The Emerald Research Register for this journal is available at a The current issue and full text archive of this journal is available at

www.emeraldinsight.com/researchregister a) www.emeraldinsight.com/0143-5124.htm
s Building a distributed digital
library for natural disasters
metadata with grid services and
230

Emerald

Library Management

Vol. 26 No. 4/5, 2005

pp. 230-245

© Emerald Group Publishing Limited
0143-5124

DOI 10.1108/01435120510596080

RDF

Wei Xing and Marios D. Dikaiakos
Department of Computer Science, University of Cyprus, Nicosia, Cyprus

Hua Yang

Xian Institute of Post and Telecommunication, Nicosia, Cyprus, and

Angelos Sphyris and George Eftichidis
Algosystems SA, Kalithea, Greece

Abstract

Purpose — This paper aims to describe the main challenges of identifying and accessing useful
information and knowledge about natural hazards and disasters results. The paper presents a
grid-based digital library system designed to address the challenges.

Design/methodology/approach — The need to organize and publish metadata about European
research results in the field of natural disasters has been met with the help of two innovative
technologies: the Open Grid Service Architecture (OGSA) and the Resource Description Framework
(RDF). OGSA provides a common platform for sharing distributed metadata securely. RDF facilitates
the creation and exchange of metadata.

Findings — Using grid technology allows the RDF metadata of European research results in the field
of natural disasters to be shared securely and effectively in a heterogeneous network environment.

Originality/value — A metadata approach is proposed for the extraction of the metadata, and their
distribution to third parties in batch, and their sharing with other applications can be a quickly
process. Furthermore, a method is set out to describe metadata in a common and open format, which
can become a widely accepted standard; the existence of a common standard enables the metadata
storage in different platforms while supporting the capability of distributed queries across different
metadata databases, the integration of metadata extracted from different sources, etc. It can be used
for the general-purpose search engines.

Keywords Digital libraries, Data analysis, Natural disasters

Paper type Research paper

Introduction

Research in natural hazards focuses on unraveling and understanding processes,
comprehensive risk assessment, forecasting and risk management and mitigation.
Advances have been made in seismic research, forest fires, landslides, floods, volcanic
hazards, avalanches and technological hazards, particularly with the development of
improved models and technologies for hazard forecasting, risk assessment and
mitigation. Research projects focusing on natural hazards and disasters produce
results in the form of explicit or tacit knowledge represented by reports, project
deliverables, data-sets derived from field work, interesting training and dissemination
material, etc. These artifacts are usually published and described on web sites

www.emeraldinsight.com/researchregister
www.emeraldinsight.com/0143-5124.htm

maintained by project partners during the duration of the respective projects. Natural disasters

Following project completion, however, project teams dissolve and web-site
maintenance and support gradually fade out. Hence, general-purpose search engines
are used to search for past-project results. Nevertheless, search-engine query results
provide large numbers of unrelated links. Furthermore, hyperlinks pointing to
potentially useful material do not come with references or additional links to adequate
information describing the “value” of identified resources. Consequently, identifying
and accessing useful information and knowledge becomes very difficult. Effectively,
valuable knowledge is lost and it is practically impossible to find and take advantage
of it.

To address this problem, the Directorate General for Research of the European
Union undertook the initiative to establish the European Mediterranean Disaster
Information Network (EU-MEDIN, 2003). EU-MEDIN’s goal is to foster coordinated
and increased access to data and expert know-how before, during, and after a disaster
strikes. The availability of reliable and timely information could contribute to our
knowledge for reducing impacts of hazards and risks and bring about improved
disaster preparedness in Europe in the near future. As the first step for the deployment
of EU-MEDIN, the EU commissioned Algosystems SA with the development of a
thematic web portal to support the storage and retrieval of metadata pertaining to
results of research in natural disasters. Project-related metadata can be inserted via a
Web interface to a back-end database (EU-MEDIN, 2003). Interested researchers can
use the EU-MEDIN portal to query the database and search for project-artifacts.

This approach, however, encodes and maintains the metadata in the
platform-specific format of the particular database system chosen for the
development of the EU-MEDIN portal. Therefore, the extraction of the metadata,
their distribution to third parties in batch, and their sharing with other applications can
be a lengthy process. Furthermore, there is a need to describe metadata in a common
and open format, which can become a widely accepted standard; the existence of a
common standard enables the metadata storage in different platforms while
supporting the capability of distributed queries across different metadata databases,
the integration of metadata extracted from different sources, etc.

In this paper, we present gDisDL, a grid-based digital library system designed to
address some of the problems mentioned above. Our approach comprises:

* A schema for describing project-related metadata in a platform-independent
form, using the Resource Description Framework (RDF). RDF is a general
framework for describing metadata of Internet resources and for processing this
metadata; it is a standard of World Wide Web Consortium (W3C). RDF supports
the interoperability between applications that exchange machine-understandable
information on the web.

