GridBench: A Tool for Benchmarking Grids*

George Tsouloupas

Marios D. Dikaiakos

Dept. of Computer Science
University of Cyprus
1678, Nicosia, Cyprus

{georget,mdd}@Qucy.ac.cy

Abstract

The aim of the GridBench suite of Benchmarks is
to bring together a core set of benchmarks for charac-
terizing Grid nodes or collections of Grid resources. In
order to do this in an organized and flexible way we
provide o framework for running benchmarks on Grid
environments as well as collecting, archiving, and pub-
lishing the results. This framework allows for conve-
nient integration of new and existing benchmarks into
the suite.

1. Introduction

The experimental performance evaluation of parallel
computer systems relies typically on benchmarks, such
as Linpack [10], NAS [3], Parkbench [14], Splash [23].
Benchmarks provide a commonly accepted basis for
comparing different computer systems in terms of their
performance [9]. They are also used to investigate per-
formance properties of parallel systems under carefully
tuned, benchmark-induced workloads that stress par-
ticular aspects of system performance. Benchmarks
can also be helpful for predicting the performance and
scalability of a category of complex applications on a
given system; to this end, kernels representative of this
category of applications are produced and executed to
estimate overall application performance. Performance
evaluation based on benchmarks often employs codes
and workloads that represent different types of com-
putation and are developed with various programming
paradigms and tools. Such a diversity is crucial for
the performance assessment of general-purpose paral-
lel systems in the context of different use-case scenar-
ios and workload types. Benchmarking has also been

*This work was supported by the European Union as part of
the CrossGrid project under contract IST-2001-32243.

used for assessing the performance of software sys-
tems connected on Internet, such as Web infrastruc-
tures [15, 21, 19], mobile-agent middleware [8], etc.

The emergence of Grids as platforms for high-
performance and high-throughput computing over the
Internet raises many questions regarding the exper-
imental performance evaluation of Grid infrastruc-
tures. A key issue is whether the parallel-benchmark
paradigm can be ported and used “as is” in a Grid set-
ting. This issue relates to a number of questions about
the applicability of benchmarks on Grids, the mean-
ing of benchmark results and their interpretation, the
support required to administer Grid benchmarks and
access their results, etc. Our conjecture is that parallel
benchmarks and their context of use cannot be ported
directly to the Grid.

Nevertheless, benchmarking can be very useful for
Grid users. Benchmarking metrics published on the
Grid can provide a basis for users to assess the “quality
of service” expected by a Virtual Organization provid-
ing computational services at a given cost. Grid bench-
marks can be used by middleware developers to com-
pare different middleware solutions such as job submis-
sion services, resource allocation policies, scheduling
algorithms, etc. Grid-oriented benchmarks can serve
as an evaluation of the fitness of a collection of dis-
tributed resources for running a specific application.
As common programming models or paradigms start
to emerge for programming in Grid environments, Grid
benchmarks can serve as a feasibility study of running
a general class of applications (or applications follow-
ing a similar programming paradigm). A key aspect
of Grids is their dynamic nature and Grid benchmarks
can help study the effect of this dynamic nature of the
Grid on application performance. Additionally, they
can provide some insight to the properties of Grid Ar-
chitectures.

The goal of our work is to design and develop Grid-
Bench, a tool for researchers that wish to investigate

various aspects of Grid performance using a variety
of well-understood benchmarks that range from sim-
ple micro-benchmarks to kernels representative of more
complex Grid applications. By providing access to a
corpus of such kernels and facilitating the specification
and dispatch of parameterized kernel runs on Grids,
GridBench will enable the characterization of factors
that affect application and infrastructure performance,
the quantitative comparison of different middleware so-
lutions, algorithms for scheduling, resource allocation,
etc.

The rest of this paper is organized as follows: in
Section 2, we discuss the scope and challenges of Grid
benchmarking and propose a hierarchical framework
for addressing these issues. In Section 3, we describe
the design of GridBench, a tool that we are implement-
ing for specifying and administering Grid benchmarks.
Section 4 describes a core set of benchmarks included
in the first version of GridBench and presents our ex-
periences from our implementation and testing efforts
so far. We conclude in Section 5.

