
ATMoN: Adapting the “Temporality” in Large-Scale
Dynamic Networks

Demetris Trihinas∗, Luis F. Chiroque†, George Pallis∗, Antonio Fernández Anta†,
Marios D. Dikaiakos∗

∗ Department of Computer Science, University of Cyprus
Email: { trihinas, gpallis, mdd }@cs.ucy.ac.cy

† IMDEA Networks Institute, 28918 Leganés, Spain
Email: { lf.chiroque, antonio.fernandez }@imdea.org

Abstract—With the widespread adoption of temporal
graphs to study fast evolving interactions in dynamic
networks, attention is needed to provide graph metrics
in time and at scale. In this paper, we introduce
ATMoN, an open-source library developed to compu-
tationally offload graph processing engines and ease the
communication overhead in dynamic networks over an
unprecedented wealth of data. This is achieved, by ef-
ficiently adapting, in place and inexpensively, the tem-
poral granularity at which graph metrics are computed
based on runtime knowledge captured by a low-cost
probabilistic learning model capable of approximating
both the metric stream evolution and the volatility of
the graph topology. After a thorough evaluation with
real-world data from mobile, face-to-face and vehicular
networks, results show that ATMoN is able to reduce
the compute overhead by at least 76%, data volume
by 60% and overall cloud costs by at least 54%, while
always maintaining accuracy above 88%.

Index Terms—Dynamic Networks, Edge Computing,
Temporal Graphs, Adaptive Monitoring

I. Introduction
For a diverse set of applications, graphs have been

used extensively to model links among entities in dynamic
networks [1]. The network structure describing how the
graph is wired allows us to study, predict and optimize
the behavior of dynamic systems [2]. However, with the
widespread adoption of social networks to depict digital
interactions among “friendship” links [3], neural networks
to chain metabolic reactions [4] and the prevalence of
the Internet of Things to monitor the physical world [5],
the dynamics shaping network evolution yield the need to
appraise “time” in graph modeled networks.

Dynamic networks are modeled as time-ordered se-
quences of graphs in which links are short-lived and span
only through the duration of the interaction between
the nodes (e.g., online chat, email, phone call) [6]. In
such graphs, the concepts of node adjacency and reach-
ability crucially depend on the exact temporal ordering
with the adjacency matrix describing the current graph
snapshot for a fixed duration of time [7]. In the liter-
ature, these graphs are frequently mentioned as time-

evolving graphs, time-varying graphs or, simply, temporal
graphs [8]. Hence, temporal graphs have become very
popular, featuring the analytic benefits of static graphs,
while also improving graph exploration and navigation by
retaining all temporal information and interactions.

Monitoring temporal graphs is widely used in a vari-
ety of services, such as high-frequency algorithmic stock
trading, social network analysis, targeted advertising, and
in intelligent transportation services. However, computing
complex graph metrics, such as community and distance
metrics, is a challenging task [9] [10]. In turn, if the nodes
of the graph represent data sources distributed across the
edges of an actual network, then these sources must timely
disseminate and receive processed monitoring data [11]. As
an example, consider a vehicular network where the expec-
tations are that 1GB of telemetry data will be generated
by self-driving vehicles every second [12]. This data must
be processed instantly to keep vehicles safe on the road. It
may not seem a challenge for one vehicle, but multiply this
number by millions of inter-connected vehicles in an urban
environment and even powerful organizations equipped
with large-scale graph processing engines reach their limits
as the velocity of data keeps increasing [7]. Thus, by the
time the data reaches the cloud, it will be too late. Instead,
data needs to be processed as close to the data sources as
possible, directly at the edge of the network [13].

The remedy to the above challenges is to suppress large-
scale temporal graphs with approximation techniques [14].
Ideally, an approximation technique dynamically adjusts
the rate at which data are processed based on the current
data stream evolution, such that when stable phases are
detected, the data processing rate is reduced. However,
current approximation techniques developed for edge and
streaming settings are not suitable for temporal graphs
since they do not take into account the dynamicity of the
graph topology [15] [16]. For instance, although the graph
metric stream may introduce phases of low variability, the
graph topology structure can still be extremely volatile.
This is highlighted in Figure 1, where although the outgo-
ing connections per node of a mobile network (average out

Fig. 1: Graph Metric and Topology Structure Volatility
for a Mobile Network with Fixed Temporal Granularity

degree) are relatively stable in certain phases, it is actually
a different set of nodes interacting in the network [17].
In light of this, ignoring that the particular connections
actually span across different locations of the network,
can severely affect capacity planning and service provision-
ing [14]. Thus, while reducing the metric processing rate
preserves resources by computationally offloading graph
processing engines, it hinders the challenge of missing
structural changes in the graph topology which might
capture and reveal significant insights.

The focal point of our work is to deliver an adaptive
monitoring framework for dynamic networks which adjusts
the network temporal granularity given an estimation
model capturing both the metric stream runtime evolu-
tion and the volatility of the graph topology. Thus, our
ultimate goal is to significantly ease processing on graph
engines, and costs in general, while respecting at all times
user-given accuracy guarantees.
The main contributions of our paper are:
• We introduce Adaptive and Topology-aware

Monitoring for dynamic Networks. ATMoN is
an open-source framework1 developed to dynamically
adjust the temporal granularity graph metrics are
computed based on runtime knowledge captured by a
low-cost probabilistic learning model approximating
both the metric stream evolution and the runtime
volatility of the graph topology. This computationally
offloads graph processing engines and eases the
communication overhead in edge computing networks
where the wealth of data dissemination is plentiful.

• We present a thorough experimentation study to eval-
uate both the efficiency and accuracy of our solution.
All testbeds utilize real-world and publically avail-
able datasets from mobile, face-to-face and vehicular
networks. Results show that when graph processing
engines embrace ATMoN, they can reduce the com-

1https://github.com/dtrihinas/ATMoN

pute overhead by at least 76%, data volume by 60%
and overall cloud costs by at least 54%, while always
maintaining accuracy above 88% in comparison to
other adaptive frameworks.