+ A digital library system enabling the collection and storage of RDF-encoded
metadata in distributed repositories, and the retrieval thereof from remote sites.
This library is implemented as a Grid-service architecture comprised of a set of
grid services, which allow the storage, management, and query of RDF metadata
in a secure and distributed manner. To develop the library we use the Globus
Toolkit 3 (Sotomayor, 2003) for programming grid services and the Jena toolkit
(JENA, 2003) for handling RDF data.

metadata

231

LM
26,4/5

232

* A set of graphical-user interfaces developed in Java to enable authorized
end-users to create RDF metadata for natural-disaster research artifacts and to
conduct keyword-based searches in RDF repositories.

The remainder of this paper is organized as follows. In the second section, we give a
short overview of the technologies that we adopted to design and build gDisDL: in
particular, the RDF, the Jena RDF toolkit, and the Open Grid Service Architecture
(OGSA). In the third section, we present an overview of the EU-MEDIN RDF schema.
The design challenges and architecture of the gDisDL system are presented in the
fourth section. In the fifth section, we give an overview of some interesting
implementation issues. The final section concludes our paper.

Background

RDF

RDF is a language used mainly for representing information about resources on the
world wide web (Manola and Miller, 2003). In particular, it is intended for representing
metadata about documents or other entities (e.g, web resources, software, publications,
reports, image files etc), such as title, author, modification date, copyright, and
licensing information. Although originally intended to be used on web resources, RDF
is capable of representing information about things that can be identified on the Web,
even when they cannot be directly retrieved from the web (Manola and Miller, 2003).
This capability makes RDF an appropriate metadata schema language for describing
information related to the various results and outcomes of natural-disaster research.
RDF is designed for situations in which information needs to be processed by
applications, rather than only being displayed to people. RDF provides a common
framework for expressing information and can thus be exchanged between
applications without loss of meaning. Since it is a common framework, application
designers can leverage the availability of common RDF parsers and processing tools.
The ability to exchange information between different applications means that the
information can be made available to applications other than those for which it was
originally created. The way, RDF is able to describe various resources (not restricting
the user to the description of web resources) and represent different kinds of
information into one unique data model, makes it a good candidate for our purpose,
since the data that the users will be dealing with, can be of any format or type.

Jena

Jena is a Java toolkit for building Semantic Web applications (JENA, 2003). The Jena
Java RDF API is developed by HP Labs for creating and manipulating RDF metadata.
It comprises:

+ “Another RDF Parser” (ARP), a streaming parser suitable for validating the
syntax of large RDF documents. ARP complies with the latest recommendations
of the RDF Core WG, as well as with standards and recommendations, such as
XML (Bray et al., 2004), DAML (Connolly et al., 2001), and URI (Berners-Lee et al.,
1998).

+ A persistence subsystem, which provides persistence for RDF metadata through
the use of a back-end database engine. It supports RDQL queries.

+ The RDF query language (RDQL), which is an implementation of an SQL-like Natural disasters

query language for RDF. Jena generates RDQL queries dynamically and
executes RDQL queries over RDF data stored in the relational persistence store.

* A reasoning subsystem, which includes a generic rule-based inference engine,
together with configured rule sets for RDFS and for the OWL/Lite
(Patel-Schneider et al., 2004).

+ An ontology API, which supports OWL, DAML + OIL and RDFS.

Open Grid Service Architecture

The grid supports the sharing and coordinated use of diverse resources in dynamic,
distributed “virtual organizations” (VOs) (Foster et al, 2001). The Open Grid Services
Architecture (OGSA) is a service-oriented grid computing architecture, which is an
extensible set of grid services that may be aggregated in various ways to meet the
needs of VOs (Foster et al., 2002). OGSA defines uniform grid service semantics and
standard mechanisms for creating, naming, and discovering grid services. Web service
technologies, such as XML, SOAP, WSDL, UDD], etc., are adopted to build up the grid
services infrastructure. A grid service is a web service that provides a set of
well-defined interfaces and follows specific conventions (Foster ef al, 2001). The
interface and behaviors of all grid services are described by the Grid Web Service
Description Language (GWSDL) (Sotomayor, 2003). Furthermore, the Open Grid
Service Infrastructure (OGSI) gives a formal and technical specification of the Grid
service, and the Globus Toolkit 3 (GT3) offers a programming environment for
implementing Grid services (Tuecke, 2002).

Metadata elicitation

As mentioned earlier, the goal of the gDisDL system is to support the storage and
retrieval of metadata (i.e., structured data about data) that pertain to a variety of results
derived from research in natural disasters, such as earthquakes, floods, forest fires,
industrial hazards, landslides, and volcano eruptions. To this end, we need a metadata
schema that would provide a useful, adequate representation of project “resources”
The term “resource” here is used to collectively refer to results of projects, as well as
projects themselves. Furthermore, we need to define this schema in a common and
open format, which will:

+ promote the standardization of natural disaster metadata, while at the same time
allowing future extensions;

+ enable the storage of metadata in different platforms according to this common,
standard schema; and

+ support the interoperability of different metadata repositories; in particular the
specification of queries and the execution thereof upon different metadata
databases.

