
A Self-stabilizing Control Plane for Fog Ecosystems
Zacharias Georgiou∗, Chryssis Georgiou∗, George Pallis∗, Elad M. Schiller†, Demetris Trihinas‡
∗ Department of Computer Science, University of Cyprus. Email: {zgeorg03, chryssis, gpallis}@cs.ucy.ac.cy

† Computer Science and Engineering, Chalmers University of Technology. Email: elad@chalmers.se
‡ Department of Computer Science, University of Nicosia. Email: trihinas.d@unic.ac.cy

Abstract—Fog Computing is now emerging as the dominating
paradigm bridging the compute and connectivity gap between
sensing devices and latency-sensitive services. However, as fog
deployments scale by accumulating numerous devices intercon-
nected over highly dynamic and volatile network fabrics, the
need for self-healing in the presence of failures is more evident.
Using the prevailing methodology of self-stabilization, we propose
a fault-tolerant framework for control planes that enables fog
services to cope and recover from a very broad fault model.
Specifically, our model considers network uncertainties, packet
drops, node fail-stops and violations of the assumptions according
to which the system was designed to operate (e.g., system state
corruption). Our self-stabilizing algorithms guarantee automatic
recovery within a constant number of communication rounds
without the need for external (human) intervention. To showcase
the framework’s effectiveness, the correctness proof of the self-
stabilizing algorithmic process is accompanied by a compre-
hensive evaluation featuring an open and reproducible testbed
utilizing real-world data from the smart vehicle domain. Results
show that our framework ensures a fog system recovers from
faults in constant time, analytics are computed correctly, while
the control plane overhead scales linearly towards the IoT load.

Index Terms—Fog Computing, Fault-Tolerance

I. INTRODUCTION

Fog and Edge Computing are the technologies enabling
computation at the network extremes, such as on downstream
data, on behalf of cloud services, and upstream data, on behalf
of IoT services [1]. The rationale of fog computing is that
computing should happen at the proximity of the data source
with the “fog” constituting any compute and network resources
along the path between the data and the cloud. In this context,
the “edge” differs from traditional sensing devices in that sen-
sory data are processed in proximity and converted from raw
signals to contextually relevant information [2]. In light of this,
recent advancements in fog computing suggest using cloudlets
as intermediate compute platforms between IoT (edge) devices
and the cloud, enabling users to exploit the analytic power of
the cloud without incurring high communication latency [3]. A
cloudlet (also referred as a foglet, microcloud) can be a single
server or a small cluster of co-located servers that form a (vir-
tual) pool of shared resources but from an external viewpoint
are considered a single entity [4]. Compared to traditional
datacenters, a cloudlet features much more limited resources,
albeit its proximity to IoT devices makes it appealing for
offloading compute tasks and receiving timely responses.

Although fog computing brings the computation closer to
delay-sensitive services, the challenges restricting the cloud
paradigm still remain as the pace of generated data continues
to rise [5]. Now, these overwhelming volumes of data not

only have to be processed in time, but must be processed
on, arguably, “weaker” hardware with potential nodes being
wifi access points, drones, cameras, and even wearables. Also,
fog infrastructure usually operates in geo-distributed and less
controlled settings, with many applications competing for lim-
ited resources against high-priority services [6]. Consequently,
failures due to hardware limitations and network uncertainties
are highly likely at the fog continuum [7]. To maintain high
availability, fog infrastructure must be resilient to both node
and network failures. Thus, self-managing and self-healing so-
lutions are required. IoT services must be able to recover from
any issues that arise during their lifetime. In this context, it
is critical to ensure continuous operation and recoverability at
scale even in the event of failure without human involvement.
In particular, cloudlets must satisfy the increasingly stringent
fault-tolerance specifications of today’s internet-enabled sys-
tems. In the current fog computing paradigm, fault-tolerance
must be implemented to both preserve the system state locally
at the edge and ensure the accuracy of analytics computations,
especially in the case of a node failure or intermittent long-
distance network connectivity problems.

We propose to address the challenge of dependable fog
computing by using a fault-tolerant control plane that ensures
service availability and data freshness in spite of the dynamic
nature of the fog continuum. Via inter-connection of IoTs
(edge devices), cloudlets and remote clouds, the proposed
solution can tolerate network uncertainties, communication
drops as well as cloudlet and IoT failures. In addition to
these benign failures, our algorithms follow a very strong
notion of fault-tolerance, called self-stabilization [8], which
has provided the Internet with automatic failure recovery as
early as the 1980’s. Self-stabilization ensures that the fog can
recover after the occurrence of any temporary violations to the
assumptions according to which the system was designed to
operate. These violations can include state corruption, extreme
number of node failures, network partitions or unexpected
system reconfiguration. Once such transient violations occur,
non-self-stabilizing systems cannot guarantee correct system
behaviour or that analytics queries respond correctly due to
the loss of data or the propagation of corrupted information.
In order for a system to be considered “self-stabilizing”, a cor-
rectness proof is required to guarantee recovery, within finite
time, after the occurrence of the last transient violation [9].
Contribution and Research Outcome. This paper addresses
the problem of how to tolerate and recover from run-time faults
in fog ecosystems. We consider a typical fog architecture,

1

where edge devices are interconnected with remote clouds via
network elements, denoted as cloudlets. Specifically:
• We introduce a self-stabilization framework integratable

with distributed control planes for fog realms. The control
plane is the core of the ecosystem and manages the
network fabric with a global viewpoint and establishes the
routing path of data serviced by geo-distributed cloudlets.
By adopting our self-stabilization framework, the control
plane can cope with an even broader fault model than the
one that includes just communication and node failures.

• Our framework is accompanied by a comprehensive
overview of the algorithmic mechanisms required by all
involved system actors. Most importantly, our solution
includes the correctness proof detailing system recovery,
after transient faults, within a constant number of com-
munication rounds. The current state-of-the-art in self-
stabilization for IoT systems recovery time is bounded,
at best, by the number of participating entities.

• To illustrate both the effectiveness and low runtime foot-
print of our framework at scale, we introduce a thorough
evaluation using real-world data and actual queries of
interest from an intelligent transportation service. Our
results are reproducible and the reference implementation
(including configuration and test data) is available on
Github 1. Our experiments validate our analysis and show
that even in the presence of severe failures, our solution
can always recover in constant time while the network
overhead scales linearly towards the IoT load.

Paper organization. Section II reviews related research. Sec-
tion III presents the system model and objectives. Section IV
proposes the solution. Section V sketches the proof. The de-
tails appears in [10]. Section VI presents the experimentation,
followed by the conclusion.

II. RELATED WORK

Fog and edge infrastructures are typically composed by
hundreds or thousands of heterogeneous and interacting com-
ponents, leading to the emergence of different types of faults.
A major challenge in fog computing is to define the fault and
failure coverage for high QoS [11]. Faults may occur either
simultaneously or in any aspect of system operations ranging
from application to hardware, and may have several causes,
including insufficient memory, performance interference, net-
work congestion, server faults, application crashes, etc.