• We extend the open-source graph ecosystem of the
R programming language [18] by enabling developers
to model dynamic networks as adaptive temporal
graphs. This extension creates new perspectives by
facilitating developers to implement novel algorithms
(i.e, ATMoN) that efficiently manage time-evolving
graph-structured data streams.

The rest of the paper is structured as follows: Section
2 presents the related work, while Section 3 the problem
statement. Sections 4-5 introduce ATMoN, while Section
6 presents the evaluation. Section 7 concludes the paper.

II. Related Work
Graph processing frameworks such as Giraph [10] and

Powergraph [19], enable graph modeling and computation
at scale. However, they assume the underlying graph
structure is static. On the other hand, Iyer et al. [9] present
GraphTau, a temporal graph processing framework built
on top of Apache Spark, which efficiently unifies data
and temporal graph processing. In turn, Han et al. [20]
introduce Chronos, a graph engine designed and optimized
specifically for running in-memory iterative graph compu-
tation on temporal graphs. However, both assume that
the network temporal granularity is fixed and pre-defined.
Graph-structured data is on the rise; from social and face-
to-face networks to vehicular networks, applications that
generate temporal graph structured data are ubiquitous.
As IoT continues to spread across almost all industries it
triggers a massive influx of big data. Undoubtedly, other
than temporal graph processing frameworks, we also need
algorithms to efficiently provision, manage and monitor
IoT services [21]. In light of this, several efforts have been
made to process and output complex network metrics. In
particular, graph measurement techniques now embrace
time as another dimension to graphs and develop “tem-
poral” metrics to describe the network reachability [22],
connectivity [23] and shortest paths [24]. However, some
graph metrics are, in fact, intractable in practice, and
cannot scale at will or be efficiently computed [8] [25].

Another approach successfully demonstrated in edge
computing and streaming settings, is to provide approxi-
mate metrics values by adapting the monitoring intensity
to scale and timely answer queries within certain accu-
racy guarantees when exact answers are not needed. This
is achieved via a runtime estimation model capable of
following the metric stream evolution, such that when
phases of low variability exist, the metric computation
rate is reduced to ease processing while also reducing the
data volume. Fan et al. introduce FAST [15], an adaptive
framework for differential privacy which estimates the
metric computation rate based on an adjustment given by
a PID controller fed with the current estimation error, the

time intervals between previously collected metric values
and a given inaccuracy budget. In turn, AdaM [16] is
an adaptive monitoring framework for IoT devices, which
utilizes a probabilistic moving average as its estimation
model and dynamically adjusts the temporal granularity of
a metric stream based on the confidence of the algorithmic
model to correctly estimate what will happen next in
the metric stream. AdaM has been shown to achieve a
balance between efficiency and accuracy even for metric
streams featuring highly abrupt and transient changes.
Nonetheless, while interesting solutions, FAST and AdaM
are not suitable for dynamic networks as they limit their
scope to adjusting the temporal granularity by only taking
into account the metric stream runtime evolution and
completely ignore the topology structure.

III. Problem Statement
Let G := (V,E) be a graph representing a network, with
|V | = n a set of nodes, and |E| = m a set of binary re-
lationships depicting the active interactions among nodes.
As the network evolves in time, it is modeled as a graph
stream G indexed by I ⊆ Z+, with G denoting a succession
of graph instances and formally defined as follows:

G := {Gi : i ∈ I} = {(Vi, Ei) : i ∈ I} = (V, E) (1)

In turn, let µ(Gi) denote a graph metric computed
over the ith instance Gi with each obtained measurement,
described at the minimum, as a tuple (Gi, ti, vi) also
comprised by a timestamp ti and a value vi. A measure-
ment may include a set of other attributes, although for
brevity, when describing a graph metric we will omit these
attributes without loss of generality. Hence, a series of
measurements over the graph stream is denoted as a metric
stream and can be formally defined as follows:

µ(G) := {µi : i ∈ I} = {µ(Gi) : i ∈ I} (2)

Fundamentally, measurements for a temporal graph are
obtained periodically over a fixed period of time, denoted
as ∆ where ∆ = ti− ti−1. With this, ∆ is pre-defined and
known as the temporal granularity of the network so that
the ith graph instance is always modeled and processed at
known time intervals with the ith measurement obtained
at time ti = i · ∆. Due to its simplicity, this approach is
widely adopted by graph processing engines [9] [18]. In
this work, we argue that using a fixed and pre-defined
∆, over large-scale and highly temporal graph streams,
features a number of constraints, especially when consec-
utive measurements do not vary. For example, consider the
metric stream depicted in Figure 1. If a small ∆ is used to
process the metric stream, the graph engine is computa-
tionally stressed in order to output and disseminate timely
measurements to nodes of the monitored network. As
the graph grows, more resources (e.g., compute, memory,
storage, bandwidth) are required to timely process the
graph stream even if there are phases of low variability in
the metric stream evolution. Instead, if a large ∆ is used,

then sudden events or significant insights might remain
undetected. In general, because monitoring depends on
the evolution of the data in time, we argue that a fixed
periodicity is not effective, as metrics and insights are only
useful if collected in meaningful time intervals.

To accommodate the above challenges, at any given
time interval ti we can dynamically adjust the temporal
granularity ∆i, based on some estimation model, denoted
as ρ(µ(G)), capturing runtime knowledge of the metric
stream evolution. Assume µi to be the latest computed
measurement over G and that ∆i accepts discrete integer
values in the range [∆min,∆max] ⊆ Z+ without loss of
generality. Now, suppose the temporal granularity of G is
dynamically adjusted at runtime, so that when the metric
stream evolution has not “changed” since last reported, ∆i

should be increased and when the evolution fluctuates, it
should be decreased or restored to a minimum value. How-
ever, how much “change” is “tolerable” depends on some
evaluation metric (err), upper bounded by the maximum
tolerable inaccuracy, denoted as η, given by the user.