To develop such as schema, the Coordinator and Steering-group members of the
EU-MEDIN project (EU-MEDIN, 2003) undertook the effort of reviewing several
projects in natural-disaster research with the aim of describing each type of resource
by means of an EU-MEDIN metadata schema. One of the first steps in that effort was

metadata

233

LM
26,4/5

234

the identification of the entire set of possible types of results that could arise during the
course of a project, and for which it would be interesting to create respective metadata
records in a database. Currently, the following types of resource are included in the
EU-MEDIN metadata collection: project, report/deliverable, journal paper, other
scientific paper, student dissertation, press article, media presentation, book, event,
hardware, software, web site, spatial digital dataset, experimental dataset (laboratory),
experimental dataset (field), and unclassified activity.

An important element of this schema is the set of subjects of a resource. The
subjects of a resource provide a classification for the resource, which is understandable
quickly and easily, in very much the same way as the words drama/historical would
indicate the nature of a film or a TV program in a printed listing. For each and every
resource in the database, a value is stored for its set of subjects. The subjects of a
resource are in effect, two-dimensional, that is, they are composed of two values. The
first of these is termed “primary subject” whereas the second is termed “secondary
subject”. In this setting, the primary subject indicates a type of risk with which the
resource is associated (e.g. volcanoes, earthquakes), whereas the secondary subject
indicates an aspect of such a risk. The possible values for the primary and secondary
subjects were derived through a consensus process involving the EU-MEDIN project
Steering Group and officers at the Directorate General of Research of the European
Commission. The primary subjects of a resource are drawn from the following set of
values: “Forest Fires”, “Desertification”, “Droughts”, “Floods”, “Storms”,
“Avalanches”, “Landslides”, “Earthquakes”, “Seismic Engineering”, “Volcanoes”,
“Industrial Hazards”, “Other Risk”. The secondary subjects of a resource are drawn
from the set: “Hazard Assessment”, “Forecasting and Monitoring”, “Modeling and
GIS”, “Earth Observation/RS”, “Vulnerability Assessment”, “Risk Analysis and
Mapping”, “Damage Assessment/Restoration”, “Management/Mitigation”, “Crisis
Management/Intervention”, and “Other Aspect”. The primary and secondary
subjects value for a resource may be any series of ordered pairs of values drawn
from the above two sets. If a user selects a pair containing “Other Risk” or “Other
Aspect,” then a mechanism should be provided for them to specify just what this
“other” selection signifies.

We adopted the RDF Schema (Brickley and Guha, 2000) to describe the identified set
of resources classes, properties, and values for the EU-MEDIN resources. Following the
classification of distinct resources identified in the EU-MEDIN project, we introduced
an RDF Schema with 16 classes (“EC project”, “Report/deliverable”, “Journal paper”,
etc), and defined their properties and the relationships between class instances
accordingly. The resulting schema is named EU-MEDIN RDF schema and represents
our proposed metadata standard for natural-disaster research resources. This schema
was based on two already existing schemas that have been established through other
initiatives: the Dublin Core Metadata Element Set (DCMES) (Dublin Core, 2003) and the
Federal Geographic Data Commission Content Standard for Digital Geospatial
Metadata (FGDC-CSDGM). The EU-MEDIN schema relies more on DCMES than it
does on FGDC-CSDGM. Figure 1 shows the class hierarchy of the EU-MEDIN RDF
schema.

Below, we give an example extracted from the EU-MEDIN RDF schema. This
excerpt of our schema includes two classes, Press article, and EC Project, and three
properties, author, belongTo and name. Using these classes and properties, we can

Natural disasters
metadata

disdl:projectcontractnumber
disdl:projectacronyms

disdl:projecttask

rdfs:Class

disdl:Book

disdl:Hardware

disdl:StudentThesis
disdl:PressArticle

235

disdl:ReportDel
iverable

disdl:Dataset

disdl:belongTo
disdl:author

disdl:graphicalRR

disdl:accessconstrains

disdl:availability

disdl:Project

s
disdl:ECProject disdl:FieldExperiment
disdl:LaboratoryExperiment

disdl:OtherProject

Figure 1.
Class hierarchy for the
EU-MEDIN RDF schema

s = rdfs:subClassOf
t = rdfitype

describe the following piece of knowledge in RDF: “John Smith wrote a Paper, which
belongs to FloodSim project. The paper’s title is ‘Flood Simulation on the Grid™.
Figure 2 shows part of the schema definition and the RDF description of the example,
presented as an RDF graph. The RDF data can also be represented and stored
physically as a set of RDF triples in N3 (Berners-Lee, 2000):
@prefix<http://www.eu-medin.com/publication/floodG# >

@prefix dlib:<http://www.eu-medin.com/2003/02/schema# >
@prefix rdf:<http://www.w3.0rg/1999/02/22-rdf-syntax-ns# >