Due to these challenges, existing work on fault-tolerance
in large-scale distributed systems often have limitations in
terms of practicality and performance guarantees, as further
documented. In [11], the authors introduce a framework pro-
viding consistency guarantees for stateful edge services by
adopting a fault-tolerant middlebox using the classic approach
of “rollback recovery” where a system uses information logged
during normal operation to reconstruct state after failure.
In [12], authors present a fault-tolerant messaging architecture
for edge systems. This is achieved by introducing timing

1 https://github.com/UCY-LINC-LAB/Self-Stabilization-Edge-Simulator

bounds that capture the relation between service parameters
and loss-tolerance requirements. In [13], a fault-tolerant fog
framework for data transmission is introduced. The pro-
posed fault-tolerance mechanism combines the advantages of
Directed Diffusion and Limited Flooding to enhance data
transmission reliability. In [14], authors introduce a fault-
tolerant algorithmic approach ensuring that collaborating fog
nodes sharing compute resources do not become disjoint when
a faulty node becomes unresponsive. This is achieved by
establishing that each node maintains connectivity information
of its neighbouring nodes with the key limitation being that
supportive networks must adopt a flat topology model. None
of these solutions provides a holistic approach for addressing
fault-tolerance in the fog continuum.

Our framework fits naturally in control planes, e.g., Istio and
Linkerd [15], [16], that decouple operational control and policy
enforcement from the business logic of distributed network
fabrics. These frameworks provide fault-tolerance in the form
of timeouts for labelling nodes as failed. In turn, circuit break-
ing is provided to safe-guard nodes overwhelmed by requests
so that nodes “fail fast” when requests exceed a threshold.
Thanks to our self-stabilizing algorithmic process, distributed
control planes are introduced to a very strong notion of fault-
tolerance on network uncertainties, communication drops,
configuration errors, arbitrary transient violations, cloudlet and
IoT fail-stop failures. In turn, no combination of faults can
yield the system execution or corrupt data computations.

In the context of self-stabilization and IoT, Siegemund et
al. [17] present a self-stabilizing pub/sub middleware for IoT
services. Their basic idea is that fault-tolerance is ensured
through the construction of a distributed self-stabilizing data
structure based on a virtual ring. However, operations over this
ring take O(n) time even in the absence of failures, where n
is the ring size. Canini et al. [18] present a self-stabilizing
control plane for software-defined networks (SDNs). Their
work assumes that all nodes are either client hosts, switches or
controllers. The algorithm stabilizes withinO(d2n), where d is
the network diameter and n is the number of nodes. Chattopad-
hyay et al. [19] integrate an SDN control plane with the in-
network processing infrastructure that can offload IoT services.
They use a single centralized service deployment controller
and lightweight SDN micro-controllers (µC). They mention
that their algorithm for µC placement is self-stabilized with
a linear convergence time but the provided proof does not
consider the designed criteria of self-stabilization that was
defined by Dijkstra [9] and clarified by Dolev [8]. We provide
both analytical and empirical proof for convergence in constant
time. The state-machine replication technique used in this
paper is inspired by practically-self-stabilizing virtual syn-
chrony [20]. Moreover, our self-stabilizing solution stabilizes
in constant time whereas the one in [20] does not have a
bounded stabilization time (by the definition of the solution
criteria of practically-self-stabilizing systems).

While interesting and relevant, the above works do not
address the impact of strong fault-tolerance in a hierarchi-
cal network organization that includes cloud infrastructure,

2

https://github.com/UCY-LINC-LAB/Self-Stabilization-Edge-Simulator

cloudlets that are placed at the network edge and IoT de-
vices. Our recovery time is within O(1) and our placement
mechanism convergence is within O(1). We base our proofs
on the definition of self-stabilizing systems [8]. The definition
requires the system to use bounded memory and recover after
the occurrence of any transient violation of the assumptions
according to which the system was design to operate. To the
best of our knowledge, we are the first to propose an O(1)
self-stabilizing control plane for fog and edge ecosystems.

III. PROBLEM AND SYSTEM DESCRIPTION

System and Actors. We consider a fog ecosystem comprised
of sets of nodes, such as the one of cloudlets C and IoT devices
S, as well as a remote cloud infrastructure, which we refer to
as the Cloud. Each cloudlet features specified communication,
computation, and storage capabilities. A cloudlet is associated
with a wireless access point covering a local area, referred to
as a cell. The cloudlets in C form a shared resource pool that
can serve the system collaboratively, e.g., aggregating IoT data
and forwarding it to the Cloud. We assume that the cloudlets
can share (over the Internet) such aggregated data with the
Cloud by accessing a shared repository (e.g., message queue).
The Cloud can use the repository to instruct cloudlets, e.g.,
which queries to serve the IoTs (edge devices), or advise
the cloudlets on how to organize themselves, e.g., propose
the most-suitable leader according to the cloudlet specified
capabilities and statistics gathered by the Cloud. The cloudlets
themselves are intra-connected by backhaul links. We assume
that, in the absence of failures, the QoS of these links allow
to send data and control messages in a timely manner. The
control plane manages and configures the cloudlets to route
traffic and enforce service placement with IoT devices.
Objectives. We aim at developing a fault-tolerant framework
for control planes that enables fog ecosystems to cope with
communication uncertainties and a broad fault model without
downtime or the need for external (human) intervention. The
latter is particularly important, as moving computations to
the cloud, in case of frequent fog node failures, significantly
impacts system reliability and the performance of the overall
system due to the large communication latency.
• O1. The Cloud, cloudlets and IoT devices must exchange

messages within a constant number of communication
rounds (and using a constant number of messages) per
information update.

• O2. The memory space and compute time of any system
entity must always be bounded and network traffic scale
linearly to the number of system entities.

• O3. The presence of a constant number of benign faults
must not degrade the system performance beyond the
bounds that are imposed by the system communication
and processing delays. I.e., objective O1 must not be
violated in the presence of benign faults (and the absence
of violations considered in objective O4).

• O4. We also consider arbitrary transient violations of the
assumptions according to which the system was designed
to operate (as long as the algorithm code stays intact).

After the occurrence of these violations, the system
must recover autonomously within a constant number
of communication rounds and return to satisfy the task
specifications. By autonomous we mean the absence of
external (human) intervention.

Actor Specifications. The fog control plane organizes the
cloudlet layer (Figure 1), such that the presence of commu-
nication and node failures cannot disrupt the execution of
services, e.g., IoT queries. In detail, we require the imple-
mentation of the following functionality:

The cloudlet and IoT registration allows the Cloud to
include individual nodes in the system (Figure 1). A node is
allowed, after a predefined delay and local cleanups, to register
again when it notices that it became disconnected from the
system due to failures. The latter case is rare, and thus, should
not repeatedly consume system resources.

The query functionality allows the Cloud to request the
flow of information according to a model that the IoTs (edge
devices) are to update periodically. That is, given the Cloud’s
current belief about the query result, the specified IoTs will
update the system whenever the collected sensory information
deviates from the model [5]. The cloudlet aim here is to
aggregate these updates so that a concise query result arrives
to the Cloud. Since this needs to be done in the presence
of communication and node failures, each IoT should send its
updates to a set of cloudlets and the latter should acknowledge
(Figure 2). The cloudlets then should use a leader to unify their
updates and forward concise query results to the Cloud. The
cloudlet layer must function well in case of a failing leader.
Therefore, a set of cloudlets, called guards, should monitor
the leader’s activity and guarantee query result delivery until
the system decides on a new leader (Figure 3).