2. Benchmarking the Grid
2.1 Challenges and Scope

In order to produce valid and usable results, Grid
benchmarking must abide by the general rules of sci-
entific experimentation. Therefore, Grid middleware
and benchmarking tools should provide the necessary
support for conducting controlled and reproducible ex-
periments, for measuring performance indicators accu-
rately, and for interpreting benchmarking results in a
proper context.

For the purpose of our work, we consider Grid
benchmarks as well-understood and relatively simple
codes that can be deployed and run on top of Grid
resources to:

e Generate metrics that describe the performance
capacity of selected Grid nodes in isolation
through measurements of computational power,
file-transfer speed, inter-process communication
bandwidth, scalability, etc. Consolidation and
proper storage of these metrics can support ad-
vanced resource brokers and job schedulers for
the Grid. Moreover, it can provide a basis
for performance-aware resource allocation and
Virtual-Organization formation.

e Generate metrics that characterize the perfor-
mance capacity of resources belonging to a Vir-
tual Organization and spanning across multiple

Grid nodes, in terms of computational power, file-
transfer speed, inter-process communication band-
width, application-kernel performance, scalability
etc. It should be noted that the proper interpreta-
tion of these metrics dictates the capability of as-
sociating them with adequate descriptions of the
actual sets of resources allocated to the particular
benchmark-executions that produce metrics data.

e Generate metrics that characterize the perfor-
mance of Grid middleware services available at the
programming level through APT’s.

e Provide a tool for researchers that wish to inves-
tigate various aspects of Grid performance, using
well-understood kernels that are representative of
more complex applications deployed on the Grid.
Having access to a corpus of such kernels and be-
ing able to easily specify and dispatch parameter-
ized runs of these kernels on Grids, facilitates the
characterization of factors that affect application
and infrastructure performance, the quantitative
comparison of different middleware solutions, al-
gorithms for scheduling, resource allocation, etc.

o Test emerging Grid middleware services to feed
performance prediction tools with measured pa-
rameters and to validate performance-prediction
approaches.

For the definition of benchmarks and the interpre-
tation of their results at a conceptual level close to
the users’ perception of the Grid, we need models cap-
turing the basic characteristics of benchmarks and of
the underlying architecture reserved for benchmark ex-
ecutions. Such models can be used to abstract low-
level implementation details and measurements, while
helping users to identify and isolate key issues that de-
termine benchmark performance. The problem of es-
tablishing realistic and general yet simple models for
parallel computation has been studied extensively with
varying levels of success [20]. A “good” model for grid
computation appears quite distant, since it would have
to account for the heterogeneity of resources, vary-
ing communication speeds, the dynamic nature of the
Grid, and the lack of a widely accepted programming
paradigm. In the design of GridBench we adopt a
model for the basic Grid infrastructure architecture
that is representative of the CrossGrid testbed [16] and
is quite similar with most Grid testbeds. In this archi-
tecture, which is depicted in Figure 1, a Grid Virtual
Organization (VO) is made of a set of geographically
distributed sites. Each site contains a Computing El-
ement that manages a set of “Worker Nodes” for per-
forming computations, and an optional “Storage Ele-
ment,” which is an interface to mass storage. Typically
Computing Element has direct (Local Area Network)

Grid VO
VO Services
(Resource Broker/ VO server)

Wk

Storage
Element

Computing

|| | Element

Computing
| Element

| | Hioervod]
| | Yoero]

Figure 1. Basic Grid infrastructure architec-
ture.

access to mass storage on the Storage Element that is
close to it (e.g. via Network File System). The Grid
VO also contains some VO services such as a resource
broker, VO membership server etc. The Sites are con-
nected by shared wide-area links over the Internet.