While this argument seems sound, and has been recently
explored to adapt the periodicity of monitored nodes at
the edge of a network [16] [15], in practice this approach
is intractable for networks modeled as temporal graphs.
This is due to the fact that current adaptive techniques
completely ignore the structure of the network and adjust
the metric computation rate solely based on the tem-
poral evolution of the metric stream. Hence, although
the metric stream evolution may undergo phases of low
fluctuation, the network structure can still be extremely
volatile. Therefore, an adaptive technique must extend the
estimation model ρ(·) to also capture and acknowledge the
graph structure volatility. Thus, in a similar fashion, let
τ(G 7→ R) denote how the graph stream structure volatility
evolves based on some metric capable of capturing the
dissimilarity of consecutive graph instances [26].

τ(G) := {τi : i ∈ I} = {τ(Gi) : i ∈ I} (3)

Our goal is to develop an estimation model ρ(µ, τ)
capturing at runtime the metric stream evolution and
the graph structure volatility, and provide an adaptive
function f(·), that outputs the maximum ∆ to delay
modeling Gi+1 that will be used to obtain the next
set of measurements ~µi+1. This must be achieved while
respecting user-given accuracy guarantees based on some
evaluation metric, denoted as err(η). Thus, the following
equation summarizes the problem:

∆∗ = arg max
∆

{f(~µ,∆, ρ(µ, τ), err(η)) |∆ ∈ [∆min,∆max]}
(4)

IV. The ATMoN Library
To address the above challenges, we have designed

and developed the ATMoN framework. ATMoN is a
lightweight and open-source library developed to adapt the
temporal granularity when computing graph metrics, thus

Fig. 2: High-Level Abstract Overview of the ATMoN Framework

computationally offloading graph processing engines and
easing the communication overhead in dynamic networks.
The current ATMoN prototype is developed in R and
supports the underlying igraph engine, which is developed
for C, R and Python. The igraph engine was selected for its
open-source nature, allowing the code-base to be extended
to provide the ability to adapt the graph temporal granu-
larity, while igraph is also proven to be capable of handling
and scaling large networks efficiently [18]. Nonetheless,
while ATMoN supports the igraph engine, as it features
no other external dependencies it can be ported to other
popular graph processing frameworks.

Figure 2 depicts a high-level and abstract architectural
overview of the ATMoN framework. The Listener module,
continuously digests and queues incoming data updates
from the nodes distributed across the monitored network.
We consider an example drawn from the domain of ve-
hicular networks. In such a setting, vehicles correspond to
nodes and communication links to edges. Digested data
is parsed by the Graph Compiler module, and depending
on the current temporal granularity, the modeled graph
stream is updated with the current network graph. Next,
the current graph instance is passed to the Graph Metric
Computation module so that the metrics of interest are
updated. For our vehicular network example this could
be the effective diameter, degree distribution and the
number of graph components. A set of more 25 metrics
are currently available by ATMoN, while users are able to
define their own graph metrics by extending the ATMoN
metric interface.

After processing the graph instance to obtain the cur-
rent measurements, the Metric Stream Estimation module
will update a local reference estimation module capable of
capturing the current metric stream evolution, trend and
variability. In parallel, the Graph Structure Volatility mod-
ule will compute and update the graph topology volatility
by detecting dissimilarities between the consecutive graph
instances. The output of this module will be given to the
Runtime Shift Detection module, which according to the
error tolerance provided as input to ATMoN, will render
if the network volatility is “tolerable” or not. Having
updated the metric stream evolution and the network

topology volatility, the Adaptive Periodicity module will
return a new estimation for the graph stream temporal
granularity and a confidence interval for the estimation.
The Graph Compiler will then acknowledge the new tem-
poral granularity to ease graph metric computation until
this delay expires, thus, allowing the network to “breathe”
by reducing resource consumption and the volume of
generated data and, subsequently, cloud expenses. Finally,
interested users and entities can access through the AT-
MoN Publisher API the approximated graph metric and
topology volatility stream.

V. Temporal Granularity Adaptation
This section provides an in depth overview of ATMoN
with focus on the algorithmic process (Algorithm 1) that
updates the temporal granularity of dynamic networks
modeled as temporal graphs.

Graph Compiler and Metric Computation. These
modules directly map incoming monitoring updates from
data sources to graph instances. To support this func-
tionality we have extended the underling graph engine to
support adaptive temporal graphs where users are required
to provide: (i) the graph model; (ii) the algorithm that
will be used to adapt the temporal granularity; (iii) the
acceptable range for the temporal granularity; (iv) the
maximum tolerable error; and (v) the list of metrics that
will be computed by the graph engine. The graph model
can be any model supported by the igraph engine, while
in the case where igraph is not used, users must provide
a direct mapping of how incoming data are modeled to
graph instances and provide the respective interface.

gstream ← adaptive graph<graphModel(V,E,...),
algo=ATMoN, delta=(init,min,max), maxError,
metric list=list(...)>

Metric Stream Estimation. When a new measurement
value vi over the current graph instance Gi is available,
this module updates the current metric stream evolution
µi and variability σi, by using a moving average. This will
give an initial estimation for the next measurement value,
denoted as v̂i+1. Moving averages are easy to compute,
though many types exist, and can be calculated on the fly

Algorithm 1 Adaptive Graph Temporal Granularity
Input: init: user-defined max tolerable error η,

per iteration: current graph Gi from the G stream
Output: ∆i+1 and estimation confidence ci

Ensure: {∆i+1 | ∆i+1 ∈ Z+ and ∆i+1 ∈ [∆min,∆max]}

1: ~r ← {} //result set
2: for each m in metric list do
3: vi ← computeMetricUpdate(Gi,m)
4: µi, σi ← updateMetricStreamEvolution(vi)
5: ci ← updateConfidence(σi, σ̂i)
6: ~r ← ~r ∪ (µi, ci)
7: end for
8: δi ← computeGraphDissimilarity(Gi, Gi−1)
9: τi ← updateTopologyVolatility(δi)

