
A Grid-Enabled Digital Library System for Natural
Disaster Metadata�

Wei Xing1, Marios D. Dikaiakos1, Hua Yang2, Angelos Sphyris3,
and George Eftichidis3

1 Department of Computer Science, University of Cyprus, 1678 Nicosia, Cyprus
{xing, mdd}@ucy.ac.cy

2 Department of Computer Science, Xian Institute of Post and Telecommunications,
710061 Shannxi, China

yanghua@xiyou.edu.cn
3 Algosystems SA, 206 Syggrou Ave, 176 62, Kallithea (Athens), Greece

{asphyris, geftihid}@algosystems.gr

Abstract. The need to organize and publish metadata about European research
results in the field of natural disasters has been met with the help of two innova-
tive technologies: the Open Grid Service Architecture (OGSA) and the Resource
Description Framework (RDF). OGSA provides a common platform for sharing
distributed metadata securely. RDF facilitates the creation and exchange of meta-
data. In this paper, we present the design and implementation of a Grid-based dig-
ital library for natural-disaster research metadata. We describe the EU-MEDIN
RDF schema that we propose to standardize the description of natural-disaster
resources, and the gDisDL Grid service-based architecture for storing and query-
ing of RDF metadata in a secure and distributed manner. Finally, we describe a
prototype implementation of gDisDL using the Jena RDF Library by HP and the
Globus 3 toolkit.

1 Introduction

European R&D projects and other related activities focusing on Natural Hazards and
Disasters (earthquakes, floods, forest fires, industrial hazards, landslides, and volcano
eruptions) produce results in the form of explicit or tacit knowledge represented by
reports, project deliverables, data-sets derived from field work, interesting training and
dissemination materials, etc. These artifacts are usually published and described in Web
sites maintained by project partners during the duration of the respective projects. Fol-
lowing project completion, however, project teams dissolve and Web-site maintenance
and support gradually fade out. Hence, general-purpose search engines are used to
search for past-project results. Nevertheless, search-engine query results provide large
numbers of unrelated links. Furthermore, hyperlinks pointing to potentially useful mate-
rial do not come with references or additional links to adequate information describing

� Work supported in part by the European Commission under the EU-MEDIN project (grant
agreement no. EVG1-CT-60003).

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 516–526, 2005.
c©Springer-Verlag Berlin Heidelberg 2005



A Grid-Enabled Digital Library System for Natural Disaster Metadata 517

the “value” of identified resources. Consequently, the identification of and access to use-
ful information and knowledge becomes very difficult. Effectively, valuable knowledge
is lost and it is practically impossible to find and take advantage of it.

To cope with this situation and to make research artifacts in the field of natural disas-
ters widely and easily available to the research community, the European Commission
has commissioned to Algosystems S.A. the development of a thematic Web portal to
support the storage and retrieval of metadata pertaining to results of research in natural
disasters [3]. Project-related metadata can be inserted via a Web interface to a back-end
database. Interested researchers can use the “EU-MEDIN” portal to query the database
and search for project-artifacts. This approach, however, is based on a platform-specific
solution. A change in database technology or a need for upgrading the hardware plat-
form or the operating system may dictate the transformation and storage of metadata in
a different data model, format, and database system, hence incurring significant cost.
Furthermore, the existence, update, and maintenance of the particular site is guaranteed
only during the life-cycle of the project that undertook the portal’s design, develop-
ment, and maintenance. Also, the functionality of the site requires that end-users have
to connect through the Web and register their metadata centrally; this makes it difficult,
however, to extract all metadata related to a particular project and possibly submit them
to a third party in batch. Last, but not least, there is a need to describe the metadata in a
common and open format, which can become a widely accepted standard; the existence
of a common standard will enable the storage of metadata in different platforms while
supporting the capability of distributed queries across different metadata databases, the
integration of metadata extracted from different sources, etc.

In this paper, we present gDisDL, a system designed to address some of the prob-
lems mentioned above. Our approach comprises:

– A schema for describing project-related metadata in a platform-independent form,
using the Resource Description Framework (RDF). RDF is a general framework
for describing metadata of Internet resources and for processing these metadata; it
is a standard of World Wide Web Consortium (W3C). RDF supports the interop-
erability between applications that exchange machine-understandable information
on the Web.

