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Abstract

This paper shows that mathematical models of biolog-
ical pattern formation are ideally suited to data paral-
lelism. We present two new algorithms, one for simulat-
ing the dynamic structure of �broblasts, and the other
for studying the self-organization of motile bacteria.
We describe implementations of these algorithms us-
ing a high level data parallel language called ZPL, and
we give performance results for the Kendall Square Re-
search KSR-2 and the Intel Paragon that include com-
parisons against sequential Fortran.

1 Introduction

Mathematical biology is one of the fastest growing
and most exciting applications of modern mathematics.
As biology becomes more quantitative, the increased
use of mathematical modeling is inevitable. Many of
these problems involve extensive numerical computa-
tions over large computational domains and are easily
amenable to data-parallelism. For example, in the �eld
of pattern formation in biological systems, the equa-
tions that one derives are generally continuum mod-
els described by nonlinear partial-di�erential equations
that cannot be solved explicitly; thus, numerical meth-
ods are crucial in understanding their behavior. The
complex dynamics of the continuum often require long
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calculations for each data point. Moreover, the biolog-
ical structures often form very complex patterns that
require large computational domains for their represen-
tation.

This paper makes two primary contributions. First,
we describe two new algorithms for solving mathemat-
ical biology problems. Second, by using the ZPL pro-
gramming language [15] to implement these algorithms,
we show that ZPL solves many of the problems that in-
hibit the widespread use of parallel machines.

The �rst algorithm models the structure of �brob-
lasts, which are cells of the connective tissue that have
been extensively studied by biologists. Fibroblast pat-
terns have been compared to �ngerprint patterns us-
ing theorems in topology [11], and theories have been
devised to describe their movement within the tissue.
However, there has been little work in quantifying the
inuences within culture to validate these theories. In
a conuent culture, �broblasts form dramatic patterns
of many parallel arrays of cells meeting at di�erent an-
gles. Our assumptions on how local densities and local
orientations interact and change were based on biolog-
ical observations, and led to the creation of our new
mathematical model.

The second algorithm studies the self-organization of
motile bacteria, which aggregate in response to gradi-
ents of chemical attractants that they themselves ex-
crete. This chemically directed movement, which di-
rects the motion up a concentration gradient, is re-
ferred to as chemotaxis. Depending on the conditions
under which the cells are cultured, they form a vari-
ety of complex spatio-temporal patterns [5, 23]. Based
on the solid biological evidence for chemotaxis, we
have developed a cell-chemoattractant model mecha-
nism which has enabled us to verify that it is the in-
teraction between the proliferating cells and chemoat-
tractant they produce that is crucial to the formation
of the observed geometric patterns.

The numerical solution for the equations of these
models provides a realistic litmus test for the use of
ZPL, an array sublanguage of the more general Orca



C programming language [14]. We show that ZPL
is a convenient platform for implementing these ap-
plications, yielding clean solutions and good perfor-
mance across di�erent parallel machines. In particu-
lar, convenience comes from the high level nature of
ZPL that frees the programmer from the details of
explicit communication and synchronization; from the
sequential semantics of the language that allow pro-
gram development and debugging to proceed on famil-
iar workstation environments; and from source level
portability|porting ZPL applications across platforms
only requires recompilation of the C code that is pro-
duced by the ZPL compiler. The ability to produce
e�cient portable code comes from ZPL's underlying
programming model [2], a claim that is supported by
the results presented here on two very di�erent parallel
computers|the Kendall Square Research KSR-2 and
the Intel Paragon.
This paper is organized as follows. Section 2 de-

scribes the new algorithm for simulating �broblast
structures. Section 3 discusses the self-organization of
motile bacteria and the new model for simulating this
process. Section 4 provides some basic background on
ZPL. The next two sections describe the ZPL imple-
mentation of the two algorithms and give performance
results. Concluding remarks are given in Section 7.