/
/ h
/ \

‘ title ‘ ‘ belongTo ‘ L ECProject

‘ author [PressArticle
\ S y 4
RDF EU-MEDIN Schema

nith e
: —

e
—___ http:/lwww.eumedin.com/people/JSmith
L T e
g LB b
o

. N\
/ \

http:l/www.eumedin.coleOOSIdQ[schema#author B
A http://yyww:e[jfﬁédin.com/2003/02/schema#belongTo

\

- =
http:IIWWV\;.‘é'[jﬁ1edir1.,gqm/2003/02/schema#title Fi gure 2
. Example of an EU-MEDIN
RDF schema

Flood Simulation on the Grid

LM
26,4/5

236

Figure 3.
The architecture of the
¢DisDL system

:floodG rdf:type dlib:publication,

:floodG dlib:author "JSmith";

:floodG dlib:belongTo

< http://www.eumedin.com/project/FloodSim > ;

:floodG dlib:title "Flood Simulation on the Grid".

gDisDL system design
gDisDL system is a grid service-oriented system designed to collect, process, store, and
query the RDF metadata encoded according to the RDF EU-MEDIN schema. As shown
in Figure 3, the gDisDL system is comprised of a number of geographically distributed
2DisDL nodes and a UDDI registry. Each node consists of a Data Aggregator and a
Searcher. The Data Aggregator collects, validates, and encodes metadata in RDF; the
Searcher is designed for querying RDF metadata. The functions of the components of
the gDisDL system will be provided through two gDisDL grid services: a Data
Aggregator grid service and a Searcher grid service. The UDDI server is used for
publishing and discovering information about the gDisDL grid services (UDDI version
3.02). The Grid Authentication service is a credential service of the Grid Security
Infrastructure (GSI) to protect gDisDL grid services invoking by unauthorized clients
(Foster et al., 1998).

Finally, the Editor and the Searcher GUI are grid service clients for the Data
Aggregator and the Searcher grid services, enabling users to interact easily with
gDisDL through a graphical-user interface.

Design goals
The main design issue of the gDisDL system is that the distributed RDF metadata
should be shared efficiently and securely in an ad-hoc, dynamic basis. To address this

(" Grid VO Grid Security Infrastructure
e g,
| w ~ Grid Authentication ™ f..__
| x/’ Service /| T A Grid node
I
! | 2 (Grid Service)
! SOAP Message/HTTPg 47 RDF
! Z/‘Qj | Apache Tomcat Files
| >
i & * /
| SOAP Message/HTTPg The Searcher i

sixy

(Grid Service) RDF

DataBase

Apache Tomcat

>
" G, w
W%y o
\\ﬂé <
R b Grid node
\ o(§
1
= g S Dat.a Aggn‘etnr
S = (Grid Service) T
£
P %‘ Apache Tomcat
fr— a

3
RDF
DataBase

The Searcher
(Grid Service)

A
sixy

UDDI Server
Apache Tomcat

challenge, we organize the distributed gDisDL nodes and their RDF metadata using the Natural disasters

scalable Virtual Organization (VO) mechanism of the grid (Foster et al, 2001). To this
end, we have designed gDisDL to comply with the Open Grid Service Infrastructure
(OGSI) specifications (Foster et al., 2002).

One design challenge is how to encode and store metadata in RDF. Currently, most
RDF-based systems ask users to feed RDF metadata directly (Alexaki et al, 2001).
Therefore, users have to encode resource metadata into RDF syntax manually, a
process which is inconvenient and difficult. To cope with this problem, we have
designed and implemented the DataAggregator, a component which generates the
RDF syntax automatically and subsequently stores the RDF-encoded metadata in RDF
storage.

Another challenge is the storage and query of RDF metadata. Typically, an RDF
database can be used to store RDF metadata, and an RDF query language can be used
to express queries and execute them on the database. In the EU-MEDIN use-case
scenario, however, most projects do not contribute large bodies of metadata; also,
metadata updates are not very frequent. Therefore, a database system would be an
overly expensive solution for our system requirements. Moreover, we would have to
choose one among several existing RDF databases and query languages
(Karvounarakis et al, 2002), and integrate it with gDisDL. Thus, the system would
depend heavily on the chosen database system. Currently, the default behavior of
gDisDL is to store RDF metadata in plain files. In order to make gDisDL more open and
extensible, however, we have designed the Searcher component as a “query translator”
that processes user requests and generates queries according to the back-end storage
used in each gDisDL site. Thus, the back-end storage system remains transparent to
the user and any RDF database system can be deployed with gDisDL.