– A digital library system enabling the collection and storage of RDF-encoded meta-
data in distributed repositories, and the retrieval thereof from remote sites. This
library is implemented as a Grid-service architecture comprising a set of Grid ser-
vices, which allow the storage, management, and query of RDF metadata in a se-
cure and distributed manner. To develop the library we use the Globus Toolkit 3 [18]
for programming Grid services and the Jena toolkit [1] for handling RDF data.

– A set of graphical-user interfaces developed in Java to enable authorized end-
users to create RDF metadata for natural-disaster research artifacts and to conduct
keyword-based searches in RDF repositories.

The remaining of this paper is organized as follows. In section 2, we introduce Se-
mantic Web technologies and Grid that used in our work and review related work. Sec-
tion 3 describes matadata representation of the gDisDL system. We present the design
challenges and architecture of the gDisDL system in section 4. Finally, we conclude our
paper in Section 5.



518 W. Xing et al.

2 Background

Jena: Jena is a Java toolkit for building Semantic Web applications [1]. The Jena Java
RDF API is developed by HP Labs for creating and manipulating RDF metadata. It
mainly comprises:1)The “Another RDF Parser” (ARP), a streaming parser suitable for
validating the syntax of large RDF documents. 2)A persistence subsystem, which pro-
vides persistence for RDF metadata through the use of a back-end database engine. It
supports RDQL queries. 3)The RDF query language (RDQL), which is an implemen-
tation of an SQL-like query language for RDF. Jena generates RDQL queries dynam-
ically and executes RDQL queries over RDF data stored in the relational persistence
store.

Open Grid Service Architecture: Grid supports the sharing and coordinated use of
diverse resources in dynamic, distributed ”Virtual Organizations” (VOs)[?]. The Open
Grid Services Architecture (OGSA) is a service-oriented Grid computing architecture,
which an extensible set of Grid services that may be aggregated in various ways to
meet the needs of VOs[?]. OGSA defines uniform Grid service semantics and standard
mechanisms for creating, naming, and discovering Grid services. Web service technolo-
gies, such as XML, SOAP, WSDL, UDDI,etc., are adopted to build up the Grid services
infrastructure. A Grid service is a Web service that provides a set of well-defined inter-
face and that follows specific conventions [?]. The interface and behaviors of all Grid
services is described by GWSDL[18].

3 Metadata Elicitation

Metadata is structured data about data. The goal of the gDisDL system is to support
the storage and retrieval of metadata that pertain to a variety of results derived from

Resource Description Framework (RDF): The Resource Description Framework
(RDF) is a language mainly used for representing information about resources on the
World Wide Web [15]. In particular, it is intended for representing metadata about doc-
uments or other entities (e.g, Web resources, software, publications, reports, image files
etc), such as the title, author, modification date, copyright, and licensing information.
Although originally intended to be used on Web resources, RDF is capable of repre-
senting information about things that can be identified on the Web, even when they
cannot be directly retrieved from the Web [15]. This capability makes RDF an appro-
priate metadata schema language for describing information related to the various re-
sults and outcomes of natural-disaster research. RDF is intended for situations in which
information needs to be processed by applications, rather than only being displayed to
people. RDF provides a common framework for expressing information and can thus be
exchanged between applications without loss of meaning. Since it is a common frame-
work, application designers can leverage the availability of common RDF parsers and
processing tools. The ability to exchange information between different applications
means that the information can be made available to applications other than those for
which it was originally created [15].



A Grid-Enabled Digital Library System for Natural Disaster Metadata 519

(a) Class Hierarchy for the EU-MEDIN
RDF Schema

(b) Example of an EU-MEDIN RDF
Schema

Fig. 1. EU-MEDIN RDF Schema

research in natural disasters (earthquakes, floods, forest fires, industrial hazards, land-
slides, volcano eruptions, etc). To this end, we need a metadata language defined in a
common and open format, that will: (i) Promote the standardization of natural disaster
metadata, while at the same time allowing future extensions; (ii) Enable the storage of
metadata in different platforms according to a common, standard schema; (iii) Support
the interoperability of different metadata repositories; in particular the specification of
queries and the execution thereof upon different metadata databases.

