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Abstract. In this paper, we introduce a hierarchical framework for the
quantitative performance evaluation of mobile-agent middleware plat-
forms. This framework is established upon an abstraction of the typi-
cal structure of mobile-agent systems and is implemented through a set
of benchmarks, metrics, and experimental parameters. We implement
these benchmarks on three mobile agent platforms (Aglets, Concordia
and Voyager) and run numerous experiments to validate our framework
and compare the mobile-agent middleware environments quantitatively.
We present results collected from our experiments, which help us un-
derstand MA performance and identify existing bottlenecks. Our results
can be used to guide the improvement of existing platforms, the perfor-
mance analysis of other systems, and the performance prediction of MA
applications.

1 Introduction

The Mobile Agent (MA) paradigm is one of the most promising approaches for
developing distributed applications on Internet [9]. The employment of Java-
based MA technologies for the development of next-generation Internet systems
opens numerous research problems. In our work, we focus on quantitative per-
formance evaluation of mobile agents and propose a framework for investigating
the performance characteristics of MA-based platforms and applications.

In this context, we introduce a performance evaluation approach that can
be used to gauge the performance characteristics of different mobile-agent plat-
forms. This approach extends and refines previous work of ours [12,6], by defin-
ing a “hierarchical framework” of benchmarks designed to isolate performance
properties of interest at different levels of detail. We identify the structure and
parameters of benchmarks and propose metrics that capture performance prop-
erties of interest. We implement these benchmarks upon three Java-based, mo-
bile agent middleware platforms (IBM’s Aglets [4], Mitsubishi’s Concordia [13]
and ObjectSpace’s agent-enhanced object request broker, Voyager [7]), and run
various experiments.
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Experimental results provide us with initial conclusions that lead to further
refinement and extension of benchmarks and help us investigate the performance
characteristics of the platforms examined. The remaining of this paper is orga-
nized as follows: Sections 2 and 3 introduce our performance analysis frame-
work. Sections 4 and 5 present the implementation of the first two levels of our
framework with a suite of micro-benchmarks and micro-kernels, and report our
experimentation results. We conclude in Section 6.

2 Basic Elements and Application Frameworks

Typically, the performance assessment of software systems is conducted
through experimentation and monitoring, simulation, modeling and combina-
tions thereof. The more complex a system is the harder its performance eval-
uation becomes, dictating the employment of these techniques at various lev-
els of abstraction. To this end, software systems are modeled as hierarchical
structures of interacting modules, i.e., subsystems and objects; each module is
assigned a performance model that incorporates performance and load parame-
ters of relevance, and a description of the underlying architecture and workload
[14]. Model development is performed in a “top-down” manner, starting from
high-level structure and moving toward code implementation. Experimentation
and/or simulation can be used at various layers of abstraction to specify the
values of modeling parameters.

The development and assembly of performance models for MA middleware
is more complicated than for more “traditional” parallel, distributed or object-
oriented software; when analyzing the performance of MA-based systems, we
must take into account issues such as: the absence of global time, control and
state information; the complex architecture of MA middleware and the agility
of MA systems; the variety of distributed computing (software) models that
are applicable to mobile-agent applications; the diversity of operations found in
MA middleware, and the additional complexity introduced by issues that affect
the performance of Java (run-time compilation, memory management, garbage
collection, etc.).

To cope with the complexity of MA-performance evaluation, we propose the
adoption of a hierarchical approach that takes into consideration the structure of
typical MA-based applications. This structure is influenced, first, by the mobile-
agent platform adopted to develop an application. MA platforms are middleware
systems with a programming interface that exposes to the programmer a set of
core functionalities providing support for object mobility (transportation and lo-
cation services), communication between objects, security, fault-tolerance etc. [2,
7,8]. MA platforms are differentiated by their functionality, programming inter-
face and performance characteristics, all of which are influenced by underlying
implementation details. The structure of a MA application is further determined
by the design choices that the application developper makes on how to use the
API provided by the middleware platform, when developing the particular appli-
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cation. Typically, these design choices can be abstracted as mobile-agent design
patterns [1].