2 The Fibroblast Application

2.0.1 Modeling Fibroblasts

Fibroblasts are long, spindle-shaped cells of the con-
nective tissue, the space between organs and tissues.
When in culture they interact forming parallel arrays
and patterns [11]. This interaction has been described
with a model consisting of a parabolic di�erential equa-
tion and an integral equation [8]. When in culture they
also acquire a mono- or bipolar shape, which allows us
to easily attribute an axis of orientation to each cell.
Fibroblasts are highly motile cells and move along this
axis of orientation. At a macroscopic level we can as-
sign a local orientation to almost every point in the
culture. The few points where an orientation cannot
be uniquely assigned are called points of discontinuity.
The Fibroblast model is based on the following biolog-
ical observations:

� Cells inuence the orientation of their neighboring

cells: In particular, upon meeting a cell with an
orientation similar to its own, a cell will tend to
move, change its orientation, and align itself with
its neighbors. If the orientation are dissimilar, cells
do not a�ect each other's movement.

� Local cell densities are inuenced by the local cell

orientation distribution: In areas where all cells

are aligned parallel to each other (parallel arrays),
we assume that cell movement will be simply dif-
fusive and will depend on the local cell densities.
In areas where there is great local variation in cell
orientation, we assume that cell movement will be
hindered.

Based on these observations, we conclude that the vari-
ables that best describe the cell distribution are the cell
density N and the cell orientation �; � is the angle that
the cell forms with a �xed reference axis. This leads to
the following model (in non-dimensional form) [11]
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I is a step function which determines the maximum
di�erence �� in angle at which cells may inuence each
other's orientation.
J� is the ux of angle, that is, the orientation that

the cells tend to carry with them as they move. We
assume that cells move slowly so that at each time step
the local e�ects have time to set in and completely
determine the cells' orientation. Therefore, we make
the approximation J� = 0. The di�usive ux of the
cells, JN , is given by:

JN = �[~� � r(ND)]~� (4)

The di�usionD is a function of the cell density and the
orientation variation ( @�

@n
):
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Here, ~� = (cos(�); sin(�)) is the unit vector n in the
direction of orientation, and

�n =
@�

@n
= ~� � r� (6)

is the rate of change of orientation in the direction of
local orientation (the direction along which the cells
are able to move).



2.1 Numerical Simulation of Fibrob-

lasts

To calculate equation (3) for a meshpoint (i; j) we ap-
proximate the integral using Simpson's rule. Numer-
ical simulations have shown that a reasonable choice
for meshsize is �x = �y = d, where d is the radius
within which a cell will inuence a neighboring cell.
With such a choice of �x, the approximation to the
integral is written as:
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Here, ��ij;i�1j = k�ki;j��
k
i�1;jk. Similar de�nitions hold

for the other three terms. We can thus approximate
the integro-di�erential equation by a system of non-
sti� ordinary di�erential equations for which the time
derivative can be discretized using forward Euler:
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The cell density was calculated using �rst order up-
winding for the ux term ~J = (J1; J2):
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of the point (i+ 1
2
; j) along the x direction (similarly for

the other three terms). On the boundary we assume
no ux for the cells or their angles.
The numerical domain for our simulations consists of

a square grid of size at least 40�40. Being explicit, the
methods require O(n2) ops for each time step, where
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Figure 1: Fibroblast cell-orientation after 50,000 steps.

n � n is the number of points in the mesh. For our
simulation, we set the distances between mesh-points
to �x = �y = 0:01. For our parameter values, the
system shows stable solutions if �t � 0:001. We keep
�t constant throughout the calculation to produce a
predictable number of iterations. The number of iter-
ations determines the number of angle discontinuities
within the dish. For t > 100 the cells become pretty
much aligned throughout the dish. The results in this
paper correspond to runs of 50; 000 iterations.

2.2 Numerical Simulation Results

In our parallel simulations, cell densities are initially
uniform throughout the grid. Local cell orientations
are assigned randomly at each meshpoint. After a short
time (t=0.1) cells begin to align. Moreover, we notice
small density variations which are due to the large an-
gle variations that are still persistent at this stage. As
time progresses, cells further align themselves, while
the number of discontinuities decreases.