Another important design consideration is security. The security of the gDisDL is
mainly concerned with two aspects: one is accessing distributed RDF metadata
securely; another is that the shared RDF metadata should be protected from
unauthorized access. In other words, the RDF metadata sharing of the gDisDL system
should be governed by a set of rules and policies, such as what is shared, who is
allowed to share, and the conditions under which sharing occurs. To address the
security issues, we adopt the Secure Socket Layer (SSL) with the Grid Security
Infrastructure (GSI) credentials in the gDisDL system (Freier, 1996). GSI credentials are
based on X.509 certificates, and the GSI-enabled HTTP protocol (HTTPg) is used as
the transport layer protocol to establish an encrypted connection between gDisDL
clients and services (Housley et al., 2002).

gDisDL components

The Data Aggregator. The Data Aggregator is a grid service that encodes information
about EU-MEDIN resources into RDF. The RDF encoding work is done by creating a
Jena RDF model in built-in memory and inserting the information from the Editor as a
set of triples in Subject, Predicate, Object format using the Jena RDF framework (JENA,
2003). A Jena RDF model is an RDF graph in which RDF triples are represented as
node-arc-node subgraphs. In a subgraph, the nodes are corresponding to the subject
and the object of the triple; whereas the directed arc corresponds to the predicate.

In particular, the Data Aggregator service:

metadata

237

LM
26,4/5

238

+ Gets the information describing an EU-MEDIN resource from the Editor. The
Editor invokes the Data Aggregator service and sends it the resource
information using SOAP messages via HTTPg POST command.

+ Validates the provided information with respect to the EU-MEDIN RDF schema,
taking into account resource classes, class properties, restrictions, and data
types.

+ If the information is deemed valid, the Data Aggregator will generate a unique
URI to identify the resource. The URI contains two parts: one is the location of
the gDisDL system that the user uses (e.g. the domain name); the other is the time
when the RDF metadata was generated.

+ If the data is not valid, the Data Aggregator returns a service fault message to
the Editor, and ends the process.

* The Data Aggregator transforms the validated data together with the created
URI into an RDF Jena model, which is a collection of triples, each consisting of a
subject, a predicate and an object (Klyne and Carroll, 2002). The RDF metadata of
the resource is thus created.

* The RDF metadata is encoded in RDF/XML format and saved in an RDF file.

By default, in a gDisDL node, RDF metadata for the same kind of EU-MEDIN
resources (i.e. resources belonging to the same EU-MEDIN class) are stored into the
same RDF file. For example, all RDF metadata describing journal papers are kept in
one file, all RDF metadata describing data sets are kept in another file, and so on. Thus,
when we look for metadata about journal papers, we can search into local or remote
RDF files dedicated to journal-paper metadata.

The Searcher. The Searcher is a grid service responsible for searching the
distributed metadata and answering queries about the RDF resources. A Searcher grid
service allows a client to query the RDF information held in the Jena models. The query
of the Searcher service is RDF triple-oriented. In other words, an RDF triple pattern
(e.g. {subject(?), predicate(?), object(’)}) will be generated according to the user’s
request; and it is used to match the RDF triples in the Jena model. For example, a
simple user request “Find reports from the CrossGrid project” specifies that the
resource is about a Report whose predicate is projectacronyms and its object is
“CrossGrid”. Therefore, the query triple pattern can be represented as {?x,
disdl:projectacronyms, “CrossGrid”} of the Report RDF resource. The Searcher
executes this query by matching all the RDF triples of the report resource in the RDF
Jena model against the triple pattern, and retrieves a set of matches, which have project
property (“p” = disdl:projectacronyms), and value “CrossGrid” (“o0” = CrossGrid).

As shown in Figure 4, the Searcher may need to search the RDF metadata not only
stored locally (i.e. the RDF metadata is located in the gDisDL node that the Searcher
service belongs to), but also stored remotely (the RDF metadata is stored in another
gDisDL node) in order to answer a query. On purpose of simplicity, the Searcher will
start with searching the RDF metadata that is stored “locally”. After receiving a
request from a client, the Searcher checks the data of the request according to the RDF
Schema, translates it into an RDF triple pattern. Next step, the Searcher will locate the
RDF file that may contain the desired RDF metadata, and upload the RDF metadata
into the Jena model as a set of RDF triples from the RDF file. After that, the Searcher

v(UDDI server
The Searcher GUI| (2) (3)
7 —_—
2 —— —

~

— ~
[~

N — |
L 77— (6) o
ﬁhe Searcher (The Searcher
A (S1) < (S2))
T — . (a)
7 N
() R

2 LY
7 \
AN
Jena Model RDF
files

gDisDL node

Jena Model RDF
files

gDisDL node

can explore all the RDF triples in the model (e.g. the name or URI of the resources and
their properties), compare them according to the RDF triple pattern, and retrieve the
matched RDF metadata. Finally, the client will get the matched RDF metadata from the
Searcher in a SOAP message responding its query in an HTTPg GET option. In the
case that the back-end storage is an RDF database system, the Searcher will “translate”
the user’s request (i.e. the resource type, the property, values of the properties) into a
proper RDF query language format, and then query the RDF database.