The management of general-purpose services can help to
overcome capability differences among individual nodes via
task load-balancing. Such tasks can be initiated by IoT users
that need to leverage cloudlet capabilities. Also, cloud services
may wish to avoid network-intensive computations, such as
virtual traffic light that base its decisions on the current
road traffic conditions of different vehicles. The fault-tolerant
management of such services can be based on state-machine
replication that is well-synchronized with query operations.

IV. PROPOSED SOLUTION

Algorithms 1, 2, 3 and 4 collectively propose the solution
to the above task specifications by considering the protocol
to be executed by the Cloud, IoT devices, cloudlets, and
respectively, the emulators of the replicated state-machine.
Algorithm 1 assumes the availability of a self-stabilizing cloud
infrastructure, such as [21].
Overview. The Cloud periodically monitors the system and
keeps track of the Cloudlets and running IoT devices. Based
on this information, and according to some mapping, each
cloudlet is associated with a list of IoT devices [4]. The IoT
devices periodically send updates (e.g., sensory information) to
their associated cloudlet(s). Instead of each cloudlet reporting
directly to the cloud, cloudlets report collected data to a leader.

3

IoT
IoT

cloud

Cloudlet
layer

d
ata

register

co
n
tro

l

register

control

IoT

Fig. 1. System overview

IoTIoT

cloud co
n
tro

l

d
ata

co
n
tro

l

IoT

cloudlet

d
ata

co
n
tro

l

d
ata

control

cloudlet

d
ata

co
n
tro

l

d
ata

register

register

Fig. 2. The leader-based architecture

control

d
ata

cloudlet
cloudlet

cloudlet

m
o
n
ito

rin
g

Fig. 3. Inner-structure of the cloudlet layer

The leader is the one that collects and aggregates all data and
reports it to the Cloud. The above constitutes a “normal” (fault-
free) operation. However, due to unexpected transient faults or
more permanent faults (e.g., cloudlet fail-stop), as well as the
need for bounded counters, additional checks must take place
at different components of the system. Algorithms 1, 2, and
3 present such details for the Cloud, the IoT devices and the
Cloudlets. Furthermore, in the event of a leader fail-stop, we
do not want the data flow to the cloud to be suspended. To
this respect, from the list of operational cloudlets, the Cloud
also appoints a set of guards. The purpose of the guards is
to monitor the status of the leader and in the event that the
leader fail-stops, they report the latest collected data to the
Cloud. Therefore, in Algorithm 3, each cloudlet reports not
only to the leader, but also to the guards. Since the leader
and the guards need to maintain consistent information on the
collected data (and on any other information the control plane
could be maintaining), they run Algorithm 4, which realizes a
self-stabilizing state-machine replication mechanism.

In Section V we provide the correctness proof illustrating
that our framework can self-stabilize in a constant number
of communication rounds, while Section VI shows through
a large testbed that there is no information loss even in the
presence of multiple, different and randomly injected failures
to the fog ecosystem. We now present more details, starting
by describing the registers that are shared by nodes. Then, we
go through the code according the above functionality list.
Registers. The shared register stores the aggregated sensory
information collected by the IoTs (lines 24–25), aggregated by
their cloudlets (line 56), and written by the leader (line 84).
The Cloud and the cloudlet exchange control information via
the shared registers info and infoAck . The register info in-
cludes the fields devices, cloudlets, leader and guards. The
register infoAck is an array, such that the entry infoAck [k]
holds pk’s acknowledgment, where pk ∈ C is a cloudlet
and the acknowledgment includes all the fields of info. In
detail, the Cloud, pcloudID, stores its view on the system
membership in info (line 15) and cloudlet pk acknowledges
the reception of this information by copying the value of info
to infoAck [k] (line 47). Moreover, pcloudID selects, when
needed, new cloudlets’ leader (line 10) and guards (line 12).
Registration. IoTs and cloudlets register directly to the Cloud
by sending a registration message (lines 24 and 48) after
initializing their local variables and communication channels.

This initialization guarantees that the joining node (or its
communication channels) does not hold stale information.
Once the registration message arrives to the Cloud, pcloudID,
the Cloud lists the joining node as a newcomer (lines 16
and 17). These newcomers will be listed as the system’s IoT
devices and cloudlets (lines 8–9) after the completion of the
previous update round of these sets, which line 7 assures.
The proposed solution assumes access to unreliable failure
detectors. This allows the Cloud not to wait for cloudlets that
are suspected to be faulty as well as to remove failing nodes
from the IoT and cloudlet sets.

Query. We consider queries that are initiated by Cloud ap-
plications and require repeated updates. These queries include
the Cloud current belief about the anticipated result, which we
refer to as the query model. This allows IoT devices to reduce
the number of times in which they transmit results to periodic
queries since there is no need to transmit a result that fit the
current belief of the Cloud according to the query model.

In detail, the registration procedure constructs up-to-date
views on the sets of IoT devices and cloudlets in the
shared register together with the current leader and guards.
The proposed solution associates with each IoT the query
description and model. This information is stored in devices.
The cloudlets use a function, myIoT (), for mapping between
them and the IoTs that they are responsible to communicate
with (line 55). (A possible mapping could be to have the IoTs
being assigned to the cloudlets in the same region, based on
their proximity. Nevertheless, our system is independent on
the specific mapping employed.) Cloudlets send the queries
(along with their models) to these IoTs. The latter store the
arriving information and acknowledge (lines 30–33). Once in
a predefined periodicity, the IoTs update the query results, if
needed (line 25). The cloudlets acknowledge the update arrival
(lines 33 and 63). The cloudlets in turn periodically aggregate
the sensory information received by the IoTs and send it to
the leader and the guards (line 56). The leader updates the
shared repository with the query results (line 84), whereas the
guards serve as warm-backup leaders. We assume access to
the functions electLeader() and selectGuards() that for a
given set of system cloudlets elect a leader and select guards,
respectively. In electing a leader and guards, we may want
nodes that are more stealth, maybe closer to the IoT devices
or in the center of the coverage area (e.g., in the center of the
city); the leader/guard selection problem can be inherent to the

4

fog service placement problem (FSPP) [4], which is a different
challenge in fog computing than the studied one. Nevertheless,
in our system we could swap in/out FSPP algorithms and we
are resilient to the algorithm in use.
State-machine replication. Since both the leader and the
guards receive aggregated data from the cloudlets, they need to
be in sync with respect to the data. More generally, the leader
and the guards provide additional service as part of the control
plane. So, they need to coordinate their activities and maintain
consistent state between them. The fact that the system is
asynchronous, together with the need for self-stabilization,
makes it quite a challenging task. To this respect, we have
the leader and the guards to run Algorithm 4.