Figure 1 shows the cell orientations at the end of the
simulation. On this plot, we have marked some discon-
tinuities as arches and others as triradii. Triradii are
3-point-star patterns which appear at the conuence
of three parallel arrays of di�erent average orientation
near the point of conuence. From Figure 2 we see that
cell densities are uniform except at the points of discon-
tinuity. Just below the arches, cell densities are lower,
as observed in real cell cultures, with the cell density
being higher on the arch (curve above the discontinu-
ity). At the triradii, cell densities appear higher, too,
due to the decreased di�usion predicted by our model,
resulting in cell clumping. This clumping occurs in our
model because we allow cell movement towards the dis-
continuity. In the actual cell cultures, cells will stay
away from areas of large angle variations. Hence, they
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Figure 2: Fibroblast cell-density after 50,000 steps.

appear at lower densities at the center of a triradius.
We are currently re�ning our model to address this
problem.
Our numerical simulations of the model show pat-

terns that closely resemble the patterns observed in
culture [3]. The similarity between the biological and
numerically found patterns provides strong indication
that our model captures important characteristics of
the cell interactions. Further biological experiments
could provide us with accurate parameter values for
our simulations.

3 Bacteria Application

3.1 Modeling Bacteria

Conditions have been found under which chemotactic
strains of di�erent bacterial species aggregate to form
geometric patterns of di�erent complexity. These pat-
terns form when motile cells, inoculated on semisolid
agar, respond to gradients of chemical attractants that
they themselves excrete [5, 23]. These fascinating ex-
perimental patterns are a new class of kinetic pat-
terns [22] in which both random motion (di�usion)
and chemically directed movement (chemotaxis) are es-
sential. The simplest patterns, and thus, those most
amenable to mathematical analysis, are the periodic
arrays of continuous or perforated rings generated by
the bacterium Salmonella typhimurium. A reaction-
di�usion-chemotaxis model based on the Oster-Murray
mechanism [18] provides a description of the essential
components required to generate simple periodic pat-
terns. This mathematical model consists of a system of
coupled nonlinear partial di�erential equations for the
bacteria-chemoattractant- substrate interactions; how-
ever, such continuum models can be shown to be the
result of using behavioral `rules' in `random walk' in-

dividuals [1, 4]. The model is based on the following
known biological fact:

� It is the interaction between the cells and chemoat-

tractant that causes self-organization into the ob-

served patterns. In the semi-solid medium, the
cells start out at the center of the dish, prolif-
erate, and produce and degrade chemoattractant;
they only sense the chemoattractant and not the
substrate. The cells and chemoattractant are both
di�usive.

We denote the density of (motile) cells by n, the
concentration of chemoattractant by c, and the con-
centration of substrate by s. In the S. typhimurium

experiments, the consumption of substrate is negligi-
ble. Therefore, we assume that the substrate concen-
tration is constant, and thus s is just a parameter. It is
convenient to cast the model in non-dimensional terms
(Murray [17] provides a general discussion):

@

@t
n = �r � Jn �r � Jchemo + f1(n; c; s) (7)

@

@t
c = �r � Jc + f2(n; c; s)� f3(n; c; s) (8)

where:

� Jn = -Dnrn and Jc = -Dcrc are the di�usive
uxes of the cells and chemoattractant, respec-
tively.

� Jchemo = �(n; c)rc is the chemotactic ux. The
functional form for the chemotactic response is the
one determined experimentally, �(n; c) = �n=(1+
�c)2; where � measures the strength of chemo-
taxis, and � the saturation of the chemotactic sen-
sitivity (at high levels of chemoattractant).

� f1(n; c; s), f2(n; c; s), f3(n; c; s) are proliferation of
cells, and production and degradation of chemoat-
tractant. We choose the simplest forms possible
which are consistent with the experimental obser-
vations:

f1(n; c; s) = �n(1�
n

s
) (9)

f2(n; c; s) =
sn

1 + n
(10)

f3(n; c; s) = �c (11)

The parameter �measures the rate of proliferation, and
 the saturation of the chemoattractant production (at
high levels of cells).
In the biological experiments, patterns are formed

from an initial inoculum of cells at the center of a petri
dish, with no cells elsewhere. These cells then di�use
and proliferate, spreading out radially. At the same



time, they produce chemoattractant which causes them
to aggregate. It is the interplay between this aggrega-
tive destabilizing e�ect, reected in the chemotactic
coe�cient (�), and the stabilizing e�ects of the di�u-
sion of the cells (Dn) and of the chemoattractant (Dc),
that is crucial to the formation of spatially heteroge-
neous pattern.