10: if changeDetected(τi) then
11: change ← true
12: else
13: change ← false
14: end if
15: ∆i ← updatePeriodicity(~r, η,change)
16: return ∆i+1, ci

with only previous value knowledge. A cumulative moving
average for streaming data is the Exponential Weighted
Moving Average (EWMA), µi = αµi−1 + (1 − α)vi,
where a weighting parameter α, is introduced to decrease
exponentially the effect of older values. However, the
EWMA features a significant drawback; it is volatile to
abrupt transient changes [16]. To overcome this drawback,
we adopt a double Probabilistic EWMA (dPEWMA),
which dynamically adjusts the weighting based on the
probability density of the given observation evolution µi
and trend xi. The dPEWMA acknowledges sufficiently
abrupt transient changes, adjusting quickly to long-term
shifts in the metric evolution and when incorporated in
our algorithmic estimation process, it requires no parame-
terization, scaling to numerous measurements. Equation 5
presents the dPEWMA where instead of a fixed weighting
factor, we introduce a probabilistically adaptable weight-
ing factor ãi = α(1 − Pi). In this equation, the p-value,
is the probability of the current vi to follow the modeled
distribution of the metric stream evolution.

µi = ãi(µi−1 + xi−1) + (1− ãi)vi
xi = ξ (µi − µi−1) + (1− ξ) xi−1

µ1 = v1, x1 = 0, x2 = v2 − v1

(5)

The logic behind probabilistic reasoning is that the
current vi depending on its p-value will contribute respec-
tively to the estimation process. Therefore, we update the
weighting by 1 − Pi so that sudden ”unexpected” spikes
contribute less in the estimation process. This allows the
model to refrain from overestimating subsequent vi’s. In
turn, if an “unexpected” value turns out to be a shift
in the metric stream evolution, as the probability kernel
shifts, subsequent “unexpected” values are awarded with
greater p-values, allowing them to contribute more to the
estimation process. Nonetheless, while adaptive weighting
refrains the model from overestimation at bursty time

intervals, it does not account for monotonic phases of
upward and downward trends which often introduce time
lagging effects in the estimation process. Hence, Equation 5
also features a trend component xi, updated at each time
interval, where ξ is a smoothing weight in the range
[0, 1] with values near 1 denoting a preference to favor
recent trends. Thus, any lagging effects in the estimation
process are reduced by boosting the moving average to the
appropriate value base with the dPEWMA for v̂i+1 now
also incorporating an additive trend component.

Assuming, a stochastic and i.i.d distribution as the
bare minimum for a metric stream, we adopt a Gaussian
kernel N(µ, σ2), which satisfies the above requirements,
with Pi the probability of vi evaluated under a Gaussian
distribution and computed by Eq. 6. Nonetheless, while
a Gaussian distribution is assumed, if prior knowledge of
the distribution is made available then only the p-value
computation must change in the estimation process.

Pi = 1√
2π

exp(−z
2
i

2)

Zi = δi − δ̂i
σ̂i

(6)

At this point, the metric stream evolution and vari-
ability, encapsulated by v̂i+1 and σ̂i+1, can be efficiently
updated with only previous value knowledge and without
repeatedly scanning the entire stream (N →∞):

ãi ← α(1− Pi)
θ1 ← ãi · (θ1 + xi) + (1− ãi) · vi

θ2 ← ãi · θ2 + (1− ãi) · v2
i

v̂i+1 ← θ1

σ̂i+1 ←
√
θ2 − θ2

1

(7)

Having updated the metric stream variability, we pro-
ceed to compute the current metric confidence, denoted as
ci. The confidence is a ratio (ci ≤ 1) computed from the
difference between the estimated and observed standard
deviation, and is used as our error evaluation metric. The
semantics behind the confidence is that: the more “confi-
dent” the algorithm is, the larger the estimated temporal
granularity can be for the reference metric stream. This
supports our framework to “reward” larger adjustments
when estimations satisfy the accuracy requested by the
user or rollback to a fixed approach when satisfactory
estimations cannot be made. Hence, as σ̂i → σi the
confidence ci → 1.

ci = 1− |σ̂i − σi|
σi

(8)

Graph Structure Volatility. This module anticipates
and models the topology structure volatility for temporal
graphs. Hence, after the graph stream is updated, we
compute the dissimilarity of the current and previous
graph instance, based on a metric capable of quantifying

Name Description Metrics Vertices Granularity Duration

mit A reality mining network obtained from an experimental study
conducted at MIT to demonstrate how social structures are
developed via online, mobile and direct conversations [27]

Max Clique ∼1000 5min 9 months

sg09 A face-to-face proximity network obtained from the Dublin
Science Gallery in 2009 with data extracted from RFID tags
worn by visitors to study human mobility and interactions [17]

Diameter
Component
Degree Distribution

∼14000 20s 3 months

vanet A vehicular network from the city of Shanghai exploring
wireless communication exchange among vehicles in short-
lived proximity-based formed communities [25]

Effective Diameter
Giant Comp. Ratio

∼75570 10s 1 day

TABLE I: Datasets Used to Compare the Frameworks Under Evaluation

topological differences. However, identifying and quan-
tifying dissimilarities between graphs is a fundamental
challenge with several metrics proposed, although most
are limited to either extracting only partial information
or are computationally demanding [9] [10].