We consider artifacts derived from natural-disaster research projects as resources
whose properties will be represented in RDF. To specify the metadata for those arti-
facts, we conducted a detailed requirements analysis and came up with a classification
containing 17 distinct resource classes: “EC project,” “Event,” “Journal paper,” “Soft-
ware,” “Student Thesis (MSc or PhD),” “Other scientific paper,” “Report/deliverable,”
“Web site,” “Press article,” “Book,” “Other project,” “Field experimental dataset,” “Lab-
oratory experimental dataset,” “Spatial digital dataset,” “Hardware,” “Media presenta-
tion,” and “Unclassified activity.” The properties of and the relationships between class
instances were defined accordingly.

We used the RDF Schema [9] to describe the identified set of RDF classes, prop-
erties, and values. The resulting schema is called EU-MEDIN RDF schema and rep-
resents our proposed metadata standard for natural-disaster research resources. Fig-
ure 1(a) shows the class hierarchy of the EU-MEDIN RDF schema.

Below, we give an example extracted from the EU-MEDIN RDF schema. This ex-
cerpt of our schema includes two classes, Press article, and EC Project, and three prop-
erties, author, belongTo and name. Using those classes and properties, we can describe
in RDF the following piece of knowledge: “John Smith wrote a Paper, which belongs
to FloodSim project. The paper’s title is “Flood Simulation on the Grid” in RDF. Fig-
ure 1(b) shows part of the schema definition and the RDF description of the example,
presented as an RDF graph.



520 W. Xing et al.

4 gDisDL System Design

gDisDL system is a Grid service-oriented system, which consists of the following com-
ponents: the Data Aggregator, the Searcher, the gDisDL Store, and the Data Man-
ager. As shown in Figure 2, the gDisDL system comprises a number of geographically
distributed gDisDL nodes. Each node should includes a Data Aggregator, a Searcher,
and a gDisDL Store. The Data Aggregator collects, validates, and encodes metadata in
RDF; the Searcher is designed for querying RDF metadata; the gDisDL Store is used to
store RDF metadata; the Data manager manages the RDF metadata maintained in the
gDisDL stores. Finally, the Editor and the Searcher GUI are client tools enabling users
to interacting easily with gDisDL through a graphical-user interface.

Fig. 2. The Architecture of the gDisDL System

4.1 Design Goals

The main design issue of the gDisDL system is how to share RDF metadata efficiently
and securely in a distributed manner. To address this challenge, we adopt the Open
Grid Service Architecture (OGSA). To this end, we design gDisDL as a set of Grid
services, which are defined according to the Open Grid Service Infrastructure (OGSI)
specifications.

Another design challenge is how to encode and store metadata in RDF. Currently,
most RDF-based systems ask users to feed RDF metadata directly [4]. Therefore, users
have to encode resource metadata into RDF syntax manually, a process which is in-
convenient and difficult. To cope with this problem, we designed and implemented the
DataAggregator, a component which generates the RDF syntax automatically and sub-
sequently stores the RDF-encoded metadata in RDF storage.

Another challenge is the storage and query of RDF metadata. Typically, an RDF
database can be used to store RDF metadata, and an RDF query language can be used



A Grid-Enabled Digital Library System for Natural Disaster Metadata 521

to express queries and execute them on the database. In the EU-MEDIN use-case sce-
nario, however, most projects do not contribute large bodies of metadata; also, metadata
updates are not very frequent. Therefore, a database system would be an overly expen-
sive solution for our system requirements. Moreover, we would have to choose one
among several existing RDF databases and query languages [4, 1, 17, 13], and integrate
it with gDisDL. Thus, the system would depend heavily on the chosen database system.
Currently, the default behavior of gDisDL is to store RDF metadata in plain files. In or-
der to make gDisDL more open and extensible, we designed the Searcher component as
a “query translator” that processes user requests and generates queries according to the
back-end storage used in each gDisDL site. Thus, the back-end storage system remains
transparent to the user and any RDF database systems can be deployed with gDisDL.

Another important design consideration is security. The security of the gDisDL is
mainly concerning two aspects: one is accessing distributed RDF metadata secretly;
another is that the shared RDF metadata should be protected, for instance, restricting
the users who have not the right to access the information. We adopt the Grid secu-
rity infrastructure (GSI) in the gDisDL, which uses the security mechanisms such as
authentication and authorization to secrete the shared RDF metadata.