3.2 Numerical Solution of the Bacteria

Model

In our numerical investigations of the behavior of the
model, we focus on cell density (rather than chemoat-
tractant (or substrate) concentration) as this is the
quantity of primary interest. Moreover, since there is
no variation in the patterns through the thickness of
the agar, equations (10)-(11) for the cell density and
chemoattractant concentration can be solved on a two-
dimensional grid. To develop and analyze the model
equations we use an explicit forward Euler �nite dif-
ference scheme. The experimental patterns are gener-
ated from an initial inoculum at the center of a dish,
so we choose as our initial conditions a 10 � 10 mesh
point area at the center of the domain in which cell
density n = 1.0, with n = 0.0 elsewhere. Initially c
= 0 everywhere. These conditions are then perturbed
with � 1% random noise in order to break the sym-
metry. Experimentally the cells are con�ned to a dish,
so we impose zero ux boundary conditions. However,
pattern formation (in both the experiments and the
simulations) takes place well before the leading edge of
the perturbation reaches the domain boundary, so the
boundary conditions are not relevant, nor is the shape
of the mesh, which is a square containing at least 301
x 301 grid points. The time step used in the integra-
tions is 0.005. The reliability of this numerical method
was monitored by doubling the mesh size and halving
the time step, which produced qualitatively similar re-
sults. We have also tested an implicit Crank-Nicholson
method which was successfully used by Scribner et al.

[20] to investigate traveling bands of bacteria, and the
method of lines to reduce the partial di�erential equa-
tions to ordinary di�erential equations. However, be-
cause of the sti�ness of the model equations, there is
little or no gain in using these implicit methods.
To examine explicitly the role of the chemotaxis co-

e�cient, �, in the self-organization of bacteria, we �x
Dn = 0.1, andDc = 0.3, together with � = 1.0,  = 0.2,
� = 0.03, and s = 1.0. With these parameters, linear
analysis shows that the non-trivial uniform steady state
(n,c) = (1,1/1.2) can be driven unstable by spatial per-
turbations when � > �crit = 0.818. This is the usual
way that spatial patterns are generated in most models
for biological pattern formation [17]. For a given ini-
tial condition, rings are most likely to form when the
chemotactic response (�) is low (but above the criti-

Figure 3: Patterns of bacteria cell-density after 300,000
time steps.

cal value for patterns to propagate). This also corre-
sponds in the dimensional problem to slow production
or rapid consumption of chemoattractant (or, when s is
non- constant, to rapid consumption of the substrate).
However, spots will be more likely than rings when � is
su�ciently large that gradients in chemotactic concen-
tration do not need to be so steep for the recruitment
of cells into clusters.
This is illustrated, for � = 3.0, in Figure 3 which

shows how, after 300,000 time steps, the pattern has
spread sequentially outward, with rings forming at a
�xed distance from one another, and then breaking up
into spots. For even larger values of � (more precisely,
for large values of the ratio �=Dn) the numerical cal-
culations ultimately fail because the peaks in the solu-
tions became very sharp and steep. This is more likely
to be the limitation of the step size in our numerical
scheme rather than chemotactic collapse [7] since the
cell removal term, ��n2; prevents formation of singu-
larities.
We therefore suggest that the cell-chemoattractant

mechanism (10)-(11) is a likely candidate for gener-
ating simple periodic patterns found in the S. ty-

phimurium experiments. Moreover, by choosing as our
bifurcation parameter the chemotactic coe�cient, �,
we have con�rmed the biological observation that it
is the sensitivity in chemotactic response that a�ects
the nature of the pattern. Detailed numerical simu-
lations and bifurcation pattern sequences, as well as
non-dimensionalized (biological) parameter values, are
reported elsewhere [23].