If the RDF metadata is not stored locally, the Searcher will need to query the RDF
metadata in a “remote” distributed gDisDL node. In this case, the Searcher service will
be a client to invoke another Searcher grid service in order to search the desired RDF
metadata that is stored there (see Figure 4). In other words, if the desired RDF
metadata can not be found in the “local” gDisDL node, the Searcher will invoke another
Searcher service.

The process of remote search can be described as a series of steps (see also Figure 4):

(1) The Searcher (S1) does not get the requested RDF metadata from the “local”
node. The S1 grid service will act as a “client” to invoke another Searcher grid
service in order to find the desired RDF metadata.

The “client” (i.e. the S1) first queries the UDDI server to find a properSearcher
grid service based on the published GWSDL and SDE information.

S1 invokes another Searcher service (S2) and sends it the query using SOAP
messages via HTTPg POST method.

S2 locates an RDF file that may contain the desired RDF metadata, and then
uploads the RDF metadata as a set of RDF triples into the Jena model from the
RDF file.

S2 searches the RDF metadata in this model.

The RDF metadata will be sent back to S1 in SOAP using HTTPg POST
method.

There are many Searcher services available in the distributed gDisDL nodes whilst the
“client” (e.g. S1) needs to locate another Searcher service. In order to facilitate locating a
“remote” Searcher service, the Searcher service provides information about the RDF
metadata stored in the gDisDL node, such as the types of the gDisDL RDF resources,

Natural disasters
metadata

239

Figure 4.
Diagram describing the
searching process

LM
26,4/5

240

the different predicate index information of the RDF metadata stored in the gDisDL
node (e.g., author index information, project index information). The information
should be well structured and attached to a Searcher service. We adopt Service Data
Elements (SDE) mechanism of the grid service for this purpose (Tuecke, 2002). The
SDE of a grid service is a structured collection of information that is attached to the
grid service. The information contained in the SDE will be published in the UDDI
server and can be queried by the clients of the service. Currently the provided
information is about the types of the gDisDL RDF resources. The structure and the
content of the SDE that is attached to the Searcher grid service is shown below:

1 <rdf:RDF

2 xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-
ns#"

3 xmlns:dc="http://purl.org/dc/elements/1.1/"

4 xmlns:dlib="http://www.eu-medin.org/2003/02/Schema#"
>

5 <rdf:Description rdf:about="http://www.eu-
medin/gDisDL/gDStorel" >

6 <dlib:availability > plain file </dlib:availability >

7 <dlib:availability > RDF database </dlib:availability >
8 <dc:type> plain RDF file </dc:type>

9 <dc:coverage>

10 <rdf:Bag>

11 <rdfli> Project </rdf:li>

12 <rdf:li> JournalPaper </rdf:li>

13 <rdfli> DataSet </rdf:li>

14 <rdfli> Software </rdf:li>

15 <rdf:li> Hardware </rdf:li>

16 </rdf:Bag>

17 </dc:coverage>

18 <dc:type> RDF database </dc:type>

19 <dclanguage> RDQL </dclanguage>

20 </rdf:Description>

21 </rdf:RDF>

As you can see, lines 5 and 6 specify that the back-end storage is available both in plain
RDF files and in the RDF database; lines 10 to 16 describe that in the RDF metadata
there are about five kinds of RDF resources, namely Project, JournalPaper, DataSet,
Software, and Hardware. Line 19 specifies that the query language of the RDF
database is RDQL.

The UDDI Server. The UDDI server of the gDisDL system is a provider-specific
server that is used to publish the information about gDisDL grid services. It is also a
registry of the gDisDL system where all the gDisDL grid service providers should
register their gDisDL Grid service by submitting the description of the gDisDL grid
services, access policy, security policy, and service data elements (SDE). The
information is then published via the internet and a client in turn can use the published
information to discover and invoke a desired gDisDL grid service.

Two key pieces of data are maintained in an entry of the UDDI repository: the
GWSDL file represented as a tModel, which represents the grid-service metadata in
UDD], and the binding information of the service implementation (UDDI version 3.0.2).

A client can find a desired gDisDL grid service by the tModel, and invoke the desired Natural disasters

service by the binding information.

gDisDL GUIs. Two graphical interfaces are designed to facilitate the end user: the
Editor and the GUI Client of the Searcher. The Editor is a GUI client of the Data
Aggregator grid service where a user can input information and data about
EU-MEDIN resources. Similar to the EU-MEDIN portal, it also provides some forms
which can be used to collect information about the EU-MEDIN resources. The user will
manually input the information using the provided forms, and then the Editor will
collect them in XML. The Editor invokes a Data Aggregator grid service, passing the
collected information using SOAP message. By default, we set the “local” Data
Aggregator service to the Editor. In OGSI, a client locates a grid service using its Grid
Service Handle (GSH). The GSH of the “local” Data Aggregator service will thus be
assigned to the Editor by default GSH (Tuecke, 2002).

