
Intermediaries for the World-Wide Web
Overview and Classification

�

Marios Dikaiakos
Department of Computer Science

University of Cyprus
P.O. Box 20537, 1678 Nicosia, Cyprus

mdd@ucy.ac.cy

Abstract

Intermediaries are software entities deployed on Internet hosts
of the wireline and wireless Web that intervene to the flow of in-
formation from clients to origin servers at the application level
of the WWW. Intermediaries represent a useful abstraction for the
design and study of emerging software infrastructures for “next-
generation” Web services. Their importance is increasing with
the increasing demand for personalization, localization, and sup-
port for ubiquitous access over different physical media and pro-
tocols. In this paper, we present an overview of a wide range of
systems that can be described as intermediaries, classifying them
in a number of broad categories according to their basic function-
alities. Going beyond simple WWW proxies, we examine the re-
quirements arising from the need to support personalization, mo-
bility and ubiquity under high loads. We identify and refine a set of
important properties and characteristics of intermediary systems.
Based on these properties, we introduce a detailed taxonomy of
characteristic systems and identify a number of key component of
emerging intermediary infrastructures.

1 Introduction

The World-Wide Web has become the prevailing
paradigm for information dissemination on Internet and the
driving force behind the popularity of Internet services. The
tremendous success of the Web is changing the basic model
of Web-service provision. Typically, a Web service is es-
tablished upon a Web-server, i.e., a process running on a
well-defined host and providing information to Web clients
over a specific communication protocol like HTTP. This
client-server model is being subsumed by a model entailing
a fully distributed and dynamic web of interacting servers
and software entities, deployed throughout the Internet in-
frastructure [7]. Already, a large number of tools, systems,

�
Work supported in part by the Research Promotion Foundation of

Cyprus, under the PENEK 23/2000 program.

services and infrastructures have been proposed in this con-
text. These systems can be collectively described as en-
hanced proxies or intermediaries.

We define intermediaries as software entities that inter-
vene to the flow of information from clients to origin servers
at the application level of the WWW. Intermediaries are de-
ployed on Internet hosts of the wireline and wireless Web,
between origin servers and client systems (for a similar def-
inition see [2]). Intervention varies from simple relaying
and caching performed by Web proxies and proxy caches,
to complicated transformations, such as filtering, indexing,
and transcoding. Intermediary systems fall under the gen-
eral term of “middleware,” as they provide a “reusable and
expandable set of services and functions, commonly needed
by many applications to function well in a networked envi-
ronment” [1].

The importance of intermediary systems is becoming
evident with the expansion of the Web and the emer-
gence of mobile and thin clients as alternative devices for
Web access. Furthermore, intermediaries represent a use-
ful abstraction for designing, developing, analyzing and
comparing the emerging software infrastructures for “next-
generation” Web services, which provide personalization,
customization, localization, and support ubiquitous access
from various terminal devices over different physical media
and protocols.

In this paper, we examine intermediaries for Internet and
the World-Wide Web, going beyond “traditional” systems
with minimal functionality and very wide adoption, i.e.,
proxy servers for the WWW like Harvest and Squid. We
present an overview of characteristic intermediary systems
introduced to cope with end-user information overloading,
support for mobile Web access, personalization, and in-
frastructural support for ubiquitous services. Furthermore,
we identify families of parameters that can be used in the
classification of current and future systems. Due to lack
of space, we do not examine intermediaries located at the



origin-server or at the client-side. Instead, we focus on in-
termediaries located in the network infrastructure between
the origin server and the client system.

The remaining of this paper is organized as follows:
Section 2 presents “notification systems” on the World-
Wide Web. Section 3 examines the challenges that mo-
bile devices and wireless connections place upon interme-
diary systems, and discusses emerging intermediary infras-
tructures for ubiquitous Internet services, which incorporate
ideas and approaches from proxy caches, notification sys-
tems, and wireless intermediaries. In Section 4 we present
a taxonomy of intermediary systems and classify character-
istic systems accordingly. We conclude in Section 5.

2 Notification Systems

Notification systems are intermediaries that monitor
changes in information sources on behalf of subscribed
users. Whenever an update in the content of a monitored
source is observed, the notification service evaluates the rel-
evance of this change with respect to stored user profiles,
and notifies accordingly interested subscribers.