Therefore, to investigate the performance of mobile-agent applications, we
have first to develop an approach for capturing basic performance properties of
MA middleware. These properties must be defined independently of how particu-
lar mobile-agent API’s are used to program and deploy applications and systems
on Internet. Then, we have to analyze the performance characteristics of design
patterns commonly used in MA applications. To facilitate this approach, we
introduce two abstractions: Basic Elements and Application Frameworks.

We define as Basic Elements the set of basic abstractions that incorporate
the fundamental functionalities commonly found and used in MA platforms. For
the objectives of our work, the basic elements of MA platforms are identified
from existing, “popular” implementations as follows [2,4,7,8]: a) Agents, defined
by their state, implementation (byte-code), capability of interaction with other
agents/programs (interface), and a unique identifier. b) Places, representing the
environment in which agents are created and executed. A place is characterized
by the virtual machine executing the agent’s byte-code (the engine), its network
address (location), its computing resources, and any services it may host (e.g., a
database gateway or a Web-search program). c) Behaviors of agents within and
between places, which correspond to the basic functionalities of a MA platform,
such as: creating an agent at a local or remote place; dispatching an agent from
one place to another; receiving an agent that arrives at some place; communicat-
ing information between agents via messages or messenger agents; synchronizing
the processing of two agents; locating an agent on the move, etc.

Basic elements of MA systems are combined into scenarios of MA-use, which
we call Application Frameworks. In Object-orientation, software frameworks
represent a way of “structuring generic solutions to a common problem by pro-
viding the structure of a program but no application-specific details” [3]. The
overall control and the flow of execution is provided by the framework and there-
fore does not need to be rewritten for each new problem. Accordingly, application
frameworks of MA’s define solutions common to various problems of agent design
and are defined in terms of places participating in a scenario, agents placed at or
moving between these places, and interactions of agents and places (agent move-
ments, communication, synchronization, resource use). Application frameworks
correspond to widely applicable models of distributed computation on particular
application domains, and represent widely accepted and portable approaches for
addressing typical agent-design problems [1]. Typically, application frameworks
are the building blocks of larger MA applications.

We focus on application frameworks that correspond to the Client-Server
model of distributed computing and its extensions for mobile computing: the
Client-Agent-Server model, the Client-Intercept-Server model, the Proxy-Server
model, and variations thereof that use mobile agents for communication between
the client and the server; more details on these models are given in [12]. Addi-
tional application frameworks correspond to the Roaming Mobile-Agent Model,
and the Forwarding andMeeting agent-design patterns. The Roaming MA model
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Fig. 1. The Hierarchical Performance Evaluation Framework.

corresponds to the case of an agent that roams from one place to the other,
engaging in some interaction with the places visited. The Forwarding pattern
“allows a given place to mechanically forward all or specific agents to another
place” [1]. The Meeting pattern provides a way for two or more agents to initiate
local interaction at a given place [1,4]. The Forwarding and Meeting patterns
represent the performance traits of agents and places in terms of their capability
to re-route agents and to host inter-agent interactions.

3 A Hierarchical Performance Evaluation Framework

In view of the remarks above we propose a framework for the Hierarchical Eval-
uation of MA-performance, which consists of four layers of abstraction (see Fig-
ure 1). At a first layer, our framework explores the performance traits of basic
elements of MA platforms, seeking to expose their performance behavior: how
fast they are, what is their overhead, if they become a performance bottleneck
when used extensively, etc.

Having isolated the performance characteristics of basic MA elements, we
explore the characteristics of application frameworks in order to explain the
performance behavior of full-blown applications that use these frameworks as
building blocks. Consequently, at the second layer of our framework, we investi-
gate implementations of popular application frameworks upon simple workloads.
In particular, we measure metrics capturing the performance capacity of an ap-
plication framework, the overhead incurred by the interaction of its constituent
elements, the bottlenecks affecting its performance, etc. For example, an applica-
tion framework could involve an agent residing at a place on a fixed network and
providing database-connectivity services to agents arriving from remote places
over wireless connections. This framework may exist within a large digital li-
brary or e-commerce application. It may, as well, belong to the “critical path”
that determines end-to-end performance of that application. To identify how
this framework affects overall performance, we have to find out what is the over-
head of transporting an agent from a remote place to a database-enabled place,
connecting to a database agent, performing a simple query, and returning the
results over a wireless connection. Interaction with the database agent should be
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kept minimal because we are trying to capture the overhead of this framework
and not to investigate database behavior. We also need to quantify how many
requests can be served by the database agent per second, etc.