The algorithm maintains a consistent state (aggregated
sensory information) by performing multicast rounds coor-
dinated by the leader. All necessary replica information (in-
cluding the state) is maintained by each node in array rep[]
(line 72), which is exchanged between the leader and the
guards (lines 102–104). In detail, once a cloudlet realizes that
it has become the leader (line 89), it proposes to install a view
of the current members, which includes itself and the guards
that according to its local failure detector have not fail-stopped.
The guards start following the leader towards installing this
view by adopting its proposal (line 99). Once the leader sees
that the view members have adopted its proposal (lines 92 and
74), it builds the new state based on the collected messages
and states (lines 95 and 75) and proceeds to install the view.
The guards adopt the leader’s rep – including the (new) state
(lines 98 and 79) completing in this way the installation of
the view (lines 94 and 76). The multicast rounds can now
begin, which are coordinated by the leader (lines 93 and
81–85) and followed by the guards (lines 97 and 80). The
access to the application’s message queue (commands to be
executed by the state machine) is done via fetch(), which
returns the next multicast message; the state transition function
apply(state,msg) applies the aggregated input array msg to
the replica’s state and produces the local side effects. Simply
put, in our case, the input to the state machine is the aggregated
sensory information, which is sent by the cloudlets to the
leader and the guards in Algorithm 3 (line 56) and stored
by the latter in agrregateinfo (line 66). So, essentially the
multicast rounds of the state machine keep this information
consistent among the leader and the guards. At the end of each
multicast round, the leader updates the sensory information
maintained in the shared register data (line 84).

In the event of a leader fail-stop, and until the Cloud assigns
a new leader (line 10), the guards update the shared registry
(line 100). This ensures a continual update of the sensory
information (which, depending on the application, could be
crucial). If there is a change in the set of guards (either due to
a fail-stop or due to an update of this set by the Cloud), then
the leader begins the procedure to install a new view (line 90)
with the new membership, without the need of any external
intervention (including that of the Cloud). The failure detector
abstraction (defined in line 72) can be implemented using
heartbeats and counter thresholds (see for example [22]), or

using “hello” messages and timeouts in a more time-informed
setting (as we do in our simulation study in Section VI).
System state recovery via global reset. Self-stabilization
requires bounded space, including bounded counters. Counters
can grow up to a predefined size MAXINT , e.g., 264 − 1.
Under normal operation, and if say, a counter is incremented
every nano-second, then this limit can be reached in 146 years.
However, a transient violation of the assumptions according
to which the system was designed to operate can corrupt the
counter. In this case (lines 27, 58, and 103), the cloudlet or IoT
holding this counter will send a RESET message to the Cloud,
calling for a global system reset. The Cloud, upon receiving
such a message (line 18), initiates the reset procedure: it sets
the shared register info into ⊥ (line 11 or line 18), and waits
until all non-faulty cloudlets have acknowledged this, before
it unregisters all cloudlets and IoT devices (by setting info
into (∅, ∅, ∅, ∅)) and flashes all its local variables. This causes
each cloudlet (line 48) to register again after a local reset of
the node state and its communication channels, following the
registration procedure described above. Since the IoTs are no
longer in info.devices , no cloudlet will contact them, causing
each (non-faulty) IoT to timeout and hence also register again
after a similar initialization procedure (line 23).

V. CORRECTNESS PROOF

Our analysis demonstrates a constant time recovery from ar-
bitrary transient faults. It considers the interleaving model [8],
in which the node’s program is a sequence of (atomic) steps.
Each step starts with an internal computation and finishes
with a single communication operation, i.e., message send
or receive. The state, si, of node pi ∈ P includes all of pi’s
variables and the set of all incoming communication channels.
Note that pi’s step can change si as well as remove a message
from channelj,i (upon message arrival) or add a message in
channeli,j (when a message is sent). The term system state
refers to a tuple of the form c = (s1, s2, · · · , sn) (system
configuration), where each si is pi’s state (including messages
in transit to pi). An execution (or run) R = c0, a0, c1, a1, . . .
is an alternating sequence of system states cx and steps ax,
such that each cx+1, except c0, is obtained from the preceding
one, cx, by the execution of step ax. We say that execution
R is legal if it satisfies the task specifications throughout R.
We say that a system state c is safe if every execution that
start from c is legal. Definition 5.1 considers a system state
that Theorem 5.1 shows to be safe.

Definition 5.1 (Safe system state): We say that
the system state c is safe if the following hold.
(1) Let pi ∈ C and pj ∈ S, such that (j,mj) ∈
myIoT (devicescloudID, cloudletscloudID). It holds that
cloudletListj = cloudletList(j, cloudletscloudID) ∧
(lastUpdatej ≤ clockj()). Moreover, devicescloudID =
{(k, •) ∈ deviceSeti} ∧ ((z, t, •) ∈ agreegateInfoj =⇒
pz ∈ C ∧ t ≤ clocki()) ∧ (j, •,mj) ∈ agreegateInfoj . (2)
The value of msgseq i, msgci and msgtoioti is greater
or equal to any value of msgseq , msgc, and respectively,
msgtoiot fields associated with pi in messages and cloudlets.

5

Algorithm 1: Code for the self-stabilizing cloud
pcloudID.

1 Variables: newCloudlet/newIot: new cloudlets and IoTs and their
models (bounded by cloudletSetSize); sequence: leadership number;

2 Shared registers: data : is a data structure that stores the sensory
information, to be processed by the cloud depending on the application; it
includes records of the form (id, leader, round, dat), where id is the
cloudlet’s unique id that included the context dat in the data structure, at
round round of the state machine with leader leader; info: has the form
of (devices, cloudlets, leader, guards), where the field devices is a
set (bounded by deviceSetSize) of IoT devices, their models and the
information needed for failure detection; cloudlets is a set (bounded by
cloudletSetSize) of cloudlets and the information needed for failure
detection; leader of the form (seq, id) is the cloudlets’ current leader and
an associated sequence number; guards is a set of cloudlets ids (a subset of
cloudlets) that have been selected as guards; infoAck[cloudletSetSize]:
an array that stores the latest value of info that each cloudlet has read;

3 Interface: suspectedIot(set) and suspectedCloudlet(set): return the
sets of suspected to be faulty IoT devices and cloudlets, respectively;
electLeader(set): returns the elected leader from set;
selectGuards(set): returns the set of guards from set;

4 do forever /* use predefined periodicity */ begin
5 let lInfo := (lDevices, lCloudlets, lLeader , lGuards) :=

read(info);
6 let lInfoAck := read(infoAck);
7 if ⊥ 6= lInfo ∧ ({lInfo} = {lInfoAck [k] : k ∈

C \ suspectedCloudlet(C)}) then
8 (lDevices, newIot)← ((lDevices \ {(k, •) : k ∈

suspectedIot(lDevices)}) ∪ newIot, ∅);
9 (lCloudlets, newCloudlet)← ((lCloudlets\{(k, •) : k ∈

suspectedCloudlet(lCloudlets)}) ∪ newCloudlet, ∅);
10 if lLeader .id 6∈ lCloudlets then

lLeader ← (sequence++, electLeader(lCloudlets));
11 if sequence = MAXINT then write(info,⊥);
12 if (lGuards ∩ lCloudlets) = ∅ then

lGuards← selectGuards(lCloudlets \ {lLeader .id});
13 write(info, (lDevices, lCloudlets, lLeader , lGuards));