One of the first examples of an intermediary notification
system for Internet is SIFT, the Stanford Information Filter-
ing Tool (SIFT) [10]. SIFT has been developed to provide
large-scale information dissemination services to users that
subscribe their interests to SIFT servers. At subscription,
a user provides the system with an information-retrieval-
style profile and additional parameters that declare the de-
sired frequency of updates and expected amount of infor-
mation to be received. SIFT employs the NNTP protocol to
collect news articles published over USENET News. Col-
lected content is indexed and filtered according to profiles
registered in a SIFT database. Based on filtering results,
SIFT produces notifications, which are delivered to inter-
ested subscribers via email.

Another example of a notification system for WWW
resources is AIDE, the AT&T Internet Difference Engine.
AIDE was designed to archive and handle multiple versions
of changing WWW resources [6]. AIDE supports recursive
tracking and differencing of Web pages and their descen-
dants. Special emphasis is placed on the graphical viewing
of changes taking place between subsequent versions.

AIDE is comprised of a centralized notification server,
a version archive and a difference engine to find and dis-
play changes of pages on the WWW. Subscribers register in
AIDE the list of URLs they wish to track, and a few param-
eters configuring the degree of desired notification. Alerts
about changes in tracked pages reach the users via email;
additional access is provided via the Web.

Both SIFT and AIDE are “server-based” and centralized
tracking tools, since they rely on monitoring software run-
ning on a centralized server and not on a user’s machine.

An approach for building decentralized, distributed in-
termediaries has been explored with the Financial Informa-
tion Gathering Infrastructure (FIGI), which is a notifica-
tion system that retrieves, caches, filters and serves financial
data [4].

Similarly to SIFT [10], a FIGI user profile is a set of
long-term, continuously evaluated queries. These queries
may include typical queries to Web databases, HTTP re-
quests for World-Wide Web resources, access to general-
purpose Search Engines or Subject Cataloging Sites, sub-
scription to Usenet News, etc.

3 Intermediaries for Mobility and Ubiquity

As PDAs, thin clients, mobile phones and the like be-
come more popular, the heterogeneity of client devices and
the capacity mismatch between clients and servers are ex-
pected to grow. To cope with these trends, software infras-
tructures for Internet services have to: (a) Support seam-
less access from a variety devices; (b) Customize content to
adapt to different terminal devices. (c) Support both syn-
chronous (on-demand) and asynchronous modes of interac-
tion with users, thus coping with frequent disconnections of
wireless connections and user mobility. (d) Optimize the
amount of useful content that reaches users through client
devices with limited resources and restricted interfaces, by
enabling service personalization, localization and filtering
of information. (e) Guarantee high availability and robust-
ness, as well as incremental performance and capacity scal-
ability with an expanding user base. Clearly, these require-
ments cannot be met by “traditional” proxy infrastructures.

A number of projects have addressed related issues of
wireless connectivity by deploying simple proxy-agents on
the wireline network and/or the mobile hosts. Such agents
mediate between origin servers and mobile applications, op-
timizing communication, dealing with disconnections, etc.
A characteristic example of this approach is IBM’s Web-
Express [8]. WebExpress is a client/intercept-based system
that optimizes Web browsing on resource-poor clients con-
nected over wireless connections, running a stripped-down
version of the HTTP/1.0 protocol optimized for wireless
communication. Both agents provide caching of content,
and run a simple differencing protocol between the client-
side and the server-side cache to optimize the provision of
dynamic content.

Performance scalability problems are expected to grow
with the wide-spread of Internet use. Service infrastructures
will have to accommodate millions of simultaneous end-
users connecting from a large heterogeneity of end-user de-
vices and resulting to highly bursty workloads. At the same
time, service infrastructures are required to sustain a very
high throughput of service requests, support ubiquitous ac-
cess through different client-terminals, exhibit 24x7 avail-



ability and robustness, be scalable in terms of capacity and
performance. These requirements suggest the shift of com-
putation, storage and complexity from the mobile devices
and mobile support-stations into the networking infrastruc-
ture, in order to achieve performance scalability, better shar-
ing of resources, higher cost efficiency and a streamlining
of new service provision [3].

Such an approach would result to the deployment
throughout the network of distributed, programmable and
possibly mobile intermediary servers, mediating between
primary information sources and various client systems. In
this section we describe a number of systems seeking to
comply with these characteristics.

WBI: A programmable framework for building various
intermediary services is the Web Browser Intelligence or
WeB Intermediaries (WBI) by IBM Almaden [2]. WBI is
a programmable proxy server designed for the development
and deployment of intermediary applications. The design
of WBI is based on the notion of “information streams” that
convey data from information providers (e.g., a Web server)
to information consumers (e.g., a Web browser), and can be
classified into unidirectional and bidirectional messages or
transaction streams [2].

