
experiments with the following Horizon values: Horizon values 1 and 2 for
random graphs and for small-world graphs with CC = 33, and Horizon values
1 and 4 for small-world graphs with CC — 84.

We performed two experiments with the same horizon value, one using the
hops criterion and one without the hops criterion. The threshold value was set
to 75%. Each experiment performed 25*2000 floods. The difference between
the values "0 wo act. threshold" and "0 with act. threshold" in the x axis in
Figs 9 and 10 indicates that in both cases the change rate is 0 (static graph), but
in the first case, the numbers are taken from the experiments described in the

116 INTEGRATED RESEARCH IN GRID COMPUTING

Dynamic graph effect on horizon
h-CC-0.16hori;or"1 •••••CC-0.16h<>rtion"2 CC "JJ hofiion"! I

CC-33hoiljon-2 - CC-83liotl;on-1 - • • CC-83 hoilloii-4

Owo Owltti
acutvtshold act.ihrestiold

I 30

Dynamic graph effect on Hops

E -CC = 0.16 » CC = 33 CC = &31

1 —-r:A__— , ——_i

\
t' \ .A y 1
1 \y

Owo OwHh
actttirethold acLtlmstiold Chang* f « •

Figure 9. Performance of the algorithm
on a dynamic graph for the horizon crite-

Figure 10. Performance of the algorithm
on a dynamic graph for the hops criterion.

previous section, while in the second case the activation threshold was used to
terminate the warm-up phase. This enables us to clearly see the benefit of the
activation threshold.

Fig. 9 shows how the algorithm performs on dynamic graphs for the horizon
criterion. We should note that the use of the activation threshold increases the
efficiency of the algorithm significantly. This happens because nodes gradually
start eliminating traffic for certain groups of nodes instead of all of them starting
eliminating duplicates for all groups simultaneously. We can see that the effi
ciency of the algorithm decreases when the change rate is 1. The reason for this
is not that the measurements for each group quickly become stale, but rather
because each node needs some warm-up period to learn the topology of the net
work. A certain amount of traffic needs to be "seen" by any node, to make the
necessary measurements. If that time is a large fraction of the node's lifetime, it
means that it will spend most of its time measuring instead of regulating traffic
according to the measurements. Finally and most importantly, we can see that
the results for a change rate of 200 are the same as those of a change rate of
0 with activation threshold, which shows that, given that the warm-up phase
is shorter than the time during which the nodes use the algorithm (execution
phase), the changes of the graph do not affect the algorithm's efficiency.

In Fig. 10 we can see that the activation threshold is beneficial to the algo
rithm with the hops criterion. Furthermore, from the same figure, it becomes
clear that the efficiency of the feedback-based algorithm with the hops criterion
is not greatly affected by the dynamic changes in the graph. We should however
point out that it seems to slightly affect the efficiency of the algorithm in highly
clustered graphs.

A Feedback-based Approach 111

7. Conclusions

We presented the feedback-based algorithm, an innovative method which
reduces significantly the number of duplicates produced by flooding while
maintaining high network coverage. The algorithm monitors the percentage
of duplicates on each connection during a warm-up phase, and directs traffic
to connections that do not produce excessive number of duplicates during the
execution phase. In order for this approach to work, each network node groups
together the rest of the nodes according to some criteria, so that nodes that pro
duce many duplicates on its incident edges are in different groups than those
that produce only few duplicates. The efficiency of the algorithm was demon
strated through extensive simulation on random and small-world graphs. The
experiments involved graphs of 2000 nodes. The feedback-based algorithm
was shown to reduce to less than 20% the number of duplicates of flooding
while conserving network coverage above 80%. The memory requirements
in each node are much less compared to the algorithm that constructs short
est paths trees from each network node. The efficiency of our algorithm was
demonstrated on static and dynamic graphs.

Acknowledgments
This research work was carried out under the FP6 NoE CoreGRID funded

by the EC (IST-2002-004265) and was supported by project SecSPeer (GGET
USA-031) funded by the Greek Secreteriat for Research and Technology.

References

[1] Y. Chawathe, S. Ratnasamy, and L. Breslau. Making Gnutella-like P2P Systems Scalable.
ACM SIGCOMM, 2003.

[2] A. Crespo and H. Garcia-Molina. Routing Indices for Peer-to-Peer Systems. Int. Conf.
Distributed Comp. Systems, 2002.

[3] A. Crespo and H. Garcia-Molina. Semantic Overlay Networks for P2P Systems. 2002.

[4] Duncan, J. Watts, and S. H. Strongatz. Collective Dynamics of Small-world Networks.
Nature, 393:440-442, 1998.

[5] C. Gkantsidis, M. Mihail, and A.Saberi. Hybrid Search Schemes for Unstructured Peer-
to-Peer Networks. IEEE INFOCOM, 2005.

[6] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search and Replication in Unstructured
Peer-to-Peer Networks. Int. ACM Conf. Supercomputing, 2002.

[7] R. Manfredi and T. Klingberg. Gnutella 0.6 Specification, http://rfc-
gnutella.sourceforge.net/src/rfc-0_6-draft.html

[8] M. Ripenau, I. Foster, A. lamnitchi, and A. Rogers. UMM: A Dynamically Adaptive,
Unstructured, Multicast Overlay. In Service Management and Self-Organization in IP-
based Networks, Dagstuhl Seminar Proceedings, 2005.

[9] Sharman Industries. Kazaa, http://www.kazaa.com

118 INTEGRATED RESEARCH IN GRID COMPUTING

[10] K. Sripanidkulchai, B. Maggs, and H. Zhang. Efficient Content Location using Interest-
Based Locality in Peer-to-Peer Systems. lEEEINFOCOM, 2003.

[11] D. Tsoumakos and N. Roussopoulos. A Comparison of Peer-to-Peer Search Methods. Int.
Workshop on the Web and Databases, 2003.

[12] Z. Zhuang, Y. Liu, L. Xiao, and L.M. Ni. Hybrid Periodical Flooding in Unstructured
Peer-to-Peer Networks. Int.l Conf. Parallel Computing, 2003.