14 else if {⊥, (∅, ∅, ∅, ∅)} ⊇ ({lInfo} ∪ {lInfoAck [k] : k ∈
C \ suspectedCloudlet(C)}) then write(info, (∅, ∅, ∅, ∅));
(newCloudlet, newIot, sequence)← (∅, ∅, 0);

15 else if {⊥} ⊂ ({lInfo} ∪ {lInfoAck [k] : k ∈
C \ suspectedCloudlet(C)}) then write(info,⊥);

16 upon message m = 〈REGISTER〉 arrival from IoT j at time t do
newIot← (newIot ∪ {(j, t,⊥)});

17 upon message m = 〈REGISTER〉 arrival from cloudlet z at time t do
newCloudlet← (newCloudlet ∪ {(z, t)});

18 upon message m = 〈RESET〉 arrival from device k do write(info,⊥);

(3) |A| = 1, where A = {(v, su, r, sa,m) : pi, pj ∈
C ∧ (v, su, r, sa,m, •) = r ∈ {repi[j], repi,j})}, such
that repi,j is a message that was sent in line 102 from pi
to pj . Moreover, msgleadercloudID.id[k] = inputk, where
pk ∈ leadercloudID ∪ guardscloudID. (4) No counter has
reached MAXINT and there are no 〈RESET〉 messages.

We say that an execution is fair if every step that is
applicable infinitely often is executed infinitely often. The-
orem 5.1 demonstrates self-stabilization and uses the term
(asynchronous) cycles of a fair execution R. A cycle is the
shortest prefix of R in which every non-failing node pi
performs a completed iteration of node pi’s do forever loop,
all messages that pi sent during that iteration were delivered,
and all of the iteration’s requests were replied.

Theorem 5.1: The system’s state is safe within O(1) cycles.

Proof sketch. The proof considers the predicate
pred = {⊥} 6= ({info} ∪ {infoAck [k] : k ∈
C \ suspectedCloudletcloudID(C)}). First consider
executions in which pred holds, i.e., pcloudID does not
execute lines 14–15. Under this assumption, we show that

Algorithm 2: Code for IoT ioti
19 Local state: model: a data structure that encodes the recent sensory readings;

cloudletModel : recent model received from the cloudlet; cloudletList:
a list (bounded by cloudletListSize) of dissemination points (ordered by
descending priority); lastUpdate: time of the last update reception from a
cloudlet (according to IoT’s local time); msgseq : a positive integer used as
a sequence number for messages sent to cloudlets; MSG: a set of (id, seq)
pairs that stores the highest message sequence received by cloudlet id;

20 Interface: update(): receives the last sent model and received
cloudletModel as well as the time in which that reception occurred
(lastUpdate). The function then updates model (and returns true) if the
cloudlet model requires an update due to change in sensory input, a timeout
due to a missing acknowledgment from the cloudlet or a change in the
cloudlet model specifications;

21 Function: iotInit(): the IoT device first resets all variables dealing with
Cloudlet data and control information as well as local data and control
variables. Then it sends a special message INIT to the Cloud, so that the
Cloud removes all information about this device from the Cloudlets. Once
this is done, the Cloud returns an acknowledgment to the device, and the
function returns.

22 do forever /* use predefined periodicity */ begin
23 if (clock()− lastUpdate) > LIMIT then IoT init();

send(cloudID, 〈REGISTER〉);
24 else if update(model, cloudletModel, lastUpdate) then
25 foreach id ∈ cloudletList do send(id, 〈msgseq,model〉);
26 msgseq ← msgseq + 1 /* if a message was sent */
27 if msgseq = MAXINT then send(cloudID, 〈RESET〉);

28 upon m = 〈seq, list,model〉 arrival from cloudlet j at time
t = clock() begin

29 if m.seq > MSG|j.seq then
30 (〈cloudletList, cloudletModel〉, lastUpdate)←

(〈m.list,m.model〉, t);
31 MSG ← (MSG \ {(k, •) : k /∈ cloudletList ∨ k =

j}) ∪ (j,m.seq);

32 send(j, 〈MSG|j.seq〉);

33 upon message m = 〈seq〉 arrival from cloudlet z do
msgseq ← max{m.seq,msgseq};

items 1 to 4 of Definition 5.1 hold within O(1) cycles.
Otherwise, we show that pred holds within O(1) cycles.

Item 1. Let (pi, pj) ∈ C × S. Within O(1) cycles,
pcloudID updates info’s devices and cloudlets (line 13),
pi reads devices and cloudlets (line 47) and send to IoT
pj (line 55) 〈•, cloudletList(j, lCloudlets),m〉 : (j,mj) ∈
myIoT (devicescloudID, cloudletscloudID). Upon its arrival,
pj stores it in cloudletListj and cloudletModel j as well
as updates lastUpdatej with the arrival time (line 30).
Thus, cloudletListi = cloudletList(i, cloudletscloudID)
∧ (lastUpdatei ≤ clocki()). Lines 51 and 61 imply
devicescloudID = {(k, •) ∈ deviceSetj} and line 66 im-
plies ((z, t, •)∈agreegateInfoj =⇒ pz∈C ∧ t≤clocki()) ∧
(j, •,mj)∈agreegateInfoj .

Item 2. Suppose that in R’s starting state, Item 3 does not
hold. Within O(1) cycles, any message containing msgseq ,
msgtoiot or msgc arrive to its destination pj . Whenever pi
receives the message, pi updates it’s local values.
Item 3. Within O(1) cycles, leader and guards are set
by pcloudID (line 13) and all cloudlets read (line 47). We
show that if a new leader has been put in place (or the view
has become inconsistent), then within O(1) cycles the leader
proposes and installs a new view which includes itself and the
guards. After that the leader resumes the round-base updates
for maintaining the state among itself and the guards (lines 93,
97, and 81–85) and aggregates inputk : pk ∈ leadercloudID∪
guardscloudID, such as msgleadercloudID.id[k] = inputk.

6

Algorithm 3: Code for cloudlet pi
34 Local state: deviceSet: a set (bounded by deviceSetSize) of IoT devices

and their most recently received models;
35 agreegateInfo: data structures encoding aggregated sensory information;
36 msgc: positive integer ordering messages sent to the leader and guards;
37 msgtoiot: a positive integer used for ordering messages sent to IoT devices;
38 MSGc: a set of (id, seq) pairs that stores the highest message sequence

received by cloudlet id;
39 MSGSEQ : a set of (id, seq) pairs that stores the highest message sequence

received by IoT id;

40 Shared registers: info and infoAck: as in Algorithm 1;

41 Interface: aggregate(deviceSet): returns aggregated IoT information;
42 cloudletList(k, set): for a given IoT device iotk and a set of cloudlets,

this function returns the cloudlet list that iotk should use (prioritized in an
descending order);

43 myIoT (): projection of the IoTs that are within the cloudlet’s responsibility;
44 cloudID: the address of the Cloud;

45 Function: cloudletInit(): the cloudlet first resets all variables dealing with
the data and control information of cloudlets and IoT devices as well as its
local data and control variables. Then it broadcasts a special message INIT
to all other cloudlets, and to the Cloud so that the other cloudlets remove all
information about this cloudlet; the Cloud removes all relevant information
about this cloudlet from the IoT devices. Once the cloudlet receives
acknowledgments from all the cloudlets and the Cloud, the function returns.