4 The ZPL Array Sublanguage

ZPL is a data parallel language that allows arrays and
subarrays to be manipulated as whole entities [15]. The
language provides constructs that lead to concise pro-
grams while eliminating tedious and error prone array
indexing. The language's conciseness was �rst illus-



trated by the SIMPLE computational uid dynamics
benchmark, which is approximately 5000 lines when
coded in C plus message passing, but only 500 lines
and considerably more readable when coded in ZPL
[16]. In addition, ZPL programs have sequential se-
mantics and control ow, which considerably simpli�es
the program development and debugging process.

A chief goal of ZPL is to provide portability and ef-
�ciency across diverse parallel computers. Our current
ZPL compiler produces machine independent ANSI C
as object code, which is then compiled on the tar-
get machine and linked with machine-speci�c libraries
to produce executable code. Performance matching
hand-coded, explicitly parallel C code has been demon-
strated on both shared and nonshared memory parallel
computers [16]. The mathematical biology applications
described here provide further evidence that compiled
ZPL code is of high quality.

We now briey describe the main ZPL constructs
and data types. Some of the more powerful features
of the language, which were not needed in these two
applications, are omitted here but described elsewhere
[15, 21]. ZPL supports a typical set of data types (e.g.
real, integer, char), dense arrays of arbitrary dimen-
sion, the usual arithmetic and logical operators which
can be applied to either scalars or arrays, parallel pre�x
operators (e.g. reduce and scan), and the standard con-
trol structures (if, for, while, etc.), including recur-
sion. ZPL has two classes of variables that serve as ba-
sic units of computation: parallel arrays and scalars. In
the ZPL model, concurrency is derived from the array
and parallel-pre�x operators (reductions and scans).
Speci�cally, ZPL's parallel arrays are distributed across
physical processors, while all scalar data is replicated.
(ZPL also has indexed arrays, which are not distributed
and do not produce parallelism.) All concurrency is
managed by the compiler and run-time system, shield-
ing the application programmer from the tedious de-
tails of communication and synchronization.

The ZPL code fragment below is characteristic of
both the �broblast and bacteria codes and illustrates
some distinguishing features of ZPL. First, regions are
central to ZPL. Line 5 shows how regions, which are
simply sets of array indices, can be declared. In this
case R is a square 2D index set. (Regions need not be
statically declared, but dynamic regions are beyond the
scope of this discussion.) Line 11 shows how a region
can be used to de�ne the storage of parallel arrays, in
this case U and V, whose base-types are double-precision
oating point values. Lines 17 and 18 show how regions
can be used to specify new regions: of is a keyword
and South is a user-de�ned direction which together
de�ne a new region that is disjoint and adjacent to
R, and o�set from R by the vector South. That is,
[South of R] is the (n+1)st row of the index space.
Finally, line 22 shows how regions are used to specify

Application Fibroblasts Bacteria
Fortran 461 lines 255 lines
ZPL 224 lines 197 lines

Table 1: Code sizes for the kernels of the applications
under investigation.

array operations: the region R speci�es the index set
over which the statement is to be applied. Thus, line
22 will assign to all elements of the array Temp whose
indices are in the range (1..n) � (1..n). Line 22 also
illustrates the use of the At operator (@). For example,
U@South refers to the parallel array whose indices are
displaced from [R] by the vector South. Thus, the @

operator can be viewed as a \shift" operator.

1 program Bacteria;

2 -- Declarations --

3

4 constant beta : integer = 2.0;

5 region R = [1..n, 1..n];

6

7 direction North = [-1, 0];

8 South = [+1, 0];

9

10 procedure Bacteria();

11 var U, V: [R] double;

12 Temp: [R] double;

13

14 -- Initialization --

15 begin

16 [R] U := 0.0;

17 [South of R]

18 [North of R] U := 0.0;

19

20 . . .