4.2 gDisDL Components

The Data Aggregator. The Data Aggregator encodes information provided by end-
users for EU-MEDIN resources into RDF. In particular, the Aggregator:

1. Gets the information describing an EU-MEDIN resource from the Editor.
2. Validates the provided information with respect to the EU-MEDIN RDF schema,

taking into account resource classes, class properties, restrictions, and data types.
3. If the information is deemed valid, the Aggregator will generate a unique URI to

identify the resource. The URI contains two parts: one is the location of the gDisDL
system that the user uses (e.g. the domain name); the other is the time when the RDF
metadata was generated.

4. If the data is not valid, the Aggregator sends an error message to the Editor, and
ends the process.

5. The Data Aggregator transforms the validated data together with the created URI
into an RDF graph, which is a collection triples, each consisting of a subject, a
predicate and an object [14]. The RDF metadata of the resource is thus created.

6. The RDF metadata is encoded in RDF/XML format and saved in a gDisDL store.

The gDisDL Store. gDisDL Stores are the repositories used to save RDF metadata
created by the Data Aggregator. A gDisDL Store, by default, stores metadata for similar
EU-MEDIN resources (i.e, resources belonging to the same EU-MEDIN class) into the
same RDF file. For example, all RDF metadata describing Journal Papers are kept in
one file, all RDF metadata describing Data Sets are kept in another file, and so on. Thus,
when we look for metadata about Journal Papers, we can search into local or remote
RDF files dedicates to Journal-paper metadata. In order for a gDisDL Store to make
its contents available on the Grid, it has to register with one gDisDL Data Manager.
Furthermore, the Store has to notify this Data Manage about updates in its contents.
The Store’s contents are published through Jena’s Joseki Web server [1, 2].



522 W. Xing et al.

The Searcher. The Searcher is the component responsible for the metadata search pro-
cess. It comprises three subcomponents: the Query Pre-processor, the Query Planner,
and the Query Executor. The Query Pre-processor receives and validates the user’s re-
quests using a mechanism similar to that of the Data Aggregator. The Query Planner
works together with a Data Manager to prepare a query plan; the Query Executor exe-
cutes the query according to the query plan.

A typical searching procedure begins with the Query Pre-processor that receives the
request from the client. It checks the data of the request according to the RDF Schema,
translates it into an RDF triple model, and passes the result to the Query Planner. The
Query Planner then makes a query plan by consulting the gDisDL Data Manager. The
query plan specifies what kind of back-end storage system should be queried, e.g. a
gDisDL Store or an RDF database; in the first case, it also provides the address of the
target gDisDL Store. Eventually, the Query Executer performs the real query according
to the query plan. It can search the RDF metadata looking through the RDF file in target
gDisDL Stores.

The query of the gDisDL system is based on the RDF triple model. Namely, the
query is a a single triple pattern, with optional subject (parameter “s”), predicate (pa-
rameter “p”), and object (parameter “o”). Absence of a parameter implies “any” for
matching that part of the triple pattern. The Searcher handles RDF data based on the
triple (Subject, predicate, Object). According the user’s input parameters, the Searcher
will make a query and locate the RDF file that may contain the desired RDF metadata
from the gDisDL store; then it explores all the RDF triple statements, e.g., the name or
URI of the resources (“s”), their properties (“p”), and their values (“o”), compares them
with the input parameters, and retrieves the matched RDF triples. if the back-end store
is an RDF database system, the Query Planner can translate the user’s input (i.e. the
resource type, the property, values of the properties) into a proper RDF query language
format.

The gDisDL Data Manager. The gDisDL Data Manager provides index information
about RDF metadata maintained in distributed gDisDL Stores. To this end, it keeps a
list of URI’s of the stored RDF resources. The index information is used when making
a query plan. The gDisDL Data Manager has three subcomponents: an Indexer, which
maintains the list of URIs of all the metadata in all the gDisDL nodes; a Registrar for
registering gDisDL Stores; the Joseki RDF web server, for retrieving and publishing
RDF metadata, i.e., index information. The gDisDL Data Manager receives update no-
tifications from its associated gDisDL Stores and updates its index accordingly. Each
gDisDL store should register to the gDisDL Data Manager in order to share the RDF
metadata of it.

5 Implementation

We have implemented a prototype of gDisDL. In this section, we provide some details
about the gDisDL implementation.