It is interesting to explore the performance behavior of instances of these
frameworks under conditions expected to occur in a real execution of a full-
blown application. To this end, we can enrich the scenarios implemented in the
application frameworks by extending the functionality of mobile agents and by
simulating realistic workload conditions. This is the focus of the third layer of our
hierarchy, where we study micro-applications, i.e., implementations of applica-
tion frameworks that realize particular functionalities of interest (e.g., database
connectivity) and run on synthetic workloads. Finally, at the fourth layer of our
framework, we study full-blown applications running under real conditions and
workloads.

Our approach has to be accompanied by proper metrics, which may dif-
fer from layer to layer, and parameters representing the particular context of
each study, i.e., the processing and communication resources available and the
workload applied. It should be stressed that the design of our performance eval-
uation in each layer of our conceptual hierarchy should provide measurements
and observations that can help us establish causality relationships between the
conclusions from one layer of abstraction to the observations at the next layer
of our performance analysis hierarchy.

To apply our hierarchical performance evaluation framework in the study and
comparison of performance characteristics of different MA platforms and MA-
based applications, we propose three layers of benchmarks that correspond to
the first three layers of the hierarchy of Figure 1. These benchmarks are defined
as follows:

– Micro-benchmarks: short loops designed to isolate and measure perfor-
mance properties of basic elements of MA systems, for typical system con-
figurations. Micro-benchmarks test the performance of simple activities (be-
haviors) provided by the basic elements of a MA system.

– Micro-kernels: short, synthetic codes designed to measure and investigate
the properties of application frameworks, for typical system configurations.

– Micro-applications: instantiations of micro-kernels for real applications.
Here, we propose to use places with full application functionality and employ
synthetic workloads complying to specifications like the TPC-W.

In the following sections, we introduce a suite of micro-benchmarks and micro-
kernels that we use to evaluate the performance of mobile-agent middleware
quantitatively. In earlier work we have examined micro-applications that involved
the use of mobile agents to provide database access over the Web [12]; a study
of micro-applications will be conducted in future work.

Our benchmarks are accompanied by parameters that define the context of
our experimentation, and themetricsmeasured. Parameters determine the work-
load that drives a particular experiment, expressed as the number of invocations
of some basic element or application framework, and the resources attached to
participating places and agents. Metrics represent a concise description of the
performance characteristics isolated by our benchmarks.
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Our benchmarks can be parameterized according to the following parameters:
Operating System and Place Configuration represent the resources of each place
involved in our experimentation; Channel Configuration represents the network
upon which we conduct our experiments, which can be a LAN, a WAN, a wireless
network, or combinations thereof. Agent Size andMessage Size represent the size
of an agent and a message exchanged between two agents, respectively. Loop
size defines the number of times a particular benchmark is executed to gather
time measurements. Additional benchmark-specific parameters are employed in
micro-kernels and will be described later.

The number of parameters involved in our benchmarks lead to a huge space
of experiments, many of which may not be useful or applicable. Therefore, we
have conducted preliminary experiments with three commercial platforms, IBM’s
Aglets, Mitsubishi’s Concordia, and ObjectSpace’s Voyager, and tried various
parameter settings before settling to a small set of experimental parameters and
benchmark configurations that provide useful insights. Our experiments involve
places located at different computing nodes within the same LAN, agents with
the minimum functionality that is required for carrying out the behaviors stud-
ied, and messages carrying minimal information between agents. We have used a
100 Mbps Ethernet with 18 PCs, equipped with Pentium III processors running
at 500MHz and 64MB main memory. The PCs ran the Microsoft’s Windows NT
4.0 Operating System and Sun’s JRE 1.1.7. On this platform we experimented
with Aglets version 1.0.3, the professional edition of Voyager ORB, version 3.1,
and an evaluation copy of Concordia, version 1.1.4. The experiments were con-
ducted at night, when the utilization of the LAN was minimal. We also ran some
experiments under heavier network load (when the lab was used by students to
run applications from a central file-server, to browse the Web, etc.). All data
reported in the following sections correspond to the low-network-traffic case, un-
less mentioned otherwise. In future experiments, we plan to incorporate setups
including wireless Ethernet and connectivity over WANs.