Therefore, to measure the dissimilarity δi between two
consecutive graph instances, we adopt the D-measure [26],
denoted as D(Gi, Gi−1) 7→ R and D ∈ [0, 1], which
associates to each graph instance a set of probability distri-
bution functions, representing node connectivity distances,
and compares them, in terms of three graph metrics. The
first captures global differences by comparing each graph
average node distance distribution based on the Jensen-
Shannon distance (J), which is a method for measuring
the similarity between probability distributions [28]. The
second compares the connectivity of each node by look-
ing at the local node dispersion ratio (NDr). The last
term analyses the differences in the way this connectivity
occurs, through the graph α−centrality. We deem the D-
measure an appropriate metric as it is capable of compar-
ing graphs efficiently and with high precision, especially
for networks with volatile connectivity, which is the case
for real-world networks where nodes are not fixed and (dis-
)appear in time (e.g., mobile, vehicular networks). We also
note that the third term of the D-measure which is the
computationally demanding term, can be ignored in scale-
free settings, yielding a small imprecision penalty and
reducing the complexity of the D-measure to O(n logn).
Thus, the complexity is comparable to other topology
metrics (e.g., assortativity, transitivity) but achieves more
accurate results due to being able to detect dissimilarities
even in the connectivity of graph instances [26].

D(Gi, Gi−1) ∼=

√
J (dist(Gi), dist(Gi−1))

log 2

+ |
√
NDr(Gi)−

√
NDr(Gi−1)|

(9)

At this point, although a threshold-based approach
could be used to determine a runtime change in the
graph structure (e.g., δi > thres), this is error-prone
due to its sensitivity to short-lived spikes. Thus, having
computed the dissimilarity between the consecutive graph
instances, we then proceed to update the graph topology
structure volatility evolution, denoted as τi, which is also
modeled as a moving average adopting a dPEWMA and

apply runtime shift detection to determine if the current
topology structure volatility is “tolerable”.

Runtime Shift Detection. This is based on the CUSUM
test, denoted as Ci, and is a hypothesis test for detecting
shifts in the statistical properties of i.i.d timeseries [29].
Specifically, there are two hypothesis θ′ and θ′′ with prob-
abilities P (θ′) and P (θ′′), where the first corresponds to
the statistical distribution of the timeseries prior to a shift
and the second to the distribution after a shift (i > ts)
with ts denoting the time interval the shift occurs. The
CUSUM is computed with sequential probability testing
on the instantaneous log-likelihood ratio given for a metric
stream at the ith time interval, as follows:

ci = ln P (θ′′)
P (θ′)

Ci,{low, high} = Ci−1,{low, high} + ci

(10)

where low and high denote the separation of the CUSUM
to identify positive and negative shifts respectively.

The typical behavior of the log-likelihood ratio includes
a negative drift before a shift and a positive drift after the
shift. Thus, the relevant information for detecting a shift
in how the volatility of the graph structure evolves, lays
in the difference between the value of the log-likelihood
ratio and the current minimum value. A decision function,
denoted as Li, is then used to determine a shift in the
graph volatility evolution when its outcome surpasses a
threshold (Li > h) determined by the number of standard
deviations respecting the user-given maximum tolerable
inaccuracy.

Li,{low, high} = {Li−1,{low, high} + ci}+

ts = arg min
j≤s≤i

(Cs−1) (11)

where L+ = sup(L, 0). Now, let us consider the particular
case where the graph structure volatility τ undergoes pos-
sible shifts in its evolution modeled by a moving average.
Thus, θ′ and θ′′ can be rewritten as τ ′ and τ ′′ respectively,
with τ ′ representing the current evolution, while τ ′′ the
estimated output of the dPEWMA with τ ′′ = τ ′+ε, and ε
denoting the estimated magnitude of change in the graph
structure volatility. As the structure volatility evolution
is used to provide an estimation for δ̂i, the magnitude of
change is equal to ε = δ̂i−δi. In turn, let P (τ ′) and P (τ ′′)

(a) mit.maxclique (b) sg09.diameter

(c) sg09.components (d) sg09.degdistro

(e) vanet.effdiameter (f) vanet.gcRatio

Fig. 3: The Metric Streams from the Datasets Used to Compare the Frameworks Under Evaluation

be modeled and computed from Equation 6 when adopting
a Gaussian kernel. With some calculations (omitted due
to limited space), ci is rewritten, to perform the decision-
making with only previous value knowledge:

ci,{low, high} = ± |ε|
σ2
τ

(δi − τ ′ ∓
|ε|
2) (12)

Update Temporal Granularity. Having updated the
metric evolution and graph structure volatility we proceed
to dynamically adjust the graph stream temporal granu-
larity. To update the temporal granularity we adopt the
approach proposed in [16] and extend it to acknowledge
multiple metrics over the graph instance and the runtime
volatility of the graph topology. Thus, in Equation 13, the
estimated temporal granularity ∆i+1 is dependent to the
current periodicity ∆i, increasing if variability of the load
decreases, and, in turn, decreasing if variability increases.
The decision about how large of an adjustment is required,
is dependent to the graph structural volatility and the
“confidence” of the algorithmic process to (correctly) es-
timate and follow the runtime evolution of the monitored
metric streams. Therefore, when the estimation model is
“confident” of its estimations, and the graph volatility does
not indicate a change in its evolution, the algorithm will
award a larger periodicity.

Intuitively, if η → 0 then the algorithm converges to a
fixed periodicity approach (unless an “exact” estimation
is made). In turn, if η → 1 an adjustment will take place
on each interval even if a confident estimation cannot be
made. In turn, if the algorithm process cannot provide
a confident estimation within the user-given accuracy
guarantees, even for a single metric stream, then the

algorithm will rollback to the default periodicity ∆min, in
order to preserve accuracy at all times. The complexity
of our approach is O(n logn), with time bounded by
the computation of the dissimilarity metric (D-measure).
All other calculations (e.g., dPEWMA, CUSUM) feature
a constant complexity and are based on previous value
knowledge. Moreover, the imprecision η, is the only pa-
rameter which is user-defined in the estimation process.
Nonetheless, users are free to change: (i) λ which is an
optional multiplicity factor (e.g. default λ = 1) to be used
for a more aggressive approach; and (ii) the dPEWMA
weights α and ξ, although due to the adaptive weighting
process, these may take a wide range of values and can be
left to default values for a small imprecision penalty.