WBI provides an approach to develop intermediaries for
the unidirectional transaction streams of the WWW. To this
end, it provides five basic building blocks: request editors,
generators, document editors, monitors and autonomous
functions [2]. Request editors receive and modify requests
before forwarding them towards their destination. Gener-
ators are abstractions of information sources that produce
documents in response to requests. Editors receive and
modify responses before passing them down to their des-
tination. Monitors observe transactions without interfer-
ing. Autonomous functions run independently of informa-
tion processing transactions and perform background tasks.

These blocks are called collectively MEG’s (Moni-
tor/Editor/Generator) and can be assembled together into
WBI plugins, which are used to construct data paths that
transform information flowing from origin servers to users
and implement different application scenarios. WBI con-
structs data paths dynamically, using a rule-based approach
that determines which MEGs must be invoked and in what
sequence.

iMobile: Building mobile services from proxy compo-
nents is the main goal of the iMobile project of AT&T Re-
search [9]. The iMobile proxy maintains user and device
profiles, accesses and processes Internet resources on be-
half of the user, keeps track of user interaction and performs
content transformations according to device and user pro-
files. The architecture of iMobile is established upon the
infrastructure of iProxy, a programmable proxy server de-
signed to host agents and personalized services developed
in Java. iMobile consists of three main abstractions: de-

vlets, infolets and applets.
A devlet is an agent-abstraction for supporting the provi-

sion of iMobile services to different types of mobile devices
connected through various access networks. The infolet ab-
straction provides a common way of expressing the inter-
action between the iMobile server and various information
sources or information spaces (in iMobile terminology) at a
level higher than the HTTP protocol and the URI specifica-
tion (JDBC and ODBC, X10, IMAP, etc.). Finally, an applet
is a module that processes and aggregates content retrieved
by different sources and relays results to various destination
devices.

At the core of an iMobile server resides the “let engine,”
which registers all devlets, infolets and applets, receives
commands from devlets, forwards them to the right infolet
or applet, transcodes the result to an appropriate terminal-
device format and forwards it to the terminal device via the
proper devlet.

TACC and Ninja: TACC is a general model for interme-
diaries, that provide transformation, aggregation, caching
and customization of content [3]. TACC was proposed in
the context of the BARWAN project at UC/Berkeley. The
transformation functionality deals with various changes
done by the proxy to the content of a single data object, to
achieve filtering, format conversion and compression. Ag-
gregation enables the collection of data from different ori-
gin servers, and the combination thereof in a pre-specified
way that adds value to the collected information. Caching
provided by TACC allows for the caching of original In-
ternet content, post-transformation data, aggregated infor-
mation and intermediate results. Finally, customization is
achieved via the parameterization of services according to
user preferences.

An evolution of the TACC model is provided in the con-
text of the Ninja project from UC/Berkeley [7]. This project
seeks to develop a robust infrastructure for Internet-scale
systems and services in Java. The architecture of Ninja
consists of bases, active proxies, units and paths. Bases
are scalable platforms designed to host Internet services.
They consist of a programming model and I/O substrate de-
signed to provide high-concurrency, robustness, and trans-
parent distribution of data to cluster-nodes. Moreover, they
include a cluster-based execution environment (vSpace) that
provides facilities for service component replication, load-
balancing and fault-tolerance [7]. The programming model
of Ninja consists of four design patterns that service pro-
grammers can use to compose different stages of a single
service: wrap, pipeline, combine and replicate [7]. Ac-
tive proxies perform data distillation, protocol adaptation,
caching, encryption, etc. Examples of active proxies in-
clude wireless base-stations, network gateways, firewalls,
and caching proxies. In Ninja terminology, a path is a flow
of typed data through multiple proxies across a wide-area



network; each proxy performs transformational operations
to adapt the data into a form acceptable by the next ser-
vice or device along the path. Similarly to WBI plugins,
Ninja-paths can be established dynamically. Finally, units
are abstractions for the client devices attached to the Ninja
infrastructure, which range from PC’s and laptops to mobile
devices, sensors and actuators.