For most of our benchmarks we report four metrics: Total time is the total
elapsed time it takes to run a particular benchmark. This metric represents the
performance of the basic activity examined by the benchmark. A study of the
total-time for different benchmark parameters can identify bottlenecks that arise
under high loads (large loop size) and test the robustness of each platform. Aver-
age time provides an estimate of the time it takes for a particular basic activity
of a MA system to complete; for instance, the time of sending a short message,
dispatching a light agent, etc. Peak rate is the maximum measured rate of a
basic activity, defined as the number of these activities carried out per second.
Sustained rate is the number of basic activities carried out per second, when
we conduct stress-tests, i.e., run an experiment continuously over a long period
of time. For instance, a sustained rate of 40 for the agent-creation benchmark
means that we can generate approximately 40 agents per second on the particu-
lar machine running the experiment, if the experiment is executed continuously
over a period of time. Additional, metrics are measured in certain micro-kernels
and will be described later.
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Table 1. Definition of Micro-benchmarks.

Name Description
CL Captures the overhead of agent-creation locally within a place.
CR Captures the overhead of agent-creation at a remote place.
AD Captures the overhead of dispatching agents toward a remote place;

Agents have been created locally.
MSG-1W Captures the overhead of non-blocking messaging

with no acknowledgment from the message recipient.
MSG-2W Captures the overhead of non-blocking messaging with

asynchronous acknowledgment from the message recipient.
SYNCH Captures the overhead of blocking messaging, which

synchronizes two agents using message-exchange.
MSG-MA Captures the overhead of agent-communication with messenger agents.

4 Micro-Benchmarks

In this section, we present the suite of proposed micro-benchmarks and exper-
imental results derived by these benchmarks. The basic components we are fo-
cusing on are: a) mobile agents, used to materialize modules of the various dis-
tributed computing models and agent patterns; b) messenger agents used for
flexible communication, and c) messages used for efficient communication and
synchronization. Accordingly, we define the micro-benchmarks presented in Ta-
ble 1 and present the metrics measured in a number of experiments with these
benchmarks. Excerpts of the code implementing these benchmarks are presented
in [5].

4.1 Agent Launching: CL, CR, and AD

With the CL micro-benchmark we study the overhead of agent-creation. To
this end, we generate 1 to 1000 agents and measure the total elapsed time.
The left diagram of Figure 2 reports the average time for generating one agent
with respect to the total number of created agents. From this diagram, we can
easily see that the overhead of creating a single agent in Concordia is negligible
with respect to the overhead in Aglets and Voyager; furthermore, that Voyager
outperforms Aglets.

It is interesting to note that the time it takes to create an agent drops with
the increase of loop size, for all platforms. This happens because, after the first
time an agent is created, its byte-codes are already cached in the agent-host’s
memory. Therefore, subsequent agent creations take minimal time. On the other
hand, the better “scalability” of Concordia and Voyager over Aglets that we
observe in the left diagram of Figure 2, is attributed to memory management
mechanisms implemented in both platforms: when heap space is consumed, the
two platforms transfer inactive agents to disk, thus maintaining a minimum of
free space [10,11]. Table 2, presents the agent-creation capacity of the three
platforms (peak and sustained).
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Fig. 2. CL, CR & AD: Average timings for agent creation and dispatch.

Table 2. CL, CR and AD: Peak and sustained rates.

CL CR AD
Platform Peak Sustained Peak Sustained Peak Sustained

(agents/sec) (agents/sec) (agnts/sec)
Concordia 3125 3000 312.5 310 25.68 25.6
Aglets 65.78 11 29.76 11.05 5.9 5.36
Voyager 1189.06 1100 38.8 38.8 11.58 8.31