21

22 [R] Temp := (U@South/((1 + beta*V@South) *

23 (1 + beta*V@South)));

24 end;

5 Implementation Issues

Implementing the mathematical biology applications
with ZPL proved to be easy, even for users with lim-
ited parallel-programming experience. The algorithms
described in Sections 2 and 3 are both inherently data
parallel. In the �broblast simulation the cell orien-
tations and densities are determined by information
from neighboring cells. Similarly, the bacteria forma-
tion patterns are caused by di�usion in which cell den-
sities for one time step can be computed from local-
ized information of the previous time step. We found
the ZPL programs for the Fibroblast and the Bacte-
ria models to be more readable (and shorter|see Ta-
ble 1) than the original sequential Fortran programs.
Implementing the same applications with explicit par-
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Figure 4: Data-dependences and boundary conditions
for the Fibroblast example.

allelism using either message-passing or shared memory
constructs would have been much more tedious. The
conciseness of ZPL is attributed mainly to:

1. The implicit handling of data decomposition, com-
munication and synchronization;

2. The provision of speci�c support for common types
of boundary conditions;

3. The provision of high-level constructs that are
known to have e�cient parallel implementations,
such as array operations and Reductions and
Scans.

As an example, we present a short Fortran excerpt
from the Fibroblast application that initializes periodic
boundary conditions on the two-dimensional array of
cell-angles and then calculates angle derivatives along
the y-axis:

do 78 j=1,n+2

theta(1,j) = theta(n+2,j)

theta(n+2,j) = theta(2,j)

78 continue

do 11 i=2, n+1

do 12 j=2, n+1

thy(i,j) =

angle_subtr(theta(i-1,j), theta(i+1,j))

/(2.0d0*h)

12 continue

11 continue

A pictorial description of the corresponding data-
dependencies and boundary conditions is given in Fig-
ure 4. The ZPL implementation includes de�nitions for
the region of the parallel arrays upon which the com-
putation is being carried out, and for the directions of
data-ow:

region R = [1..n,1..n];

direction North = [-1,0];

South = [+1,0];

var

/* declare parallel arrays */

theta, thy : [R] double;

/* declare of h as scalar */

h: double;

The actual code consists of a high-level implementation
of the periodic boundary conditions and the sequential
semantics of the Fortran code, applied to parallel ar-
rays:

[North of R]

[South of R] wrap theta;

[R] thy :=

angle_subtr(theta@South, theta@North)

/(2*h);

The last line illustrates another convenient feature of
ZPL: scalar promotion. The angle subtr() function
was written to accept scalar parameters but here is
passed theta@South and theta@North as parameters.
This type of promotion can be signi�cant in allowing
code re-use from sequential programs, and also illus-
trates how parallel arrays in ZPL have been elevated
to the same status as the scalar data types. (The scalar
expression (2*h) is also trivial promoted to an array
expression of the same size and shape as the other ar-
rays in the statement.)

6 Performance Results

To study the e�ciency of the ZPL codes we performed
a large number of runs on three di�erent platforms: the
Kendall Square Research KSR-2 [6], the Intel Paragon
[9], and DEC-Alpha workstations running PVM [13].
The KSR-2 is a COMA (Cache Only Memory Archi-
tecture) multiprocessor with 40MHz custom processors
con�gured as a hierarchy of slotted packetized rings.
Each leaf-level ring contains 32 processors. The KSR
architecture provides a shared address space with phys-
ically distributed memory. Memory modules of each
node play the role of a very large hardware-managed
cache. Cache coherence is provided through a hierar-
chical directory scheme which enforces sequential con-
sistency. The Intel Paragon is a message-passing sys-
tem based on the Intel i860XP, a 50MHz micropro-
cessor. Communication between the processors is car-
ried through a mesh interconnection network. PVM
is a message passing interface for distributed comput-
ing that uses the TCP/IP communication protocols to
connect, in our case, a networks of workstations. The
high availability of workstations makes this an attrac-
tive development environment. Our workstations are
DEC 3000/400 AXP's with 133MHz clocks.
Our study focuses on two measures of performance:

a comparison of the execution times for the ZPL codes
and their corresponding sequential Fortran programs,
and an assessment of the scalability of the ZPL codes
as the numbers of processors is increased. The �rst