eRACE: The extensible Retrieval, Annotation and
Caching Engine (eRACE) is a middleware infrastructure
designed to support the development and deployment of
intermediaries on Internet [5]. eRACE is a modular, pro-
grammable and distributed proxy infrastructure that collects
information from heterogeneous Internet sources and pro-
tocols according to XML-encoded eRACE profiles, regis-
tered within the infrastructure, and end-user requests. Col-
lected information is stored in a software cache for further
processing, personalized dissemination to subscribed users,
and wide-area dissemination on the wireline or wireless In-
ternet.

eRACE supports personalization by managing personal
profiles representing the interests of individual users.
Furthermore, its structure allows the easy customization
of service provision according to parameters, such as
information-access models (pull or push), client-proxy
communication (wireline or wireless; email, HTTP, WAP),
and client-device capabilities (PC, PDA, mobile phone, thin
clients). Ubiquitous service-provision is supported by eR-
ACE thanks to the decoupling of content publishing and
distribution from information retrieval, storage and filter-
ing. The eRACE infrastructure can also incorporate easily
mechanisms for providing subscribed users with differenti-
ated service-levels at the middleware level.

eRACE is organized as a two-tier architecture. The
first tier includes modules that manage services provided to
users: the Service Manager, Content-Distribution Agents,
and Personal Information Roadmap (PIR) Servlets. The
second tier of eRACE consists of a number of protocol-
specific Agent-Proxies like WebRACE, mailRACE, news-
RACE and dbRACE that retrieve and cache information
from the WWW, POP3 email-accounts, USENET NNTP-
news, and Web-database queries respectively.

At the core of the second tier lies WebRACE, the
Agent-Proxy that deals with information sources on the
WWW, accessible through the HTTP protocols (HTTP/1.0,
HTTP/1.1). WebRACE is developed in Java and consists of
a Distributed Crawler [5], an Object Cache storing multi-
ple versions of retrieved resources, and an Annotation En-
gine that indexes collected resources, executes user-queries,
and produces “user alerts,” encoded in XML. Other prox-
ies have the same general architecture with WebRACE, dif-
fering only in the implementation of their protocol-specific
proxy engines.

4 A Taxonomy of Intermediaries

In the previous sections, we presented an overview of
typical intermediary systems developed to provide vari-
ous kinds of Web services over fixed and wireless connec-
tions. Besides their differences, all these systems exhibit
many common features, which can be analyzed along three
main axes: (i) The architecte of the intermediary; (ii) The
communication of the intermediary with clients and origin
servers; (iii) The functionality provided by the intermedi-
ary over and above simple client proxying. Classification of
intermediaries along these three axes can be refined further
according to a set of characteristics specifying these axes
in more detail. These traits can be taken into consideration
when classifying existing and emerging systems. Below, we
examine the particular features used to describe and classify
different intermediaries.

Architecture: An important aspect that characterizes
the structure of an intermediary system is whether it is com-
posed of a “centralized” software module running on one
host, or of a number of distributed, software modules resid-
ing at different hosts and communicating via message ex-
changes, distributed events, or shared memory. Distributed
design has obvious advantages as it supports load distribu-
tion to multiple processors, scalability of performance, and
improves system robustness and availability. Another char-
acteristic of the structure of an intermediary system is the
location of its software modules, which can reside in front
of origin servers, in intermediate hosts residing on the net-
work, between origin servers and clients, and on the client
side. Finally, another aspect that characterizes the archi-
tecture of recent intermediary systems is their support for
configurability and programmability. This is necessary for
using intermediaries as an infrastructure for deploying var-
ious services. Programmability can be provided at differ-
ent levels of abstraction and flexibility: (i) Through con-
figuration parameters, which are defined in the information
architecture of an intermediary system and guide the infor-
mation retrieval, transformation and dissemination that the
system makes. Different configurations can result to new
services provided via the intermediary. (ii) With the em-
ployment of generic middleware platforms, such as Jini and
mobile agents, which provide the substratum for extend-
ing intermediary systems. (iii) Through API’s, software li-
braries and design patterns developed for programming new
services in the intermediary’s context [7]. (iv) With com-
ponents that can be used as building blocks according to
a higher-level programming model, combined in different
ways and extended to define new services [2]. (v) With dif-
ferent combinations of the options described above.