∆i+1 =

∆i + τi · min[λ(1 + cm
i −η
cm

i
)], ∀m | ci ≥ 1− η and

change = true
∆i + min[λ(1 + cm

i −η
cm

i
)], ∀m | ci ≥ 1− η and

change = false
∆min, else

(13)

VI. Evaluation
In this section we present a thorough experimentation

study based on real-world datasets to compare the overall
accuracy and performance of ATMoN towards:
• Baseline, where the temporal granularity of the net-

work is fixed and set to the dataset actual granularity
while the graph engine is deployed without ATMoN;

• AdaM, a low-cost adaptive monitoring framework
which embraces a PEWMA as its estimation model
and dynamically adjusts the temporal granularity of

(a) mit (b) sg09

(c) vanet

Fig. 4: Dataset Graph Topology Structure Volatility based on the D-measure: D(Gi, Di−1) ∈ [0, 1]

the metric stream based on the confidence of the
algorithmic model to correctly estimate what will
happen next in the metric stream. Hence, AdaM
adapts the graph temporal granularity solely based
on the predicaments of the metric stream evolution.

• AdaM-topo, which is AdaM configured to dynami-
cally adjust the network temporal granularity based
on the graph topology structure volatility instead of
the actual metric stream evolution. To make this
possible we feed the structural volatility as a metric
stream to the estimation module of AdaM.

• AvgRandomWalk, where a heuristic-based random
walk is applied over the graph stream to select the
runtime temporal granularity by taking the average
of the 90th percentile over a series of 100 runs.

We include both AdaM and AdaM-topo in our evalua-
tion to show that solely adjusting the temporal granularity
based on either the metric stream evolution or the graph
topology structure is restrictive and will yield high errors,
especially for networks with highly volatile connectivity.
We conduct each experiment with a tight inaccuracy
budget configured to η = 0.1, unless otherwise stated,
meaning that accuracy is expected to be at least 90%.
For the frameworks using a moving average, we set the
smoothing parameter to α = 0.45 and the trend parameter
to ξ = 0.85 which, after testing, is the best configuration
for the AdaM framework.

Table I presents an overview of the datasets used to
evaluate the approaches under-comparison. Instead of opt-
ing for trivial or simulated graphs datasets, we introduce
graphs that model real-world and highly volatile dynamic
networks where the nodes are actual data sources and are
remotely distant from the graph engine. These datasets
are available online so that our findings can be easily
reproduced. Also, all datasets have been widely used in
publications referring to dynamic networks with the met-
rics selected being metrics used in these publications and
are of actual interest. Figure 3 depicts the graph metrics
extracted from each dataset, while Figure 4 depicts for

each dataset the volatility of the graph topology based on
the D-measure.

To emulate the behavior of the monitored sources com-
prising each network in an edge computing environment,
a node emulator was developed. Upon instantiation, each
emulator receives a unique ID directly mapping to a node
of the graph and, from there on, it emulates the exact
behavior of the respected node while also disseminating
data updates to ATMoN. We deploy ATMoN and the
graph engine in Docker containers on Google AppEngine
with the testbed comprised of 8VCPUs and 8GB RAM.
AppEngine was selected as a suitable cloud platform due
to flexible pricing as compute resources are charged per
actual cpu-time. Hence, services benefit in terms of cost
when less processing load is applied. A similar scheme is
applied for ingress and egress network traffic which is of
significant importance in edge computing settings where
data sources are distant from the cloud.

A. Adaptive Technique Estimation Accuracy
In the first set of experiments, we evaluate each of the

adaptive techniques towards their estimation accuracy by
measuring the mean absolute percentage error (MAPE)
towards the dataset ground truth for each evaluated graph
metric. Equation 14 depicts how the MAPE is calculated
for each evaluated graph metric, where Ai is the actual
metric value for the ith datapoint and Ei is the estimated
value. For each adaptive technique, when a datapoint is
not present, Ei is considered the last reported value.

MAPEn = 1
n

n∑
i=1
|Ai − Ei

Ai
| · 100% (14)

Figure 5a depicts the results of this experiment run.
First, we observe that by applying a random walk, it is not
feasible to approximate a graph metric stream, especially
for metrics featuring highly abrupt and transient phases.
Second, we observe that AdaM-topo yields higher errors
than ATMoN and AdaM which shows that one cannot use
only the graph structure volatility to adapt the temporal

(a) MAPE per Evaluated Metric Compared to Baseline (b) Hourly Compute Cycles

(c) Data Volume (d) Daily Cloud Cost

Fig. 5: Accuracy, Overhead and Cost Comparison of the Techniques Under Evaluation

granularity of a metric stream. Third, we observe that
ATMoN is the only adaptive technique able to satisfy the
given accuracy guarantees (> 90%), even for such volatile
metric streams. The only exception is sg09.degdistro,
which is the most complex and unpredictable metric,
where the error is slightly above the desired, at 11%.
Most importantly, the difference in error of ATMoN from
both AdaM and AdaM-topo is significant. Specifically, the
difference in error is, at all times, well above 10% for
each experiment run. For the sg09 and vanet networks
the error difference even exceeds 15%. Thus, in contrast
to adaptive techniques which only base the estimation
process on the evolution of the metric stream, ATMoN
maintains user-given accuracy guarantees by acknowledg-
ing the volatility of the graph topology and adjusts the
network temporal granularity based on knowledge of both
the metric and graph evolution.

B. Adaptive Technique Efficiency and Overhead
In the next set of experiments, we evaluate efficiency

by measuring the overall overhead imposed to the under-
lying graph engine which must process the datasets. We
measure: (i) CPU Cycles consumed to model the graph

stream and process the load imposed by each dataset
to output the depicted metric streams at runtime; (ii)
Data Volume generated to store the modeled graph in-
stances and the processed metric streams that must be
disseminated at runtime to interested entities and the
data sources comprising the network; and (iii) Cloud Costs
incurred by running the testbed on the cloud based on
the Google AppEngine pricing scheme. We note that,
when calculating and depicting cloud costs, discounts and
compute hours offered by Google are ignored. Also, for
figure visualization clarity, in this experiment run we do
not depict AdaM-topo which yields significantly higher
errors than AdaM and also incurs higher overheads.