Fibroblasts

KSR Intel Paragon DEC

Fortran 9484.84 8614.08
ZPL 6178.5 5058.5 1675.54

Bacteria

KSR Intel Paragon DEC

Fortran 46919.16 23590.8
ZPL 37480.44 18946.03 9754.75

Table 2: Comparison of Fortran and ZPL execution
times on one processor.
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Figure 5: Running Times of the Fibroblast application
(100x100 grid, 2000 iterations).

metric provides a measure of the sequential e�ciency
of the ZPL compiler. We would expect the code gener-
ated by the ZPL compiler to be less e�cient than the
hand-written Fortran code because of the extra book-
keeping that is introduced to exploit parallelism. This
extra overhead, however, must not be large if this par-
allel solution is to represent an alternative to sequential
implementations.
Table 2 presents the running times of the Fibrob-

last and Bacteria codes running on one processor of
the KSR-2, Intel Paragon, and DEC-Alpha architec-
tures. The ZPL codes on the DEC-Alpha worksta-
tion run under PVM1. The running times reported for
the Fibroblast application correspond to a mesh size of
100� 100 and 2000 time-steps. The running times re-
ported for the Bacteria application correspond to runs
on a 481 � 481 mesh and 2000 time-steps. Table 2
shows that the ZPL codes running on one processor
achieve performance that is competitive with that of
the hand-written Fortran programs.
Figures 5 and 6 show the running times for the same

instances of the Fibroblast and the Bacteria applica-
tions on the KSR-2 and Intel Paragon multiprocessors.
From these plots we can see that for both applications
the ZPL codes scale very well with the number of avail-
able processors. This can also be seen from the relative
speedup curves shown in Figure 7. Here, speedup is de-
�ned as the ratio of the running time on a given number

1We have no measurements of Fortran codes for the DEC-

Alpha because we have no Fortran compiler for this machine.
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Figure 6: Running Times of the Bacteria application
(481x481 grid, 2000 iterations).
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Figure 7: Relative Speedup.

of processors over the running time of the same code on
one processor of the same machine. From the plots in
Figure 7 we see that the speedups achieved with the
Fibroblast code are smaller than those for the Bacte-
ria code. To further investigate this and to learn more
about the behavior of the codes, we used the perfor-
mance monitoring environment on the Intel Paragon
[19] to instrument the C code produced by the ZPL
compiler. In particular, we used Xipd [10] to instru-
ment the program and collect traces, and ParaGraph

[12] to visualize performance. We produced detailed
diagrams showing parallelism pro�les, processor uti-
lization, communication overhead, communication pro-
�les, and patterns of communication. These pro�les
con�rmed that the lower speedups in the case of the
Fibroblast application are due to the higher communi-
cation overhead incurred by the Fibroblast runs. For
example, Figure 8 illustrates this overhead in terms of
average processor utilization during a small number of
iterations running on a 16-processor partition of Intel's
Paragon. This instance of the Fibroblast application
exchanges 23; 870 messages (total of 4; 138; 240 bytes)
within a 3:59-second monitoring window, whereas the
Bacteria code exchanges only 2; 844 messages (total



Figure 8: Average utilization of processors for the Fi-
broblast (top) and the Bacteria codes (bottom) run-
ning on Intel Paragon. The dark-grey color denotes
the percentage of running time that a processor spends
waiting for communication.

of 2; 693; 600 bytes) within a 14:33-second monitoring
window.

7 Conclusions

In this paper we have shown that mathematical mod-
els of pattern formation in biology are ideally suited
to large scale parallel programming. We have pre-
sented new algorithms for solving two mathematical
biology problems, one in the study of the formation
of �broblast structures, the other in the study of the
self-organization of motile bacteria. By focusing on
these applications where detailed experimental data are
available, we have been able to develop basic mech-
anisms for pattern formation which should serve as
important paradigms in more complex developmental
and behavioral systems. Furthermore, we have shown
that the ZPL programming language provides an ideal
means of expressing these mathematical models, both
from a performance aspect and an ease-of-use aspect.
The performance of the two codes on the KSR and Intel
Paragon were found to be competitive with sequential
Fortran programs.
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