46 do forever /* use predefined periodicity */ begin
47 let lInfo := (lDevices, lCloudlets, lLeader , lGuards) :=

read(info); write(infoAck [i], lInfo);
48 if lInfo 6= ⊥ ∧ i /∈ lCloudlets then {cloudletInit();

send(cloudID, 〈REGISTER〉))};
49 else if lInfo 6= ⊥ then
50 if i /∈ (lGuards ∪ {lLeader .id}) then

(agreegateInfo,MSGc)← (∅, ∅);
51 deviceSet← (deviceSet \ {(k, •) : k /∈ lDevices});
52 MSGSEQ ← (MSGSEQ \ {(k, •) : k /∈ deviceSet});
53 MSGc ← (MSGc \ {(k, •) : k /∈ lCloudlets});
54 let (iotAdd,msgAdd) := (0, 0);
55 foreach (j,m) ∈ myIoT (lDevices, lCloudlets) do

{send(j, 〈msgtoiot, cloudletList(j, lCloudlets),m〉);
iotAdd← 1};

56 foreach j ∈ lGuards ∪ {lLeader .id} do
{send(j, 〈msgc, aggregate()〉); msgAdd← 1};

57 (msgtoiot,msgc)←
(msgtoiot + iotAdd,msgc + msgAdd);

58 if MAXINT ∈ {msgc,msgtoiot} then
send(cloudID, 〈RESET〉);

59 upon message m = 〈seq,model〉 arrival from IoT j at time t begin
60 if m.seq > MSGSEQ|j.seq then
61 deviceSet← (deviceSet \ {(j, •)}) ∪ {(j, t,m)};
62 MSGSEQ ← (MSGSEQ \ {(j, •)}) ∪ (j,m.seq);

63 send(j, 〈MSGSEQ|j.seq〉);

64 upon message m = 〈seq, aggregated〉 arrival from cloudlet z at time t
begin

65 if i ∈ lGuards ∪ {lLeader .id} ∧ m.seq > MSGc|z.seq then
66 agreegateInfo← (agreegateInfo \ {(z, •)}) ∪ {(z, t,m)};
67 MSGc ← (MSGc \ {(z, •)}) ∪ (z,m.seq);

68 send(z, 〈MSGc|z.seq〉);

69 upon message m = 〈seq〉 arrival from IoT k do
msgtoiot← max{m.seq,msgtoiot}

70 upon message m = 〈seq〉 arrival from cloudlet z do
msgc← max{m.seq,msgc}

Item 4. Suppose that in R’s starting state, Item 3 does not
hold at node pi. Within O(1) cycles, either Item 3 holds and
Item 4 does not, or both hold. Moreover, 〈RESET〉 arrives to
pcloudID and the assumption above does not hold (line 18).

For the case that is competently to the assumption in the
proof beginning, suppose that any prefix R′ of R = R′ ◦ R′′
that has O(1) cycles, does not have a matching suffix R′′

during which the predicate pred holds. Since pred does not
hold during R′, pcloudID does not execute lines 8–13 during
R′. Therefore, it must execute either line 14 or 15 for a

Algorithm 4: Self-stabilizing replication for guards
and leader, code for cloudlet pi

71 Interfaces: fetch() next multicast message, apply(state,msg) applies the
step msg to state (while producing side effects), synchState(replica)
returns a replica consolidated state, synchMsgs(replica) returns a
consolidated array of last delivered messages, failureDetector() returns
a vector of processor ids, cloudID returns the address of the Cloud;

72 Variables: rep[] = 〈view=〈ID, set〉, status∈{Propose, Install,
Multicast}, (multicast round number) rnd, (replica) state, last
delivered messages msg[n] to the state machine, last fetched input to the
state machine, propV = 〈ID, set〉, recently live and connected
component FD〉: an array of the state machine’s replica, where rep[i]
refers to processor pi, and rep[j] refers to the last arriving message from
pj containing pj ’s rep[j]. FD stores the failureDetector() output,
i.e., the set of processors that the failure detector considers as active.
myLeader stores the id of the local leader; ⊥ if none. The view.ID
(and propV.ID) is composed by the id and leader sequence installing the
view, and counter cnt, in case the same leader installs a new view;

73 Shared registers: info and data : as in Algorithm 1;

74 Macros: roundProceedReady() = {(∀pj ∈ view.set: rep[j].(view,
status, rnd) = (view, status, rnd)) ∨ ((status 6= Multicast) ∧
[(∀pj ∈ propV.set : rep[j].(propV, status) = (propV, Propose))
∨ (∀pj ∈ propV.set : rep[j].(propV, status) = (propV, Install))]};

75 coordinatePropose() = {(state,msg, status)←
(synchState(rep), synchMsgs(rep), install};

76 coordinateInstall() = {(view, status, rnd)←
(propV, Multicast, 0)};

77 roundReadyToFollow() = {rep[myLeader].rnd = 0 ∨ rnd <
rep[myLeader].rnd ∨ rep[myLeader].(view 6= propV)};

78 followPropose() = {(status, propV)←
rep[myLeader](status, propV)};

79 followInstall() = {rep[i]← rep[myLeader]};
80 followMcastRnd() {rep[i]← rep[myLeader];

apply(state, rep[myLeader].msg); input← fetch();}
81 procedure coordinateMcastRnd() do begin
82 apply(state,msg); input← fetch();
83 foreach pj ∈ C do if pj ∈ view.set then msg[j]← rep[j].input

else msg[j]← ⊥;
84 write(data, (i, lLeader , rnd, rep[i].state));
85 rnd← rnd + 1; if rnd = MAXINT then view.set← ⊥ /*

Forces a view change in line 90/;

86 do forever /* use predefined periodicity */ begin
87 FD ← failureDetector();
88 let (lDevices, lCloudlets, lLeader , lGuards) := read(info);
89 if lLeader .id = i ∧myLeader 6= i then (status, propV ,

myLeader)← (Propose, 〈(lLeader , cnt = 0), FD ∩
(lGuards ∪{i})〉, i);

90 if lLeader .id = i ∧myLeader = i ∧ ((status = Multicast ∧
view.set 6= S)) ∨ (status 6= Multicast ∧ propV.set 6= S)))
then (status, propV,myLeader)← (Propose, 〈(lLeader ,
cnt++), S)〉, i), where S := FD ∩ (lGuards ∪ {i};

91 if k 6= i ∧ i ∈ lGuards ∧ k ∈ FD, where k = lLeader .id then
(myLeader, status)← (k, rep[k].status);

92 if lLeader .id = i ∧ roundProceedReady() then
93 if status = Multicast then coordinateMcastRnd();
94 else if status = Install then coordinateInstall();
95 else if status = Propose then coordinatePropose();

96 else if lLeader .id 6= i ∧ i ∈ lGuards ∧ lLeader .id ∈
FD ∧ roundReadyToFollow() then

97 if status = Multicast then followMcastRnd();
98 else if status = Install then followInstall();
99 else if status = Propose then followPropose();

100 if lLeader .id 6= i ∧ i ∈ lGuards ∧ lLeader .id /∈ FD then
myLeader ← ⊥; write(data, (i, lLeader , rnd, rep[i].state));