2.2. A Hierarchical Framework

The multi-layered structure of the Grid calls for sep-
arate performance investigation of various aspects of
the Grid infrastructure. Using benchmarks, we can
isolate the performance properties of:

1. Individual Resources, such as cluster nodes or
Storage Elements;

2. Sites, i.e., collections of resources interconnected
through a local- or system-area network that be-
long to one administrative domain (e.g. a cluster
of PCs or a symmetric multiprocessor system).

3. Grid Constellations comprised of multiple sites
which constitute the computing platform of a Vir-
tual Organization.

4. The Middleware, that is the software layer pro-
viding access to shared resources of a Grid con-
stellation and gives the programmer the Grid as a
shared resource.

To benchmark these aspects of the Grid infrastruc-
ture we propose the use of three categories of bench-
marks: micro-benchmarks, micro-kernels and applica-
tion kernels. Fach category provides information about
a different point of view of Grid performance. Micro-
benchmarks are small and simple programs written
specially to isolate basic performance characteristics re-
garding processing, local memory, input/output, com-
munication, synchronization, contention, etc. Each
micro-benchmark measures a single and basic per-
formance aspect of the four layers mentioned earlier

by “stress-testing” a simple operation invoked in iso-
lation. Basic performance properties are extracted
with low-level measurements; for instance of the file-
transfer time between two different sites of a VO, or
of the floating point operations per second achieved
by a particular CPU. Micro-kernel benchmarks
are synthetic codes designed to stress-test several per-
formance aspects of a Grid component with realistic
workloads. Typically, micro-kernels are designed to be
simple so that their performance traits can be repre-
sented by analytical models with a good approxima-
tion. Micro-kernel workloads should be representa-
tive of widely used, computationally challenging ap-
plications; therefore, micro-kernel benchmarks are de-
rived from core libraries of High Performance Com-
puting/High Throughput Computing applications de-
ployed on Grids or clusters. Application bench-
marks are derived from real applications deployed
on Grids. Typically, they consist of multiple micro-
kernels combined in patterns and workflows in typ-
ical Grid applications, and resemble the originating
applications [7]. Their aim is to measure the per-
formance characteristics of “representative” applica-
tions by capturing high-level metrics such as comple-
tion time, throughput and speedup.

3. GridBench Design
3.1 Software Architecture

As mentioned earlier, GridBench is a tool designed
to administer the proposed hierarchical framework for
Grid benchmarks and to cope with challenges described
in the previous section. The software architecture of
GridBench is presented in Figure 2. The main compo-
nents of this architecture are:

e RSL/JDL Compiler (converts XML descriptions
of benchmarks to a job description language);

e Orchestrator (manages benchmark execution and
collects results);

e Benchmark Component (the benchmark exe-
cutable, e.g. Linpack);

e Monitoring Component (collects monitoring infor-
mation);

e Archive Database (archives benchmark results);

e Information provider (publishes results to infor-
mation services);

e Benchmark Definition UI (GUI for defining and
executing benchmarks), and

e Benchmark Browser (GUI for browsing and ana-
lyzing benchmark results).

| |

| |

| |

| |

| Benchmark Information | Benchmark Information
[Component Provider [Component Provider

| (e.. Linpack) | (e.g. Linpack)

| |

Globus/EDG Client Orchestrator GBDL Benchmark
or Resouirce Broker Compiler Definition
Gul
- Benchmark
[Monitoring Browser
Storage Com aul
ponent
Element] Archive

Database

Figure 2. Software Architecture of GridBench.