Communication features: Another important issue in
examining different intermediary systems is the way they
interact with origin servers and client systems. Different



Squid WebExpress SIFT AIDE WBI TACC eRACE

Architecture
Structure centralized distr. centr. centr. distr. distr. distr.
Location network network netw. netw. netw. network network

client client, server server
Programmability

� � �

Communication
Proxy-Server HTTP HTTP NNTP HTTP HTTP HTTP HTTP, NNTP
Protocol SMTP
Client-Proxy HTTP “Reduced” SMTP HTTP HTTP wireless HTTP, SMTP
Protocol HTTP HTTP SMTP protocols GMS/SMS
Medium wireline wireless wireline wireline wireline wireless wireline

wireless wireline wireless
Access Model pull pull pull/push pull/push pull/push pull pull/push
Timing synch. synch. asynch. asynch. synch. synch. asynch.

asynch. synch.
Functionality

Customization
� � �

Filtering
� � � �

Annotation
� � � �

Transcoding
� � � �

Aggregation
� � � � �

Caching
� � � � � � �

Crawling support
� �

Versioned Caching
� �

Table 1. Important Features of Intermediary Systems.

interaction approaches can be characterized according to
the suite of supported application-level communication pro-
tocols and the medium employed to carry the interaction
(wireline or wireless). Most intermediary servers on the
Web “speak” the HTTP protocol and connect to Web servers
and download information. Given, however, the existence
of a variety of other information sources on Internet (email-
lists, newsgroups, Web databases, WML sites), it can be
useful for an intermediary system to support other popular
application-level protocols, such as SMTP, IMAP, NNTP,
WAP, and to have an extensible architecture that could eas-
ily incorporate new protocols [5]. The support for a wider
variety of protocols is necessary in intermediary systems
seeking to provide services to mobile clients, which receive
information from the network typically through protocols
streamlined for low-resource devices and wireless connec-
tivity. Therefore, some intermediaries implement custom-
ary protocols for communication with particular mobile ter-
minals [3], customize existing application-level protocols
according to the requirements of the wireless channel [8],
or interface with modules that “speak” wireless protocols
(such as WAP/GSM, SMS/GSM), customizing their content
accordingly [7].

The interaction between an intermediary and its clients
and servers can be characterized further by the access model
(push or pull) and the timing of interaction (on-demand
or asynchronous). Interaction on the WWW is essentially
pull-based. A number of research and commercial sys-

tems, however, have investigated the advantages of push-
based approaches in wide-area networks. Most intermedi-
aries work as user-agents, being constantly connected on the
fixed network, collecting and filtering information on behalf
of users. Therefore, intelligent content-push from interme-
diaries to their users can be combined with on-demand con-
tent provision, employing various protocols enabling infor-
mation push, such as SMS/GSM and Java RMI over TCP/IP.

Proxy servers and transcoding intermediaries typically
perform their intermediation activities in a synchronous (on
demand) manner: the intermediary is activated upon receipt
of a user request, interacts with origin servers and returns a
reply “synchronously,” while the user remains connected to
the system. There is also a large number of “asynchronous”
intermediaries, which perform operations on behalf of users
on a longer-term basis, or perform complicated operations
on-demand, providing users with a result at a later time.

Functionality: Finaly, different intermediaries can be
classified according to the functionality they provide. A
number of important intermediary functions have been
identified in the literature [7]: customization, filtering,
annotation, transcoding, aggregation, caching, versioning,
etc. Customization refers to the restructuring of content-
presentation according to end-user preferences, context, lo-
cation, etc. Filtering is defined as the pruning of the col-
lected information according to the “semantic” interests of
individual end-users, before dissemination. Annotation is
the processing of collected and filtered content, in order



to provide users with additional, useful meta-information,
such as summaries, keywords, highlights, etc. Transcod-
ing is the transformation of the content from one format
to another, to make it deliverable to terminal devices that
support different formats or to optimize its transportation
via wireless channels. Aggregation means the capability
to integrate content from multiple origin servers into a sin-
gle new service. Caching refers to the incorporation of a
software-cache in an intermediary, in order to store part
of its information flow and enhance information process-
ing and sharing of intermediary resources among different
end-users. Caching can be extended to versioned caching,
so as to maintain multiple versions of an information re-
source, even after its expiration at the origin server [6].
Last, but not least, a functionality that will be considered
commonplace in emerging and future intermediary systems,
is that of crawlers. The importance of crawlers is increas-
ing with the tremendous increase of origin servers and the
need to achieve resource sharing, cost efficiency and high-
performance while reaping content from the Web on behalf
of large user communities [5].

A detailed classification of intermediary systems de-
scribed earlier is given in Table 1.