The Searcher GUI Client of the Searcher grid service is needed for users to input the
parameters of metadata queries and get results (see Figure 5). The GUI allows users to
specify the resource type, the property, values of the properties, etc. The GUI Client
also decodes the RDF query results into human-readable form, and displays it on the
result window (see Figure 5). The “local” Searcher service is also set as a default service
for the Searcher GUL

Implementation
In this section, we provide some details about our gDisDL prototype implementation.

Figure 6 shows the layered architecture of the gDisDL grid services. The grid
gDisDL is implemented within the Open Grid Services Infrastructure (OGSI). Globus
Toolkit 3 and Jena are the main development tools used in our implementation. GT3 is
a software toolkit that can be used to program grid-based applications. It is
implemented in Java following the OGSI specification. GT3 provides several services,
programs, utilities, etc. Jena is a Java API that can be used to create and manipulate
RDF graphs. It is comprised of object classes to represent graphs, resources, properties,
and literals; a graph is called a model and it is represented by the model interface. We
use Jena RDF toolkit for creating, manipulating and querying RDF metadata.

To implement a grid service, the first and most important task is to specify the
interface of the grid service in Grid Web Service Description Language (GWSDL)
(Sotomayor, 2003). Once the interface is correctly defined in GWSDL, implementing the
service using Java and other tools is straightforward. Thus we will focus on describing
how the interface is defined and what kind of operations can be invoked.

Grid Services Container

gDisDL Grid Services
GT3 Services

System-Level Services

‘ OGSI Reference Implementation Grid Security Infrastructure

Web Service Engine

metadata

241

Figure 5.
GUI of gDisDL searcher

LM

rInput Options ~Output Area
26 4/5 Results:
’ e
Press Amicle | ...
Query Property| Title - The database contains it:
Title is: disDL
The Detail Information:
242 The Project Name: CrossGrid
The Author/Editor Name: mdd
Primary subject(s). Awalanches
InputldisDL The Access URL:
Messages:
Here is input string:disDL
Here is results string of Title:
- Output Options Here is input string: disDL
[l Debug Here is results string of Title:
[C] Statements wei
: Here is input string:disDL
. [verbose Here is results string of Title:
Figure 6. disDL
A e fnni mteing AicO
Layered view of the _ [J Graph ey
. . . [Triples EU-METTH EARCH || Bar
¢DisDL grid services i P L
L =

Data Aggregator grid services and interface

The Data Aggregator service processes the collected information and data from the
Editor client, encodes it into RDF format, and saves it as RDF files. The interface of the
DataAggregator grid service is defined in GWSDL, as shown below:

<gwsdl:portType name="DataAggregatorPortType" extends="ogsi:GridService" >
<operation name="retrivelnfo" >

<input message="tns:GetInputMessage"/>

<output message="tns:GetOutputMessage"/>

<fault name="Fault" message="ogsi:FaultMessage"/>
</operation>

<operation name="getRDF" >

<input message="tns:GetRDFInputMessage"/>
<output message="tns:GetRDFOutputMessage"/>
<fault name="Fault" message="ogsi:FaultMessage"/>
</operation >

<operation name="validate" >

<input message="tns:VallnputMessage"/>

<output message="tns:ValOutputMessage"/>

<fault name="Fault" message="ogsi:FaultMessage"/>
</operation>

Operation/PortType. retrievelnfo() is used to get values of the RDF triples from a client;
2etRDF() creates an RDF graph and assigns the values of the triples; validate() checks
and validates the input data according to the syntax of EU-MEDIN RDF metadata;
saveRDF() saves the RDF metadata into a file in RDF/XML syntax.

Searcher grid services and interface

The Searcher grid service is used for receiving and answering user queries about
EU-MEDIN resources. When searching for RDF metadata, the Searcher can either use
the RDF metadata document match() method to search the RDF metadata in an RDF
file, or, alternatively, the search can be conducted upon an RDF database, using a
database-specific plug-in. Currently we have implemented only the first case. The
interface is defined as shown:

<gwsdl:portType name="SearcherPortType" extends="ogsi:GridService" >
<operation name="preprocess" >

<input message="tns:PrelnputMessage"/>

<output message="tns:PreOutputMessage"/>

<fault name="Fault" message="ogsi:FaultMessage"/>
< /operation>

<operation name="searchList" >

<input message="tns:ListInputMessage"/>

<output message="tns:ListOutputMessage"/>

<fault name="Fault" message="ogsi:FaultMessage"/>
</operation>

<operation name="match" >

<input message="tns:MatchInputMessage"/>

<output message="tns:MatchOutputMessage"/>
<fault name="Fault" message="ogsi:FaultMessage"/>
</operation >

<operation name="getStatements" >

<input message="tns:GSInputMessage"/>

<output message="tns:GSOutputMessage"/>

<fault name="Fault" message="ogsi:FaultMessage"/>
</operation>

<operation name="insertStatements" >

<input message="tns:ISInputMessage"/>

<output message="tns:ISOutputMessage"/>

<fault name="Fault" message="ogsi:FaultMessage"/>

Operation/PortType. The preprocess() operation is used for pre-processing user
requests. The searchList() gets the remote RDF metadata information from the UDDI
server. The match() operation is used to match RDF triples. The getRDFStatements() is
used to fetch the desired RDF metadata. The insertStatements() operation allows for
the insertion of RDF triples into the RDF Jena model.