The CR benchmark measures the total time it takes to create agents at a
remote host. To this end, we use a stand-alone JAVA program running on an
“origin” host and issuing instructions to generate 1 to 1000 agents on a remote
place. We time the overall overhead of agent creation at the origin place. To re-
motely create agents, the remote place needs to have the necessary classes locally
or to be able to download these classes from another place on demand, during
agent-creation. This is accomplished in a number of different ways: (a) Under
Concordia, a messenger agent migrates from the origin place to another place.
Upon arrival, the messenger creates a new agent at the remote place. The mes-
senger transports with it the classes required by the agent under creation. (b) A
Voyager agent at the remote place can load classes from other locations on de-
mand. To this end, it employs a Resource Loader object which resides in its
Voyager server. The Resource Loader maintains a registry of remote Voyager
servers, which may store useful classes and serve them over the network. When-
ever an agent seeks a class that is not available in its local classpath, it invokes
the Resource Loader which returns an interface (proxy). Through that interface,
the agent can access the remote class. (c) An Aglet can load a remote class on
demand from a remote Tahiti server, which is the agent execution environment
(place) of Aglets. To this end, the Aglet must establish an additional network
connection with the remote place. In order to make the remote classes avail-
able through the network, they should be placed in the secondary storage of
the remote host and be included in the classpath of the remote place at its
initialization.

The middle diagram in Figure 2 shows our measurements for the CR bench-
mark. As we can see, Concordia and Aglets have better performance than Voy-
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ager for a small number of created agents. Again, Concordia is the clear “win-
ner,”even for large numbers of created agents. As we increase the number of
created agents, however, the average time to create an agent in Voyager drops
faster than the respective time in Aglets, and the values of the two platforms
converge. The performance of the three platforms in terms of their capacity to
create agents remotely is summarized in Table 2. It is interesting to note that
remote creation of agents under Concordia and Voyager is approximately an or-
der of magnitude slower than local agent-creation. Furthermore, we note that,
for Concordia and Voyager, the peak and sustained rates of agent creation are
almost equal, which is a result of their improved robustness. In contrast, Aglets
performance drops for very large numbers of created agents.

The AD benchmark measures the overhead of dispatching mobile agents to
a remote place in a LAN. We create and dispatch 1 to 1000 agents to the remote
place. We measure only the time of the dispatch operation and plot our results in
the right diagram of Figure 2. As we can see from this diagram, Voyager has the
best performance in dispatching agents for short loop sizes. As we increase the
number of agents launched, Concordia’s performance improves considerably, due
to its caching mechanisms. Furthermore, Concordia is very robust, even in cases
of heavy network load. In contrast, we noticed that Voyager and Aglets crashed
occasionally when we dispatched more than 600 agents in an experiment, and
the network was heavily loaded. From Table 2 we can see that a Concordia place
can dispatch 25.6 agents per second, whereas Aglets and Voyager can send only
5.36 and 8.3 agents per second, respectively.

4.2 Inter-agent Communication: MSG-1W, MSG-2W, SYNCH,
and MSG-MA

The MSG-1W benchmark measures the elapsed time for sending non-blocking
messages from one agent to another. For this benchmark we employ two mobile
agents located at two different hosts in the same LAN. The first agent sends a
number of messages to the second; there is no explicit acknowledgment of receipt
from the second agent. We measure the time it takes to send 1 to 1000 messages
of equal, minimal size.

To implementMSG-1W we employ the OneWay method of Voyager. In partic-
ular, a Voyager agent sends a message to a destination agent via the destination-
agent’s local “proxy.” The message consists of the remote agent’s name, the name
of the method that will be invoked upon receipt of this message by the destina-
tion agent, and the arguments that will be passed to this method. The OneWay
method does not return a reply and is non-blocking. Voyager employs standard
Java serialization to transport messages across the network. In Aglets we imple-
ment MSG-1W with the sendAsyncMessage() method, which is invoked on the
remote-agent’s proxy that serves as a message gateway for the Aglet. Here, the
message is an object. On the other hand, Concordia uses events to implement
message-passing: events are sent by the dispatching agent to an Event Manager
through the postEvent() method. The receiving agent must register with that
Event Manager as well, to listen for and receive particular events. Examples of
message-passing implementation are given in [5].
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Fig. 3. MSG-1W, MSG-2W & SYNCH: Average time measurements

Table 3. MSG-1W, MSG-2W, SYNCH and MSG-MA: Peak and sustained rates.