101 else if myLeader 6= ⊥ then send rep[i] to myLeader;
102 if lLeader .id = i then ∀k ∈ lGuards ∩ FD send 〈rep[i]〉 to pk;
103 if cnt = MAXINT then send(cloudID, 〈RESET〉);

104 upon message m arrival from pj do rep[j]← m;

constant number of times during R′. Suppose that pcloudID
does not execute line 14 during R′. Thus, within O(1) cycles,
pcloudID executes repeatedly line 15 until the if-statement
condition of line 14 holds. Then, the if-statement condition
of line 15 does not hold again during R, and, within O(1)
cycles, the if-statement condition of line 7 holds. �

7

Bus Route
A2

A1A3

A4

A5

Fig. 4. Bus Network Service with 16 base stations covering 5 areas of a city

VI. EVALUATION

The previous section details the correctness proof of our
self-stabilizing algorithmic process which shows that even in
the presence of failures a fog ecosystem can always recover
and correctly compute analytic insights from IoT data. Most
importantly, this can be achieved in a constant number of
communication rounds, in contrast to the current state-of-the-
art in self-stabilization for IoT systems, where fault recovery
is bounded, at best, by the number of participating entities.

This section introduces a thorough evaluation of our frame-
work effectiveness and runtime overhead. First, we measure
information delay, the time interval required for IoT data to be
propagated in the network for analytics to be correctly derived
in the presence of multiple and different failures (e.g., cloudlet
fail-stop, link drops). Second, we measure the additional
runtime footprint that our framework incurs to exemplary
state-of-the-art distributed control planes (e.g., istio). This
provides a detailed overview of what is the cost, in terms of
network overhead, of maintaining data freshness and analytic
computation correctness in the presence of failures. Results
show that with our self-stabilizing framework, control planes
are able to compute analytics correctly with the information
delay maintained relatively stable despite of the presence of
failures, while the network overhead scales linearly towards
the IoT load, as required by O1-O4 (Section III).

As a testbed, we introduce a real-world use-case of a Bus
Network Service (BNS). We opt to focus on experiments that
use a publicly available and real-world workload to reveal
the strengths of our framework. Specifically, the workload
originates from the Dublin BNS [23], comprised of 40GB of
compressed data, tracking for 1 month the bus routes of 968
buses (Jan. 2013). Each bus is equipped with a GPS tracker
recording every 1s location coordinates and the current bus
route delay. Figure 4 depicts a high-level overview of the BNS
topology, where 16 cloudlets are deployed across Dublin’s
major city regions, denoted for clarity as Ax, to decentralize
the BNS and increase the system responsiveness. A bus route
may span across city regions and a bus can be connected to
multiple cloudlets depending on the cloudlet coverage. Each
cloudlet serves as an analytics engine that aggregates local bus
updates and propagates an alert to traffic operators (central
cloud service) when 10 or more buses in a city area are
reporting, in a 5min sliding window, delays over one standard
deviation from the previous weekly mean.

To experiment with large-scale deployments and ensure
both result reproducability and algorithm adoption, we have
designed a testbed inspired by Kompics [24], an open-source

distributed systems message-passing simulator, and extended
the entity behavior model to support our self-stabilizing
control plane for fog ecosystems and to facilitate complex
fault models. The testbed is run in an Openstack cloud
configured with 16VCPU clocked at 2.66GHz, 16GB RAM
and 260GB disk. The network configuration between testbed
entities adopts a gaussian kernel with 1 standard deviation
and the following mean values: (i) Cloudlet-to-Cloud latency
100ms; (ii) IoT-to-Cloud latency 250ms; (iii) intra-region
Cloudlet-to-Cloudlet latency 10ms; (iv) inter-region Cloudlet-
to-Cloudlet latency 100ms; and (v) IoT-to-Cloudlet latency
20ms. We opt for these specific capabilities so that the testbed
resembles an actual geo-distributed fog deployment over a
city environment. All simulation scenarios are run 100 times
with cloudlets and IoT devices starting at randomized time
intervals. For the IoT device placement, we have implemented
the registration interface of Algorithm 2 so that when an
IoT device (e.g., a bus) requests to join the network, the
central authority (e.g., the cloud) responds with a list of valid
cloudlets that are the “closest” in the device’s operating (city)
region. The same strategy will hold for when the device has
changed it’s operating region (e.g., bus moves from Ax to
Ay). Finally, the selection of the leader and the guards was
done randomly, since our cloudlets are homogeneous. For
the widespread experimentation of different fault scenarios,
we adopt the Netflix Chaos Monkey framework [25]. This
enables the configuration and (random) selection of faults
and entities to infest at given time intervals, or at random,
depending on the evaluation scenario. Unless otherwise stated,
the aforementioned topology and network configuration will
be considered as the baseline configuration.

A. Information Delay

In this set of experiments, we show the effect of different
failures to the timeliness of analytic computation. We consider
four experiment runs with faults injected at random and
examine how information delay is affected by: (i) randomly
failing a different number of regular cloudlets; (ii) failing the
guards; (iii) failing the leader; (iv) randomly dropping the
communication link between IoT devices and cloudlets.

Figure 5 depicts the information delay as the number of
concurrently failing cloudlets increases. In this box-plot the
median information delay is denoted by the line in the box,
while the box length extends between the first and third quan-
tile with outliers depicted as independent points. With zero
cloudlets we denote the information delay in normal operation
(without failures). From Figure 5, we observe that while the
number of failing cloudlets remains under 7, information delay
is not affected, despite slight deviations. After this, randomly
selecting concurrent cloudlets hinders the extreme case of
wiping out all cloudlets of a city region. This results in added
delay as IoT data for the specific region must be directly
propagated to the cloud. For this experiment, system recovery
is only required when an IoT device is left with no cloudlet in
coverage. In this extreme case, the IoT device must contact the
cloud to validate the registration. However, the involvement of

8

Fig. 5. Delay vs number of concurrent cloudlet failures

Fig. 6. Delay vs number of concurrent guard and leader failures

the cloud naturally hinders a communication overhead. Thus,
despite information delays for extreme cases of concurrent
cloudlet failures, analytics computation is always correct while
the system recovers from faults in a bounded number of com-
munication rounds, as required by O1 and O3 (Section III).

Figure 6 depicts how information delay is affected by the
failure of the control plane when the baseline is configured
with two guards. We observe that the timeliness of analytics
computation is not affected by their failure. This concurs with
the correctness proof that shows that, the self-stabilizing fog
ecosystem can return back to a legal state within O(1) time,
which is sufficient to propagate information without delay, as
required by O4 (Section III).

The next experiment studies how information delay is
affected by the temporary drop of the network link between
IoT devices and cloudlets. To achieve this, we artificially block
for a predefined interval the link between affected IoTs and
cloudlets in each region, thus maintaining only the link with
the cloud. In Figure 7 we observe that the information delay
increases as more devices experience a link drop. This occurs
because the affected IoTs detect the link absence and, thus,
must communicate with the cloud for updates which takes
more time. Still, analytics are computed without corrupted
or missing IoT data. This extreme case, of failing all the
communication links among IoT and cloudlets, highlights the
importance of having a sufficient amount of cloudlets in each
region to cope with concurrent link failures.