The RSL/JDL Compiler parses a specification of a
benchmark written in the platform-independent XML-
based GridBench Definition Language (GBDL) and
generates the job description language that is neces-
sary for launching the benchmark on a specific middle-
ware infrastructure. At the outset, we set no limita-
tion on which description language is to be produced
by the compiler, since we would like GridBench to
be usable on top of Grid middleware platforms which
support different job description languages. In cur-
rent implementation, we support the RSL language [6]
of Globus, and the JDL language of the DataGrid
project [2], which is based on Condor-G classads [18].
The Benchmark Components are the actual bench-
marking codes, such as the High-Performance Lin-
pack kernel. The GridBench MDS Information
Provider publishes results to the local MDS. Data is
in the form of an XML document that is placed in a
publicly accessible directory and picked up by the Grid-
Bench Information provider at regular intervals. The
Data-Transfer Component deals with transferring
data once a component has finished and its output data
is required by another component at a different loca-
tion. The Orchestrator component is responsible
for coordinating the start-up and execution of the var-
ious components, especially in cases where the middle-
ware does not support ordering of sub-jobs. On com-
pletion of the benchmark, the Orchestrator uses the
Archiver for storing the resultant XML into a database.
The Monitoring Component is a client to monitor-
ing services. Monitoring of the resources under mea-
surement is invaluable for understanding the results.
The monitoring component takes a description of what
to monitor through the GBDL and collects monitoring
information. The GBDL specifies the type of monitor
(such as R-GMA or OCM-G) and the target resource.
The collected data are then stored in a Storage Ele-
ment with a reference stored back into the GBDL.(See
section 3.2).

1.0] o [~] 0.1
monitor metric archive
1
arameter
P | 0. 1.0 .-

| ValueVector

parameter

parameter

0..1

location

e

resource

0.
_m
0. .
constraint
0. -
prerequisite

- metric

1.7

ValueVector

Figure 3. The GBDL specification schema.
3.2. Meta-data

To specify Grid benchmarking experiments in a
platform-independent way, we introduce an XML-
grammar named the GridBench Definition Lan-
guage (GBDL). A GBDL definition specifies the
codes to be executed while conducting a benchmarking
experiment on the Grid, the target resources, the invo-
cation of monitoring software and references to moni-
toring data, the definition of measurements to be taken
and references to measurement archives. The exact
structure of a GBDL document is given in Figure 3. As
shown in this diagram, a benchmark definition includes
benchmark component elements, metric, monitor and
archive elements.

Each benchmark component element is described
by:

1. A set of parameters, which can be of type value or
attribute. Attribute parameters are used directly
in the generation of RSL/JDL, while value pa-
rameters are command-line arguments passed to
the benchmark executable; For example, to pass
the command-line argument “nbodies=10000" to
a benchmark executable, we use the following syn-
tax:
<parameter name='"nbodies" type="value" value="10000"/>
On the other hand, to insert the (count=16) attribute
in the job description language produced by the
RSL/JDL Compiler, we use:
<parameter name="cpucount" type="attribute" value="16"/>

2. The location, which is made up of at least one
TeSOUTCE;

3. A set of co-requisites, specifying the set of other
components that must be running while this com-
ponent is running;

4. A set of prerequisites, that is the set of components
that must have finished before this component can
start.

5. A set of constraints for the runtime of the compo-
nent, e.g., that the target resource must support
MPI.

6. A set of metrics that make up the values of the
results of the benchmark component.

Metric elements encode the high-level results of a
benchmark as a whole, in contrast to the metric el-
ements that are found inside a component element,
which are results of just one component. For example,
a benchmark composed of several components could
have a “completion time” benchmark-level metric, de-
noting the total wall-clock time taken to complete all
components. While the nature of metrics varies de-
pending on the type of a benchmark, each metric can
be expressed in one of the following ways:

o Single-value measurements, such as average in-
structions per second, e.g.:

<metric-name="epwhetstone_IPS" type="value">
<vector-unit="MIPS">53</vector>
</metric>

o Multi-value measurements, such as throughput
during a file transfer, e.g.:

<metric-name="xfer-rate" type="list">
<vector-unit="bps">
2039430,2083930,1909830,2184750, ...</vector>
<vector-unit="second" toffset="1055327287">
0,10,20,30,...</vector>

</metric>

Monitor elements specify what monitoring (type,
time period etc.) is to be performed by the moni-
toring component; instructions for the collection of
monitoring data during a benchmark execution. The
following is an example of a monitoring data collection
specification:

<component name="data-transfer" ID="xfer(1">
...</component>
<monitor type="RGMA" source="ccwp71.in2p3.fr:3306"
query="select * from NetworkTCPThroughput
where NMIdSource=’adc0003.cern.ch’
and NMIdDestination=’ccwp7.in2p3.fr’
<parameter name="begin">comp-begin="xfer01"</parameter>
<parameter name="end">comp-end="xfer01"</parameter>
</monitor>

In this example, TCP throughput monitoring data are
gathered for the duration of the “data-transfer” compo-
nent execution. Note that the begin and end times are
determined during runtime and correspond to the be-
gin and end times of the component with ID="xfer01’.