Figures 5b-5d depict the results of the experimentation
run. First, we observe that ATMoN is able to significantly
reduce both the compute overhead and the overall volume
of generated data, when compared to the Baseline. Specif-
ically, ATMoN is able to reduce the computation overhead
by at least 76% and data volume by at least 60%. These
numbers improve even more as the network grows and the
graph engine is overwhelmed with data. In particular, for
the sg09 network, the compute overhead is reduced by
80%. For the vanet network, which is comprised by 75000

Trace
η 0.01 0.05 0.1 0.15 0.2

mit 5.3 24.6 57.4 69.3 74.2
sg09 12.7 41.3 72.9 80.8 83.1
vanet 9.6 30.3 70.1 74.5 79.8

TABLE II: Data Volume Reduction (%) in Respect to Max
Inaccuracy (η)

Trace
η 0.01 0.05 0.1 0.15 0.2

mit 0.01 0.04 8.0 0.13 0.19
sg09 0.01 0.05 9.1 0.15 0.20
vanet 0.01 0.05 9.8 0.14 0.19

TABLE III: MAPE (%) in Respect to Max Inaccuracy (η)

nodes, the overall data reduction is 71%. This shows that
by not embracing adaptivity in an edge computing envi-
ronment, the overall system is significantly overwhelmed
by the volume of data and the required processing which
it incurs. In turn, due to constant communication between
edge nodes and the cloud service, significant energy is
consumed to preserve the wireless link. However, by re-
ducing the compute and network requirements, not only
is the network able to achieve greater scalability but the
cloud costs are significantly reduced. Specifically, with
ATMoN utilized at the graph engine, an edge computing
environment can reduce its daily costs by at least 54% with
this number increasing as the network grows larger.

When comparing ATMoN to AdaM, the former presents
a slightly lower compute and data volume footprint which
also results in lower cloud costs. The difference in the
compute and data volume overhead between ATMoN and
AdaM is at most 5% and 7% respectively. This is primarily
due to the constant complexity of AdaM, in contrast, to
ATMoN where complexity is time-bounded by the dissim-
ilarity metric computation to capture the graph topology
volatility. However, for this slight overhead sacrifice, AT-
MoN yields significantly lower estimation errors. Specif-
ically, ATMoN overall yields 1.5-2x less error compared
to AdaM. Hence, by dynamically adjusting the temporal
granularity of large-scale dynamic networks, ATMoN is
able to computationally offload graph metric computation,
significantly reduce data volume and cloud costs, while
maintaining, at all times, given accuracy guarantees.

Finally, we experiment with the overall data volume
reduction in respect to different settings of the maximum
tolerable inaccuracy when the graph engine is integrated
with ATMoN. Table 2 depicts the results of this analysis
where, as expected, relaxing accuracy guarantees provides
dynamic and latency-sensitive networks “breathing space”
by requiring less compute effort to output graph insights.
Nonetheless, the most interesting findings for this exper-
iment are presented in Table 3. In particular, we observe
that at no point does ATMoN violate the accuracy requested
by the user even for tight error bounds. This is due to the
fact that the ATMoN estimation process will not output

an adjustment for the graph metric computation rate when
a “confident” estimation cannot be made to ensure that
the accuracy guarantees given by the user are obeyed at
all times.

VII. Conclusions and Future Work
In this paper, we have presented ATMoN, a novel

adaptive framework for monitoring applications that are
modeled as temporal graphs. ATMoN provides a flexible
architecture to inexpensively and dynamically adapt the
temporal granularity graph metrics are computed. This
significantly eases graph processing and also reduces data
volume and cloud costs. To achieve this, ATMoN uses a
low-cost probabilistic learning model that approximates
both the metric stream evolution and the volatility of
the graph topology structure, while respecting user-given
accuracy guarantees. ATMoN is available as open-source
and can be served as the vehicle for a number of ongoing
research efforts, such as monitoring network dynamics
(e.g., fake news epidemiology), community structure and
density (e.g., capacity provisioning), abnormal behavior
detection (e.g., malicious attacks) and identifying recur-
ring events (e.g.,trends and seasonal patterns).

In the imminent future, ATMoN will be extended to
support multivariate graph metric streams. This will
allow ATMoN to acknowledge structural changes not
only at a graph scale but also in graph communities to
dynamically adjust the network temporal granularity at a
finer granularity. Consequently, graph engines will be able
to allocate processing time only to truly volatile segments
of the graph.

Acknowledgement. This work is partially supported
by the Regional Government of Madrid (CM) grant
Cloud4BigData (S2013/ICE-2894) co-funded by FSE &
FEDER, the EU Commission in terms of the H2020
projects Unicorn (IA 731846) and RECAP (RIA 732667),
and the NSF of China grant 61520106005.

References
[1] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graphs over time:

densification laws, shrinking diameters and possible explana-
tions,” in ACM SIGKDD international conference on Knowl-
edge discovery in data mining. ACM, 2005, pp. 177–187.

[2] P. Holme and J. Saramaki, “Temporal networks,” Physics Re-
ports, vol. 519, no. 3, pp. 97 – 125, 2012, temporal Networks.

[3] H. Efstathiades, D. Antoniades, G. Pallis, M. D. Dikaiakos,
Z. Szlavik, and R.-J. Sips, “Online Social Network Evolution:
Revisiting the Twitter Graph.” in 2016 IEEE International
Conference on Big Data, 2016.

[4] N. Masuda, K. Klemm, and V. M. Egúıluz, “Temporal networks:
Slowing down diffusion by long lasting interactions,” Phys. Rev.
Lett., vol. 111, p. 188701, Oct 2013.