MSG-1W MSG-2W SYNCH MSG-MA
Platform Peak Sustained Peak Sustained Peak Sustained Peak Sustained

(msg/sec) (2wmsg/sec) (synchs/sec) (agnt-round trips/sec)
Concordia 77.39 73.2 31.35 20.2 16.03 14 12.147 2
Aglets 102.94 102.94 10.3 8.13 96.15 92 4.93 4.9
Voyager 1428.57 1146.78 625 476.19 526.32 413 9.38 8.3

Figure 3 (left) presents the diagram of the average time per message for each
experiment. From this diagram we can see that Voyager has the fastest messag-
ing. Furthermore, its messaging is very robust, even under heavy network load.
One-way messaging performance of Aglets and Concordia is similar; nevertheless,
Aglets crashed occasionally when sending too many messages. From the left dia-
gram of Figure 3 we also note that the average time to send a message decreases
with respect to the number of messages dispatched during each experiment. This
figure is stabilized for larger loop sizes. In Voyager and Aglets this happens be-
cause, after the first message is sent to the remote agent, all involved classes
are installed in the caches of both places participating in the message-exchange.
Consequently, the “initiation” overhead incurred by subsequent messages is min-
imal. In Concordia, the dispatch of repeated messages from one agent toward
another, via an Event Manager, requires only one connection to the Event Man-
ager. As we send more messages, the connection overhead is amortized across
all messages.

Table 3 presents the peak and sustained rates for message-dispatching. A
Voyager agent can send 1146.78 messages per second, whereas the capacity of
Concordia and Aglets are 73.2 and 102.94 agents per second, respectively.

The MSG-2W benchmark measures the time it takes to send non-blocking
messages from one agent to another, with asynchronous acknowledgments of re-
ceipt. To this end, we use two agents located at two different hosts in our LAN.
The first agent sends non-blocking messages to the second; upon arrival of a
message, the recipient-agent immediately replies back to the sender, acknowl-
edging the receipt. To this end, we invoke the sendFutureMessage() method in
Voyager and the future() in Aglets. We measure the time it takes to send 1 to
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1000 messages and receive the respective acknowledgments. In all experiments
we use messages of equal, minimal size. As expected, Voyager exhibits the best
performance, with minimal fluctuation with respect to the number of dispatched
messages (see Figure 3, middle). Concordia and Aglets have comparable perfor-
mance when dispatching continuously up to 50-60 messages. For larger message
numbers, Aglets crash. This explains the very small rates reported for Aglets in
Table 3.

The SYNCH benchmark measures the time it takes to perform a synchro-
nization between two agents; the synchronization operation is implemented with
the exchange of two messages. To this end, we place the agents at two different
places (hosts) in the same LAN. One agent sends a message to the other and
gets blocked until it receives a reply. The second agent waits for incoming mes-
sages; upon receiving a message, it replies back. We use the Synch() method in
Voyager and the sendMessage() method in Aglets. We conducted this “ping-
pong” experiment from 1 to 1000 times. For each experiment, we measured
the total elapsed time it takes to complete all synchronization activities. Fig-
ure 3 (right) presents our measurements. In agreement with the MSG-1W and
MSG-2W benchmarks, Voyager exhibits a synchronization capacity significantly
higher than Concordia and Aglets. Furthermore, it achieves a synchronization
rate (number of SYNCH’s per second) which is practically constant with respect
to the number of the ping-pong operations performed.

As we can see from Table 3, Voyager agents are capable of conducting 413 syn-
chronizations per second on the same LAN. Aglets come second in the synchro-
nization capacity (92 SYNCH’s per second, sustained) and Concordia achieves
only 14 SYNCH’s per second, sustained. We believe that Voyager outperforms
Concordia and Aglets due to its low overhead of message initiation. This is also
the reason why in Voyager the peak rate of SYNCH’s is reached for small loop-
sizes, and does not drop significantly for larger loop-sizes. It is interesting to note
that the implementation of a blocking-message exchange in Aglets is much more
efficient than the implementation of messaging with asynchronous acknowledg-
ments, and that its performance is comparable to the performance of one-way
messaging with no acknowledgment.

The MSG-MA benchmark measures the overhead that arises when two
places (hosts) interact via a messenger agent; both hosts reside in the the same
LAN. To implement this benchmark, we create an agent in the first place and
set its itinerary so that the agent moves to the second place and then returns
back. Upon return, the same agent is re-dispatched and retracted for a number of
times. Our experimental parameter is the total number of round-trips performed
by the messenger agent. We conduct experiments for 1 to 1000 round-trips, and
measure the total elapsed time. We present our measurements in the left diagram
of Figure 4. Table 3 summarizes the peak and sustained rates as shown in Figure
4 for the average time of messenger round-trips.