The Grid gDisDL is implemented within the Open Grid Services Infrastructure
(OGSI). Globus Toolkit 3 and Jena are the main development tools used in our im-



A Grid-Enabled Digital Library System for Natural Disaster Metadata 523

plementation. GT3 is a software toolkit that can be used to program grid-based appli-
cations. It is implemented in Java based on the OGSI specification. GT3 provides lot of
services, programs, utilities, etc. Jena is a Java API that can be used to create and manip-
ulate RDF graphs. it comprises object classes to represent graphs, resources, properties,
and literals; a graph is called a model and is represented by the model interface. In
our implementation, Jena is used as a JAVA RDF toolkit for creating, manipulating and
querying RDF metadata.

To implement a Grid service, the first and most important work is to define the
interface of the Grid service, namely, specify the service interface in GWSDL [18].
Once the interface is correctly defined in GWSDL, implementing the service using Java
and other tools is straightforward. Thus we will focus on describing how the interface
is defined and what kinds of operations will be invoked.

5.1 Data Aggregator Grid Services and Interface

The DataAggregator service processes the collected information and data from the Ed-
itor client, encodes it into RDF format, and saves it into gDisDL stores as RDF files.
The interface of the DataAggregator grid service is defined in GWSDL as follows:

<gwsdl:portType name="DataAggregatorPortType" extends="ogsi:GridService">
<operation name="retriveInfo">

<input message="tns:GetInputMessage"/>
<output message="tns:GetOutputMessage"/>
<fault name="Fault" message="ogsi:FaultMessage"/>

</operation>
<operation name="getRDF">

<input message="tns:GetRDFInputMessage"/>
<output message="tns:GetRDFOutputMessage"/>
<fault name="Fault" message="ogsi:FaultMessage"/>

</operation>
<operation name="validate">

<input message="tns:ValInputMessage"/>
<output message="tns:ValOutputMessage"/>
<fault name="Fault" message="ogsi:FaultMessage"/>

</operation>
<operation name="saveRDF">

<input message="tns:SaveInputMessage"/>
<output message="tns:SaveOutputMessage"/>
<fault name="Fault" message="ogsi:FaultMessage"/>

</operation>
</gwsdl:portType>

Operation/PortType: retrieveInfo() is used to get values of the RDF triples
from a client; getRDF() creates an RDF graph and assigns the values of the triples;
validate() checks and validates the input data according to the syntax of EU-MEDIN
RDF metadata; saveRDF() saves the RDF metadata into a file in RDF/XML syntax.

5.2 Searcher Grid Services and Interface

The Searcher grid service is used for receiving and answering user queries about EU-
MEDIN resources. There are two cases for the Searcher when searching for RDF meta-



524 W. Xing et al.

data. In the first case, the Searcher uses the RDF metadata document match() method
to search the RDF metadata in a RDF document. In the second case, the search in con-
ducted upon an RDF database, using a database-specific plug-in. Currently we just im-
plemented the first one. The interface is defined as follows:

<gwsdl:portType name="SearcherPortType" extends="ogsi:GridService">
<operation name="preprocess">

<input message="tns:PreInputMessage"/>
<output message="tns:PreOutputMessage"/>
<fault name="Fault" message="ogsi:FaultMessage"/>

</operation>
<operation name="searchList">

<input message="tns:ListInputMessage"/>
<output message="tns:ListOutputMessage"/>
<fault name="Fault" message="ogsi:FaultMessage"/>

</operation>
<operation name="match">

<input message="tns:MatchInputMessage"/>
<output message="tns:MatchOutputMessage"/>
<fault name="Fault" message="ogsi:FaultMessage"/>

</operation>
</gwsdl:portType>

Operation/PortType: the preprocess() operation is used for preprocessing user
requests. The searchList() gets the remote RDF metadata information from a
gDisDL Data Manager. The match() operation is used by Query Executor to match
RDF triples.

Fig. 3. GUI of gDisDL Searcher

5.3 gDisDL GUIs

Two graphical interfaces are designed and developed to facilitate the end user: the Ed-
itor and the GUI Client of the Searcher. The Editor is a GUI client of the Data Ag-



A Grid-Enabled Digital Library System for Natural Disaster Metadata 525

gregator Grid service where a user can input information and data about EU-MEDIN
resources. Similar to the EU-MEDIN portal, it also provides some forms which can be
used to collect information about the EU-MEDIN resources. The Searcher GUI Client
of the Searcher Grid Service is needed for users to input the parameters of metadata
queries and get results (see Figure 3). The GUI allows users to specify the resource type,
the property, values of the properties, etc. The GUI Client also decodes the RDF query
results into human-readable form, and displays it on the result window (see Figure3).