Finally, archive elements specify the URL of
the native-XML database (namely the Apache-Xindice
database) used to store the final XML documents with
the incorporated results

The outcome of benchmarking experiments is en-
coded as a set of metrics, which we incorporate into the
GBDL XML document along with the benchmark def-
inition and the monitoring references. This is done be-
cause benchmark results on the Grid make little sense
without a representation of the conditions under which
they were obtained.

3.3. Archival and Publication of Results

Benchmark results along with the benchmark defi-
nition are archived for reference purposes. This must
be done in a manner that facilitates comparisons be-
tween runs of benchmarks and the statistical analysis
of results collected over time. The possibility of select-
ing the results by providing a list of parameters with
which a benchmark was run, is especially useful for
analysis. The archival requirements were met by stor-
ing the data in a native-XML database (Xindice [1]).
Storing results in such a database means that the user
can retrieve historical results by specifying the bench-
mark type, while he can narrow down the search by
specifying parameters with which the benchmark was
executed.

Publication of the benchmark results in the local
Information Services (MDS) [12] of a resource, and op-
tionally to the high-level Virtual Organization is useful
for several reasons. First, it makes benchmarking met-
rics data available via a well-known service. Second,
the metrics data available in the MDS (or any Informa-
tion Service for that matter) can be used by schedulers,
administrators or even application users who want to
know how “good” a resource is at running their code.
Similar work is done by the Network Weather Ser-
vice [22] with the main difference that NWS publishes
monitoring data, not benchmarking results. A dia-
grammatic version of the MDS/LDAP schema used for
publishing the result in the MDS is given in Figure 4.

The GridBench architecture does not rely on MDS
for any of its basic functionality. The publication of
results to a different Information Service is as simple as
modifying the GridBench MDS Information Provider
to interface to the other Information Service. In fact
the archival of the results using XML simplifies the
process of creating Information Providers.

Grid-Benchmarks=

Grid-Benchmarks-CE= Benchmark-group=
Network Performance

CEhostname

Grid-Benchmarks-WN= benchmark-name=
WNhostname benchmarkname

benchmark-name= benchmark-run- e
benchmarkname timestamp=date/time
benchmark-run- Attribute-name=name| | Field-name=name

timestamp=date/time

value=value value=value

Attribut =name Field =name| |output-file-type=name
| | . | | reference=value

\ Attribute may have \1 Field may have

multiple values multiple values

Figure 4. MDS schema for GridBench results.
4. Implementation and Testing

In order to validate the design of GridBench, sev-
eral benchmarks were selected for implementation as a
proof-of-concept.

4.1. Micro-benchmarks and Micro-Kernels

In the case of the Grid, and more specifically the
CrossGrid testbed, micro-benchmarks can be applied
to the different levels of the Grid architecture. The
three levels of the architecture that micro-benchmarks
will target are the CPU, Site and Grid VO level.
Micro-benchmarks at the Worker Node level

EPWhetstone is based on the whetstone [5] bench-
mark, which is a sequential, synthetic floating point
benchmark. In this modified version, EPWhetstone,
aims to measure the performance of individual CPUs
in a Computing Element (cluster) by running on all
CPUs in a parallel with each process running indepen-
dently. The benchmark returns Million Instructions Per
Second (MIPS).

BlasBench [17] evaluates the performance of a
CPU by using the BLAS library for performing ba-
sic Linear Algebra operations. Returns FLOP/s and
MB/s.