As we can see from Figure 4 (left), Concordia and Aglets exhibit better
performance for one and two round-trips. Nevertheless, the average time per
round-trip in Voyager drops much faster as we increase the number of round-
trips. The same figure for Aglets is stabilized after 10 round-trips. Consequently,
Voyager exhibits the best performance for larger numbers of round-trips (over
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Fig. 4. MSG-MA and ROAM: Average times.

500). It is interesting to note that the average delay of a messenger-agent’s
round-trip in Concordia increases with the number of round-trips. We believe
this is a side-effect of the agent-roaming implementation in Concordia: every
time an agent has to move to another host, a Destination object must be added
to the agent’s Itinerary, in order to determine its next move. The Itinerary is a
data structure separate than the agent, maintained at a different location than
the agent itself. The Itinerary is composed of a list of Destination objects [13].
Each Destination indicates the place (host) to which the agent is expected to
travel, and the name of the method that the agent will execute upon arrival to
that place. In our experiments for MSG-MA we employ a messenger agent that
travels numerous times back and forth between two places.

In contrast to Concordia, an agent in Voyager or Aglets can be re-launched to
a new destination, upon arrival to some place. To this end, a method can be called
by the agent to determine its next destination. In particular, in Aglets we use the
dispatch method to send an Aglet to a remote location. This location is passed
as argument to the dispatch method (Aglet.dispatch (URL destination)).
Upon arrival to its destination, the Aglet is pulled back to its original place with
the retractAglet() method. In Voyager, we use the Mobility.of() method
to obtain the mobility facet of an agent and invoke the moveTo() method of its
IMobility interface. To pull the agent back, we call again moveTo().

5 Micro-Kernels: ROAM, PROXY, and FORW

Due to space limitations, in this section we focus on three application frame-
works only: Roaming MA, Proxy-Server, and the Forwarding pattern; early ex-
perimentation with other application frameworks (C/S, C/A/S, and C/I/S) has
been presented in [12]. Accordingly, we define the micro-kernels presented in
Table 4.

The ROAM micro-kernel investigates the overhead incurred by an agent
that roams from place to place in a network. To implement this benchmark we
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Table 4. Micro-kernels.

Name Description
ROAM Captures the overhead of a roaming agent.
PROXY Captures the performance of a proxy-agent serving

requests from a number of client-agents.
FORW Captures the overhead of a forwarding agent, residing

at a place, receiving and re-directing incoming agents
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Fig. 5. PROXY & FORW: Service rates.

create an agent at a place, and set its itinerary so that it visits a number of
places and then returns back to its place of origin. We dispatch this agent and
measure the total time it takes to complete its trip. The itinerary is fixed before
the agent starts its voyage. It should be noted that the implementation of agent
mobility in ROAM is different than that in MSG-MA, for the Aglets platform:
upon successful arrival of an Aglet to a new place, the onArrival() method
is invoked automatically. We have overwritten onArrival so that it dispatches
the Aglet to its next destination. Experimental parameters of this benchmark
are the number of hops taken by the roaming agent before coming back to its
origin place, and the different places it visits (in its journey, an agent can visit
one place multiple times).

In Figure 4 (right), we report measurements taken when an agent roams four
different places (including its starting point), making 4 to 4000 hops totally. As
we can see from this diagram, the average time per hop in Voyager is practically
constant with respect to the total number of hops. Aglets average performance
improves as we increase the number of hops; obviously a side-effect of an initial
high overhead incurred when an agent visits a place for the first time, which is
amortized by the reduced cost of subsequent re-visits. The performance behavior
of Concordia worsens for longer agent voyages, in concordance with the MSG-
MA micro-kernel. We believe this is a side-effect of the handling of itineraries in
Concordia.
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The Proxy-Server model is an extension of the Client-Agent-Server model
with the “Agent” accepting connections from many clients and forwarding re-
quests to more than one Servers. This scenario arises in cases where an agent is
dispatched to the “edge” of the network to act as proxy. This agent receives in-
coming client requests and forwards them to appropriate servers, optimizing the
communication of clients and servers, caching server replies, etc. The PROXY
micro-kernel investigates the performance of the Proxy-Server model when im-
plemented on top of a MA middleware platform. To this end, we use a mobile
agent as proxy that mediates between several clients and servers. The proxy
agent waits for request messages from agent-clients located at different hosts.
Whenever it receives a message, it inspects the request message and forwards it
to the appropriate server. Upon receipt of a request, a server replies directly to
the client that sent it. Upon receipt of the server’s reply, the client issues a new
request, following the same procedure.