Conclusions and future work

In this paper, we presented an RDF-based grid service approach for organizing and
capitalizing European research results in the field of natural disasters. Our approach
allows the RDF metadata of European research results in the field of natural disasters
to be shared securely and effectively in a heterogeneous network environment, using
grid technology. We have described the design and the prototype implementation of
gDisDL, an RDF-based, grid-enabled system. gDisDL system is a platform
independent system which provides good interoperability with other systems. It can
store, manage, and query RDF metadata in a secure and distributed manner.

Natural disasters
metadata

243

LM
26,4/5

244

In the future, we plan to extend gDisDL with RDF-database plug-ins for supporting
more efficient storage of RDF metadata, and to extend the searching mechanisms of the
Searcher in order to integrate RDF databases into our system. Furthermore, we are
investigating the development of a semantic UDDI that would improve the utilization
of the gDisDL grid services. Our approach can be easily generalized to cope with
metadata of different kinds and evolve as a generic search engine for RDF-encoded
metadata posted on the grid.

References

Alexaki, S., Christophides, V., Karvounarakis, G., Plexousakis, P. and Tolle, K. (2001), “The
ICS-FORTH RDFSuite: managing voluminous RDF description bases”, in Staab, S. (Ed.),
Proceedings of the Second International Workshop on the Semantic Web (SemWeb '01),
pp. 1-13.

Berners-Lee, T. (2000), Primer: Getting into RDF and Semantic Web using N3, The World Wide
Web Consortium.

Berners-Lee, T., Fielding, R. and Masinter, L. (1998), “Uniform Resource Identifiers (URI):Generic
Syntax”, The Internet Engineering Task Force.

Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E. and Yergeau, F. (2004), Extensible Markup
Language (XML) 1.0, 3rd ed., World Wide Web Consortium.

Brickley, D. and Guha, R.V. (2000), Resource Description Framework (RDE) Schema Specification
1.0, World Wide Web Consortium.

Connolly, D., van Harmelen, F., Horrrocks, 1., McGuiness, D.L. and Patel-Schneider, P.F. (2001),
DAML + OIL (March 2001) Reference Description, World Wide Web Consortium.

Dublin Core (2003), “Dublin Core metadata element set, version 1.1: reference description”,
available at: http://dublincore.org/documents/2003/06/02/dces

EU-MEDIN (2003), EU-MEDIN portal, available at: www.eu-medin.org

Foster, 1., Kesselman, C, Tsudik, G. and Tuecke, S. (1998), “A security architecture for
computational grids”, paper presented at the 5th ACM Conference on Computer and
Communications Security Conference.

Foster, I, Nick, J., Kesselman, C. and Tuecke, S. (2002), “The physiology of the grid: an open grid
services architecture for distributed systems integration”, paper presented at the Open
Grid Service Infrastructure WG, Global Grid Forum.

Foster, 1., Tuecke, S. and Kesselman, C. (2001), “The anatomy of the grid: enabling scalable
virtual organizations”, Supercomputer Applications, Vol. 15 No. 3.

Freier, A.O. and Paul, C. (1996), “The SSL Protocol Version 3.0”, Transport Layer Security
Working Group.

Housley, R., Polk, W., Ford, W., Solo, D. and “Internet, X. (2002) Public Key Infrastructure
Certificate and Certificate Revocation List (CRL) Profile”.

JENA (2003), Jena — a Semantic Web Framework for Java, Hewlett-Packard, available at: http://
jena.sourceforge.net.

Karvounarakis, G., Alexaki, S., Christophides, V., Plexousakis, D. and Scholl, M. (2002), “RQL: a
declarative query language for RDF”, paper presented at the 11th International World
Wide Web Conference (WWW’02), Honolulu, HI, May 7-11, Vol. 02.

Klyne, G. and Carroll, J. (2002), Resource Description Framework (RDF): Concepts and Abstract
Data Model, technical report, The World Wide Web Consortium.

Manola, F. and Miller, E. (2003), “RDF primer”. W3C Working Draft, available at: www.w3.org/ Natural disasters

TR/rdf-primer/

Patel-Schneider, P.F., Hayes, P. and Horrock, 1. (2004), OWL Web Ontology Language Semantics
and Abstract Syntax, World Wide Web Consortium.

Sotomayor, B. (2003), The Globus Toolkit 3 Programmer’s Tutorial, technical report, The Globus
Alliance.

Tuecke, S. et al. (2002), “Open Grid Service Infrastructure (OGSI) version 1.0”, Open Grid Service
Infrastructure WG, Global Grid Forum.

metadata

245