Micro-benchmarks at the Site (CE/SE) level

Bonnie++ [4] is a benchmark used to evaluate I/O
performance. In the CrossGrid architecture, a Com-
puting Element is usually paired with a Storage El-
ement which makes storage space available via NFS.

The CE mounts that directory and can access the data
stored in the SE. The benchmark returns MB/s during
reading and MB/s during writing.

MPPtest [13] is a benchmark that tests MPI com-
munication speeds by various ways and provides a va-
riety of options for a detailed performance analysis.
MPPtest is platform and MPI implementation inde-
pendent and can therefore be used with any MPI imple-
mentation. MPPtest aims to make reproducible mea-
surements of MPI performance and results are claimed
to be reproducible since the reported measurements are
the minimum of several runs (Returns a set of measure-
ments that characterize MPI Performance).
Micro-benchmarks at the Grid VO level

MPPtest: The same principle as for the CE
mpptest can be applied to the Grid, where each partic-
ipating resource (CE) can either host a single process
running on the CE or a set of processes, each running
on a different Worker Node.

gb_ftb: This File Transfer Benchmark is a straight-
forward file transfer benchmark transfers of large files.
The user needs to specify Hostname 1, hostname 2 and
protocol. Hostname 1 and hostname 2 are the source
and target systems respectively. The protocol is the
protocol used in the file transfer (such as ftp, gridftp,
gsiftp, sftp, ...). The file to be transfered will be pre-
generated, generated on the fly or staged at hostname
1 (the source) depending on the user options. A user-
supplied measurement interval will determine the fre-
quency of recording the transfer progress.

The total time taken by the transfer will be the
completion time (excludes time for staging or pre-
generation of files). The transfer rate is a vector of
data points at every measurement interval starting at
the beginning of the transfer . The output will include
the average and standard deviation of the transfer rate.
Micro-kernels at the Site (CE) level

High Performance Linpack [10] is one of the most
widely known benchmarks in HPC; HPL now ranks the
TOP500 [11] super-computers. The HPL benchmark
solves a dense system of linear equations by Gaussian
elimination. It is MPI-based and in order to perform
its basic computations it utilizes either of two libraries,
the Basic Linear Algebra Subprograms or the Vector
Signal Image Processing Library.

Selected kernels from the NAS Parallel bench-
marks [3]: These are a set of kernels and simple appli-
cations from Computational Fluid Dynamics that have
been thoroughly analyzed and formulated into a set of
benchmarks.

Micro-kernels at the Grid VO level
Computationally Intensive Grid Benchmarks:
By some minor modifications the kernels from the NAS

Benchmark | Metric | Retention
EPWhetstone MIPS in GBDL
BlasBench flop/s, MB/s throughput in GBDL
Bonnie++ I/0 bandwidth in MB/s in GBDL
MPPtest time (s) for MPI operations reference
gb_ftb completion time, transfer rate | reference
Job start-up time (s) in GBDL
HPL flop/s in GBDL
NGB flop/s in GBDL
CIGB completion time in GBDL

Table 1. GridBench metrics
Parallel Benchmarks can be combined into large-scale
applications that run distributed, as proposed in [7].
Varying the combination of kernels and the architec-
ture it is possible to specify benchmarks that resemble
different classes of applications, such as visualizations
and cascades of simulations.

Table 1 contains a list of the metrics that will be
produced and stored by the benchmarks previously de-
scribed. In the table, retention refers to whether the
metric values are kept inside the GBDL document or
if they are stored separately in a repository, in which
case only a reference is stored in the GBDL.