6 Conclusions and Future Work

In this paper, we present an RDF-based Grid service approach for organizing and capi-
talizing European research results in the field of natural disasters. In brief, our approach
makes the RDF metadata of the European research results in the field of natural dis-
asters to be shared securely and effectively in a heterogeneous network environment
using Grid technology. Then we describe the design and the prototype implementation
of the Grid-enable gDisDL system. The RDF-based Grid-enable gDisDL system is a
platform independent system which provides good interoperability with other systems.
It can store, manage, and query RDF metadata in a secure and distributed manner.

Next step, we will develop a RDF database plug-in of the Searcher in order to inte-
grate RDF databases into our system. A mechanism is also needed for the gDisDL Data
managers to exchange indexing information. Furthermore, the gDisDL Data manager
will be able to be used as a kind of Cache to retrieve and publish metadata located in
the gDisDL stores for improving the query performance.

References

1. Jena - a semantic web framework for java. http://jena.sourceforge.net, 2003.
2. Joseki. http://www.joseki.org, 2003.
3. Eu-medin portal. http://www.eu-medin.org, 2004.
4. S. Alexaki, V. Christophides, G. Karvounarakis, D. Plexousakis, and K. Tolle. The ICS-

FORTH RDFSuite: Managing Voluminous RDF Description Bases. In Proceedings of the
Second International Workshop on the Semantic Web (SemWeb ’01), pages 1–13, May 2001.
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-40/.

5. Seaborne Andy. An rdf netapi. Technical report, HP Labs, 2002.
6. T. Berners-Lee, R. Fielding, and L. Masinter. Uniform Resource Identifiers (URI):Generic

Syntax. The Internet Engineering Task Force, August 1998.
7. Tim Berners-Lee. Notation 3, 1998.
8. T. Bray, J. Paoli, C.M. Sperberg-McQueen, E. Maler, and F. Yergeau. Extensible Markup

Language (XML) 1.0. World Wide Web Consortium, third edition, February 2004.
9. Dan Brickley and R.V. Guha. Resource Description Framework (RDF) Schema Specification

1.0. World Wide Web Consortium.

10. D. Connolly, F.V. Harmelen, I. Horrocks, D.L. McGuinness, P. Patel-Schneider, and L.A.
Stein. DAML+OIL (March 2001) Reference Description. World Wide Web Consortium,
March 2001.



526 W. Xing et al.

11. I. Foster, C. Kesselman, J.M. Nick, and S. Tuecke. The Physiology of the Grid. An Open
Grid Services Architecture for Distributed Systems Integration. Technical report, Open Grid
Service Infrastructure WG, Global Grid Forum, June 2002.

12. I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid: Enabling Scalable Virtual
Organizations. International J. Supercomputer Applications, 15(3), 2001.

13. G.Karvounarakis, V.Christophides S.Alexaki, and Michel Scholl D.Plexousakis. RQL: A
Declarative Query Language for RDF. The Eleventh International World Wide Web Confer-
ence (WWW’02), May 2004.

14. Graham Klyne and Jeremy Carroll. Resource Description Framework (RDF): Concepts and
Abstract Data Model. Technical report, The World Wide Web Consortium, August 2002.

15. F. Manola and E. Miller (editors). RDF Primer. W3C Working Draft, October 2003.
http://www.w3.org/TR/rdf-primer/.

16. P.F. Patel-Schneider, P. Hayes, and I. Horrock. OWL Web Ontology Language Semantics and
Abstract Syntax. World Wide Web Consortium, February 2004.

17. Andy Seaborne. RDQL - A Query Language for RDF. The World Wide Web Consortium
(W3C), January 2004.

18. Borja Sotomayor. The globus toolkit 3 programmer’s tutorial. Technical report, The Globus
Alliance, 2003.

19. S. Tuecke, I. Foster K. Czajkowski, C. Kesselman J. Frey, S. Graham, T. Sandholm
T. Maguire, and D. Snelling P. Vanderbilt. Open grid service infrastructure (ogsi) version
1.0. Open Grid Service Infrastructure WG, Global Grid Forum, 2002.


	Introduction
	Background
	Metadata Elicitation
	gDisDL System Design
	Design Goals
	gDisDL Components

	Implementation
	Data Aggregator Grid Services and Interface
	Searcher Grid Services and Interface
	gDisDL GUIs

	Conclusions and Future Work