[5] J. Traub, S. Breß, T. Rabl, A. Katsifodimos, and V. Markl,
“Optimized on-demand data streaming from sensor nodes,” in
Proceedings of the 2017 Symposium on Cloud Computing, ser.
SoCC ’17. New York, NY, USA: ACM, 2017, pp. 586–597.

[6] V. Kostakos, “Temporal graphs,” Physica A: Statistical Mechan-
ics and its Applications, vol. 388, no. 6, pp. 1007–1023, 2009.

[7] H. Wu, J. Cheng, S. Huang, Y. Ke, Y. Lu, and Y. Xu, “Path
problems in temporal graphs,” Proc. VLDB Endow., vol. 7,
no. 9, pp. 721–732, May 2014.

[8] A. Li, S. P. Cornelius, Y.-Y. Liu, L. Wang, and A.-L. Barabási,
“The fundamental advantages of temporal networks,” Science,
vol. 358, no. 6366, pp. 1042–1046, 2017.

[9] A. P. Iyer, L. E. Li, T. Das, and I. Stoica, “Time-evolving graph
processing at scale,” in Proceedings of the Fourth International
Workshop on Graph Data Management Experiences and Sys-
tems, ser. GRADES ’16. New York, NY, USA: ACM, 2016.

[10] A. Ching, S. Edunov, M. Kabiljo, D. Logothetis, and
S. Muthukrishnan, “One trillion edges: Graph processing at
facebook-scale,” Proceedings of the VLDB Endowment, vol. 8,
no. 12, pp. 1804–1815, 2015.

[11] D. Trihinas, G. Pallis, and M. Dikaiakos, “Monitoring Elasti-
cally Adaptive Multi-Cloud Services,” IEEE Transactions on
Cloud Computing, vol. 4, 2016.

[12] L. Mearian, “Self-driving cars could create 1GB of data a
second,” https://www.computerworld.com/article/2484219/.

[13] W. Shi and S. Dustdar, “The Promise of Edge Computing,”
Computer, vol. 49, no. 5, pp. 78–81, May 2016.

[14] D. Trihinas, G. Pallis, and M. D. Dikaiakos, “ADMin: Adaptive
Monitoring Dissemination for the Internet of Things,” in IEEE
INFOCOM 2017 - IEEE Conference on Computer Communi-
cations, May 2017, pp. 1–9.

[15] L. Fan and L. Xiong, “An adaptive approach to real-time aggre-
gate monitoring with differential privacy,” IEEE Transactions
on Knowledge and Data Engineering, vol. 26, no. 9, pp. 2094–
2106, Sept 2014.

[16] D. Trihinas, G. Pallis, and M. D. Dikaiakos, “AdaM: an Adap-
tive Monitoring Framework for Sampling and Filtering on IoT
Devices,” in IEEE International Conference on Big Data, 2015,
pp. 717–726.

[17] L. Isella, J. Stehle, A. Barrat, C. Cattuto, J.-F. Pinton, and
W. V. den Broeck, “What’s in a crowd? analysis of face-to-face
behavioral networks,” Journal of Theoretical Biology, vol. 271,
no. 1, pp. 166 – 180, 2011.

[18] R igraph, “http://igraph.org/r/.”
[19] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin,

“Powergraph: Distributed graph-parallel computation on natu-
ral graphs,” in Presented as part of the 10th USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI
12), Hollywood, CA, 2012, pp. 17–30.

[20] W. Han, Y. Miao, K. Li, M. Wu, F. Yang, L. Zhou, V. Prab-
hakaran, W. Chen, and E. Chen, “Chronos: A graph engine for
temporal graph analysis,” in Proceedings of the Ninth European
Conference on Computer Systems, ser. EuroSys ’14. New York,
NY, USA: ACM, 2014, pp. 1:1–1:14.

[21] M. Villari, M. Fazio, S. Dustdar, O. Rana, and R. Ranjan, “Os-
motic computing: A new paradigm for edge/cloud integration,”
IEEE Cloud Computing, vol. 3, no. 6, pp. 76–83, Nov 2016.

[22] H. Wu, Y. Huang, J. Cheng, J. Li, and Y. Ke, “Reachability
and time-based path queries in temporal graphs,” in Data
Engineering (ICDE), 2016 IEEE 32nd International Conference
on. IEEE, 2016, pp. 145–156.

[23] P. J. Mucha, T. Richardson, K. Macon, M. A. Porter, and J.-P.
Onnela, “Community structure in time-dependent, multiscale,
and multiplex networks,” science, vol. 328, no. 5980, pp. 876–
878, 2010.

[24] R. K. Pan and J. Saramäki, “Path lengths, correlations, and
centrality in temporal networks,” Physical Review, vol. 84, no. 1,
p. 016105, 2011.

[25] M. D. Nicholas Loulloudes, George Pallis, “The Dynamics of
Vehicular Networks in Large-Scale Urban Environments,” in 1st
IEEE International Conference on Collaboration and Internet
Computing, ser. IEEE CIC 2015, 2015, conference.

[26] T. A. Schieber, L. Carpi, A. Dı́az-Guilera, P. M. Pardalos,
C. Masoller, and M. G. Ravetti, “Quantification of network
structural dissimilarities,” Nature communications, vol. 8, p.
13928, 2017.

[27] N. Eagle and A. (Sandy) Pentland, “Reality mining: Sensing
complex social systems,” Personal Ubiquitous Comput., vol. 10,
no. 4, pp. 255–268, Mar. 2006.

[28] D. M. Endres and J. E. Schindelin, “A new metric for probabil-
ity distributions,” IEEE Transactions on Information Theory,
vol. 49, no. 7, pp. 1858–1860, July 2003.

[29] Y. Luo, Z. Li, and Z. Wang, “Adaptive cusum control chart with
variable sampling intervals,” Computational Statistics & Data
Analysis, vol. 53, no. 7, pp. 2693 – 2701, 2009.