4.2 Compilation to RSL/JDL

When it comes to the generation of RSL/JDL from
the benchmark description, each component element in
the XML is transformed into a set of sub-job specifica-
tions. The target resource is obtained by the resource
element and the executable is determined by the pa-
rameter with name=’executable’. Since each of the
components has a different scheme for command-line
parameters, each benchmark executable must have an
associated ParameterHandler_benchmark-name class,
which puts the parameters for the benchmark in the
correct command-line format. In the following para-
graph, we provide a single-component example with
the corresponding GBDL XML definition and the gen-
erated RSL:

GBDL benchmark definition:

<benchmark date= name='"nbody">
<component id="A" name="nbody" type
<location type="single">
<resource cpucount="2"
name="apelatis.grid.ucy.ac.cy" />
</location>
<parameter name="executable" type="attribute">
/bin/nbody.exec</parameter>
<parameter name="nparticles" type="value'">
1000</parameter>
</component>
</benchmark>

Generated RSL:

+(&(resourceManagerContact="apelatis.grid.ucy.ac.cy")
(label="subjob 0")

="mpi">

(environment=(GLOBUS_DUROC_SUBJOB_INDEX 0))

(count=1)

(arguments="-n 1000")

(executable="/bin/nbody.exec"))
(&(resourceManagerContact="apelatis.grid.ucy.ac.cy")

(label="subjob 1")

(environment=(GLOBUS_DUROC_SUBJOB_INDEX 1))

(count=1)

(arguments="-n 1000")

(executable="/bin/nbody.exec"))

4.3. Experiments and Testing

In our prototype implementation we obtained some
measurements of the CrossGrid testbed [16] as proof of
concept. Figure 5 shows graphs that are derived from
some of the initial results of running the gb_site_hpl, the
gb_epwhetstone and the gb_ftp file transfer benchmarks.

The gb_site_hpl was executed using two CPU’s, on
several of the Crossgrid testbed sites (the benchmark
ran independently at each site). The gb_epwhetstone
benchmark ran on two CPUs at each of the sites shown.
The graph of the gb_ftb file transfer benchmark shows
the progress of transferring a small file from one site
to the others using GSIFTP (transfers were not con-
current). A steeper curve implies a faster transfer and
the completion time for each file transfer is indicated
by its maximum x value.

5. Conclusions and Future Work

In this paper we examined issues related to the em-
ployment of benchmarks for the Grid. We presented
the design of GridBench, a tool that we are implement-
ing to benchmark Grid systems. We described how
benchmarks can be specified using the GridBench Def-
inition Language and compiled into the RSL and JDL
job specification languages supported by the Globus
and EDG middleware. We also described the mecha-
nisms by which results and monitoring data are stored
in XML databases and published in Grid information
systems. As proof-of-concept we implemented a set
of benchmarks and executed them on the CrossGrid
testbed, starting from GBDL definitions.

The GridBench facilities for defining and executing
benchmarks, as well as archiving and publishing bench-
mark results have numerous uses for researchers, ad-
ministrators and users of the Grid, who can benefit
from easy access to and statistical analysis of multi-
ple archived executions of benchmarks. Grid users can
benefit by having access to measurements from several
resources, from which they can select for running their

application.

The specification of more complex, multiple com-
ponent benchmarks is necessary for truly understand-
ing Grid architectures. The Computationally Inten-
sive Grid Benchmarks[7] and benchmarks based on the

HPL Results (runing on 2 CPUs at each CE)

GridBench EPWhetstone Results

File Transfer using GSIFTP

100%

Measured Value in Mflop/s
cuoa3R8H

Measured Value in MIPS
ccos o=~ =
SEE885n %
Transfer Percentage

© @

3 g

o 3 RS oS
e 6\\)039 \6\96\) Q'L'\\QQ Q\\QQ o9 o9
S §© 06900 %FA\/ o ® ‘ o8 €
X X S . 3@ %
o o N . o8 © 5 w0 o0 o0
Computing Element Hostname Computing Element Hostname Time (s)

Figure 5. Measurements obtained by the gb_site_hpl, gb_epwhetstone and gb_ftb benchmark at several

sites of the CrossGrid testbed.

CrossGrid applications will be implemented during the
next phase of development. Future work will also fo-
cus on enhancement of the existing software with the
addition of a graphical user interface, and integration
with middleware beyond CrossGrid and Globus.