5 Conclusions

The archetypal client-server model of the Web is being
sumsumed by intermediaries that intervene between origin
servers and client systems, as information flows from one
end to the other during a simple Web interaction. The com-
mon goal of intermediaries is to improve the quality of end-
user’s Web experience by improving the performance of
Web requests, by coping with information overloading, and
by supporting seamless access to Web services via differ-
ent terminal devices and physical connections. Their inter-
vention ranges from very simple chores, like relaying re-
quests and replies and transcoding content-formats, to more
complicated tasks such as caching, filtering, personaliza-
tion, and crawling. Intermediaries represent a useful ab-
straction for designing, developing, analyzing and compar-
ing emerging software infrastructures for “next-generation”
Web services.

In this paper we presented an overview of a wide range
of systems that can be described as intermediaries, classi-
fying them in a number of broad categories according to
their basic functionality: Web proxies, notification systems,
wireless-Web proxies, infrastructural intermediaries. We
examined the requirements arising from the need to support
personalization, mobility and ubiquity under high loads.
We identified and refined a set of important properties and
characteristics, which can be used for: (i) the classification
of existing systems and the analysis of their capabilities;
(ii) the comparative study of different systems; (iii) the de-
sign of new intermediary systems. Based on this set of prop-

erties, we introduced a detailed taxonomy of characteristic
intermediary systems (Table 1), identifying and investigat-
ing important features. From this taxonomy, it becomes
evident that more recent systems typically consist of dis-
tributed software modules, which support a wider variety
of client devices and protocols. Furthermore, that emerging
intermediary systems have infrastructural characteristics as
they provide abstractions and modules for the development
and deployment of new applications and services.

References

[1] R. Aiken, M. Carey, B. Carpenter, I. Foster, C. Lynch,
J. Mambreti, R. Moore, J. Strasnner, and B. Teitelbaum.
Network Policy and Services: A Report of a Workshop
on Middleware. Technical Report RFC 2768, IETF, 2000.
http://www.ietf.org/rfc/rfc2768.txt.

[2] R. Barrett and P. Maglio. Intermediaries: New Places for
Producing and Manipulating Web Content. Computer Net-
works and ISDN Systems, 30(1–7):509–518, April 1998.

[3] E. Brewer, R. Katz, E. Amir, H. Balakrishnan, Y. Chawathe,
A. Fox, S. Gribble, T. Hodes, G. Nguyen, V. Padmanabhan,
M. Stemm, S. Seshan, and T. Henderson. A Network Ar-
chitecture for Heterogeneous Mobile Computing. IEEE Per-
sonal Communications Magazine, 5(5):8–24, October 1998.

[4] M. Dikaiakos and D. Gunopulos. FIGI: The Architecture
of an Internet-based Financial Information Gathering Infras-
tructure. In Proceedings of the International Workshop on
Advanced Issues of E-Commerce and Web-based Informa-
tion Systems, pages 91–94. IEEE-Computer Society, April
1999.

[5] M. Dikaiakos and D. Zeinalipour-Yazti. A Distributed Mid-
dleware Infrastructure for Personalized Services. Technical
Report TR-01-4, Department of Computer Science, Univer-
sity of Cyprus, December 2001.

[6] F. Douglis, T. Ball, Y.-F. Chen, and E. Koutsofios. The AT&T
Internet Difference Engine: Tracking and Viewing Changes
on the Web. World Wide Web, 1(1):27–44, January 1998.

[7] S. Gribble, M. Welsh, R. von Behren, E. Brewer, D. Culler,
N. Borisov, S. Czerwinski, R. Gummadi, J. Hill, A. Joseph,
R.H. Katz, Z.M. Mao, S. Ross, and B. Zhao. The Ninja Ar-
chitecture for Robust Internet-scale Systems and Services.
Computer Networks, 35:473–497, 2001.

[8] B.C. Housel, G. Samaras, and D.B. Lindquist. WebEx-
press: A Client/Intercept Based System for Optimizing Web
Browsing. ACM/Baltzer Journal of Mobile Neworking and
Applications (MONET), 3:419–431, 1998.

[9] H. Rao, Y. Chen, D. Chang, and M. Chen. iMobile: A Proxy-
based Platform for Mobile Services. In The First ACM Work-
shop on Wireless Mobile Internet (WMI 2001), 2001.

[10] T. W. Yan and H. Garcia-Molina. SIFT - A Tool for Wide-
Area Information Dissemination. In Proceedings of the 1995
USENIX Technical Conference, pages 177–186, 1995.