The PROXY benchmark is parameterized with respect to the number of
clients and servers involved in our experiments, and the total number of requests
handled by the proxy-agent. Here, we report measurements from one experiment
involving three server-agents and twelve client-agents. We measure the time it
takes the proxy-agent to receive and forward incoming 1 to 5000 requests to the
appropriate servers. Moreover, we report the rate of request-handling achieved
by the proxy-agent. Figure 5 (left) presents a diagram with our measurements.
Further experiments are reported in [5]. As we can see from this diagram, the per-
formance of each MA platform converges to a certain sustained rate of requests
served per second. In the twelve-client case, the Concordia, Aglets and Voyager
proxy-agents can handle 9.65, 33.7 and 48.25 requests per second, respectively.

The FORW micro-kernel represents an implementation of the Forwarding
pattern. This micro-kernel seeks to capture the overhead that arises when a mo-
bile agent receives incoming mobile agents and re-routes them to other places. To
this end, we use a “forwarding” mobile agent parked at a particular place. The
forwarding agent “listens” for incoming agents; upon arrival of a new agent, the
forwarding agent directs it to another place. The FORW benchmark is parame-
terized with respect to the total number of mobile agents handled and re-routed
by the forwarding agent. We use one dispatching and one destination place only
and measure the total elapsed time from the receipt of the first agent to the dis-
patch of the last one from the forwarding agent. The forwarding capacity of each
MA platform converges to a certain sustained rate of requests served per second
(see Figure 5, right). Voyager and Aglets can forward 19.84 and 9.54 agents per
second respectively, whereas the corresponding number for Concordia is 5.76.

6 Conclusions

In this paper, we introduced a hierarchical framework for the quantitative per-
formance evaluation of mobile-agent middleware platforms. We specified this
framework as a hierarchy of benchmarks designed to enable the performance
characterization of key components of MA middleware, and analyzed the perfor-
mance of important classes of MA applications. This hierarchy is defined along a
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number of dimensions pertinent to MA systems: the basic elements of MA plat-
forms, distributed computing models of relevance, expected application frame-
works, the context of MA execution, and expected workload characteristics. We
proposed a set of micro-benchmarks and micro-kernels to implement the lower
two levels of our benchmark hierarchy. We implemented these benchmarks in
three of Java-based, mobile-agent middleware environments (Mitsubishi’s Con-
cordia, IBM Aglets, and Objectspace’s Voyager). We presented results from ex-
periments conducted to validate our framework and compare the mobile-agent
middleware environments quantitatively.

To our knowledge, our framework provides the first structured and layered
approach for analyzing the performance of MA middleware quantitatively (ex-
tensive coverage of related work is given in [5]). Experiments with our micro-
benchmark and micro-kernel suite provide a corroboration of this approach. Ex-
perimental results help us isolate the performance characteristics of MA plat-
forms examined and lead us to the discovery of basic performance properties of
MA systems. Furthermore, they provide a solid base for the assessment of the
design choices made by middleware developers, from a performance perspective.
For instance, our experimental results show that caching of classes and object
re-use can lead to significant performance improvements and, therefore, call for
a more in depth study of techniques for their easy integration and optimization
in MA middleware design and application development. Raw performance data
show that agents cannot sustain the loads expected to arise in Internet middle-
ware where places and agents could face workloads on the order of hundreds
or thousands of requests per second, in the form of incoming messages, agents,
etc. Furthermore, all examined platforms exhibit problems of robustness and
performance scalability under high-loads, which are issues of critical importance
for Internet services and applications. In such cases, places and agents should
incorporate support for memory and resource management, request scheduling,
recovery, high-performance execution of bytecodes, etc. Last, but not least, our
approach can provide a basis for the development of performance prediction
models and tools for mobile-agent systems.
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