References

1] Apache xindice,http://xml.apache.org/xindice.
2] Datagrid project. http://www.eu-datagrid.org, 2000-

2004. Information Societies and Technologies Program,

Framework Program Five, European Union.
[3] D. Bailey, T. H. Saphir, R. van der Wijngaart, A. Woo,

and M. Yarrow. The nas parallel benchmarks 2.0. The
International Journal of Supercomputer Applications,

1995.
[4] R. Coker. Bonnie++. Technical report.

http://www.coker.com.au/bonnie++ /readme.html.
[5] H. J. Curnow and B. A. Wichmann. A synthetic bench-

mark. The Computer Journal, 19(1):43-49, 1976.
[6] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman,

S. Martin, W. Smith, and S. Tuecke. A resource man-
agement architecture for metacomputing systems. Lec-

ture Notes in Computer Science, 1459:62—77, 1998.
[7] R. V. der Wijngaart. Computationally intensive grid

benchmarks. Global Grid Forum (2003), 2003.
[8] M. Dikaiakos, M. Kyriakou, and G. Samaras. Perfor-

mance Evaluation of Mobile-Agent Middleware: A Hi-
erarchical Approach. In G. P. Picco, editor, Proceedings
of the 5th International Conference on Mobile Agents
(MA 2001), volume 2240 of Lecture Notes in Computer

Science, pages 244-259. Springer, 2002.
[9] J. Dongarra and W. Gentzsch, editors.

Benchmarks. North Holland, 1993.
[10] J. Dongarra, P. Luszczek, and A. Petitet. The linpack

benchmark: Past, present, and future. December 2001.
[11] J. J. Dongarra, H. W. Meuer, and E. Strohmaier.

TOP500 supercomputer sites, 11th edition. Technical

Report UT-CS-98-391, 1998.
[12] S. Fitzgerald, I. Foster, C. Kesselman, G. von

Laszewski, W. Smith, and S. Tuecke. A Directory
Service for Configuring High-Performance Distributed
Computations. In Proceedings of the 6th IEEE Symp.
on High-Performance Distributed Computing, pages
365—-375. IEEE Computer Society, 1997.

Computer

[13] W. Gropp and E. L. Lusk. Reproducible measurements
of MPI performance characteristics. In PVM/MPI,
pages 11-18, 1999.

[14] R. Hockney and M. Berry. Public international bench-
marks for parallel computers report, 1994.

[15] S. Manley, M. Seltzer, and M. Courage. A Self-Scaling
and Self-Configuring Benchmark for Web Servers. In
Proceedings of the 1998 Sigmetrics Conference on Mea-
surement and Modeling of Computer Systems, pages
270-272. ACM, 1998.

[16] J. Marco et al. First Prototype of the CrossGrid

Testbed. In First European Across Grids Conference,

February 2003.

] P. Mucci. The blasbench report, 1998.

[18] R. Raman, M. Livny, and M. H. Solomon. Match-
making: Distributed resource management for high
throughput computing. In HPDC, pages 140—, 1998.

[19] G. Samaras, M. Dikaiakos, C. Spyrou, and A. Liverdos.
Mobile Agent Platforms for Web-Databases: A Qual-
itative and Quantitative Assessment. In Proceedings
of the Joint Symposium ASA/MA ’°99. First Interna-
tional Symposium on Agent Systems and Applications
(ASA ’99). Third International Symposium on Mobile
Agents (MA ’99), pages 50-64. IEEE-Computer Soci-
ety, October 1999.

[20] L. Snyder. Experimental validation of models of par-
allel computation. Computer Science Today, pages 78—
100, 1995.

[21] Transaction Processing Performance Council (TPC).
TPC Benchmark W (Web Commerce) - Draft Specifi-
cation, December 1999.

[22] R. Wolski. Dynamically forecasting network perfor-
mance using the network weather service. Cluster
Computing, 1(1):119-132, 1998.

[23] S. C. Woo, M. Ohara, E. Torrie, J. Singh, and
A. Gupta. The SPLASH-2 Programs: Characteriza-
tion and Methodological Considerations. In Proceed-
ings of the 22nd Annual International Symposium on
Computer Architecture, pages 24-37. ACM, June 1995.