B. Runtime Footprint

In this set of experiments, we provide an analysis depicting
the network overhead of different components comprising

Fig. 7. Information delay vs concurrent fail-stop IoT-Cloudlet network links

our framework. Figure 8 depicts the network traffic over the
data and control plane for a simulation run of the baseline
configuration when random failures of the cloudlets’ leader,
guards, and cloudlets are introduced. The figure depicts the
network overhead for 5min where a 30s bootstrap period is
omitted. First, we observe four distinct segments (separated by
vertical lines). During each segment our framework maintains
a stable message exchange rate for both planes, with the data
plane traffic approximately x3.5 higher than the control plane
traffic. In the first segment (30s to 75s) the system exhibits no
faults (baseline). At the 75th second, the leader fails and we
observe a slight drop in both the control plane traffic (from
950KB/s to 850KB/s) and the data plane (from 3300KB/s to
3100KB/s). When the cloud discovers the leader failure, it
elects a new leader at the 88th second and the system recovers
back to a legal state, with a slight increase of the control plane
traffic (900KB/s). Next, at the 150th second both guards fail
and the traffic falls to 700KB/s and 2600KB/s for the control
and data plane respectively. As before, the cloud elects new
guards and the control plane traffic stabilizes at 750KB/s.
Finally, at the 225th second (4th segment) three cloudlets
fail and both control and data traffic drop to 550KB/s and
2100KB/s, respectively. These results show that a constant
number of messages is exchanged, validating the objectives
O1 and O3.

Next, we show that the control and data plane network traffic
scales linearly, as required by O2. Table I shows the results
of different configurations in percentage increments from the
baseline configuration.
Guards. We observe that the overhead of adding guards
increases linearly. Specifically, each additional guard adds
an overhead in the range of 4.75 − 5.68% for the control
plane traffic and 4.82 − 5.02% for the data plane traffic. It
is worth pointing out that the previous experiment in Figure 6
showed that even with all the guards failing concurrently,
the information latency remains stable, and therefore, for the
studied baseline configuration, having two guards balances
well the trade-off between overhead and information delay.
Cloudlets. The overhead of adding extra cloudlets, for redun-
dancy purposes, scales linearly while the IoT load remains
stable. Specifically, each additional cloudlet adds an overhead
in the range of 7.96−9.03% for the control plane, and for the

9

Fig. 8. Control and Data Plane Traffic

System
Change

Control Plane Traffic Change
Compared to Baseline (%)

Data Plane Traffic Change
Compared to Baseline (%)

3 Guards 4.75 5.02
4 Guards 10.38 9.64
5 Guards 17.04 14.50
6 Guards 22.06 19.44

20 Cloudlets 31.85 25.03
25 Cloudlets 76.63 56.38
30 Cloudlets 126.48 87.85

1500 IoT 46.76 43.25
2000 IoT 93.59 85.58
2500 IoT 140.18 127.51

TABLE I
NETWORK TRAFFIC OVERHEAD OVER TOPOLOGY CHANGES

data plane the increment is approximately 6.2%. Obviously,
the trade-off is straightforward. Increasing the cloudlets, de-
creases the probability of delaying information propagation
(e.g., as in the case of Figure 5 after 7 concurrent cloudlet
failures) at the cost of higher network traffic.

IoTs. By increasing the workload (IoT devices), again, the
network overhead is linearly increased. Each additional IoT
device adds a 0.094% overhead on the control plane traf-
fic, while for the data plane the increment ranges between
0.085 − 0.087%. This increase is attributed to the fact that
each cloudlet communicates with more IoT devices.

VII. CONCLUSIONS

This paper introduces a fault-tolerant framework for dis-
tributed control planes that enables fog services to cope with
a very broad fault model. To this end, we presented self-
stabilizing algorithms that guarantee automatic recovery within
a constant number of communication rounds without the need
for external (human) intervention. Using real-world data and
actual queries of interest from an intelligent transportation ser-
vice, we demonstrate the performance gains of our framework,
and thus the promise of self-stabilization in fog computing.
Our results show that despite information delays for extreme
cases of concurrent cloudlet failures, analytic computation is
correct, while the network overhead is proportional to the
number of cloudlets, guards, and devices. We believe that our
self-stabilizing framework is applicable to a wide range of fog
services requiring strong fault-tolerance guarantees.

Acknowledgement. This work is partially supported by the EU Com-
mission through RAINBOW 871403 (ICT-15-2019-2020) project and
by VINNOVA (FFI) AutoSPADA project (DNR 2019-05884).

REFERENCES

[1] W. Shi and S. Dustdar, “The promise of edge computing,” Computer,
vol. 49, no. 5, pp. 78–81, 2016.

[2] D. Trihinas, G. Pallis, and M. Dikaiakos, “ADMin: adaptive monitoring
dissemination for the internet of things,” in IEEE INFOCOM, 2017.

[3] L. Bittencourt, R. Immich, R. Sakellariou, N. Fonseca, E. Madeira,
M. Curado, L. Villas, L. DaSilva, C. Lee, and O. Rana, “The internet of
things, fog and cloud continuum: Integration and challenges,” Internet
of Things, vol. 3-4, pp. 134 – 155, 2018.

[4] T. He, H. Khamfroush, S. Wang, T. La Porta, and S. Stein, “It’s hard
to share: Joint service placement and request scheduling in edge clouds
with sharable and non-sharable resources,” in ICDCS, 2018, pp. 365–
375.

[5] D. Trihinas, G. Pallis, and M. Dikaiakos, “Low-cost adaptive monitoring
techniques for the internet of things,” IEEE Transactions on Services
Computing, pp. 1–1, 2018.

[6] D. Trihinas, L. Chiroque, G. Pallis, A. Fernandez, and M. Dikaiakos,
“ATMoN: Adapting the ”Temporality” in Large-Scale Dynamic Net-
works,” in 38th IEEE Distributed Computing Systems (ICDCS), 2018.

[7] A. Alarifi, F. Abdelsamie, and M. Amoon, “A fault-tolerant aware
scheduling method for fog-cloud environments,” PLOS ONE, vol. 14,
no. 10, pp. 1–24, 10 2019.

[8] S. Dolev, Self-Stabilization. MIT Press, 2000.
[9] E. W. Dijkstra, “Self-stabilizing systems in spite of distributed control,”

Commun. ACM, vol. 17, no. 11, pp. 643–644, 1974.
[10] Z. Georgiou, C. Georgiou, G. Pallis, E. M. Schiller, and D. Trihinas, “A

self-stabilizing control plane for the edge and fog ecosystems,” CoRR,
vol. abs/2011.02190, 2020.

[11] Y. Harchol, A. Mushtaq, J. McCauley, A. Panda, and S. Shenker,
“CESSNA: Resilient edge-computing,” in Proceedings of the 2018
Workshop on Mobile Edge Communications. ACM, 2018, pp. 1–6.

[12] C. Wang, C. Gill, and C. Lu, “Frame: Fault tolerant and real-time
messaging for edge computing,” in ICDCS, 2019, pp. 976–986.

[13] K. Wang, Y. Shao, L. Xie, J. Wu, and S. Guo, “Adaptive and fault-
tolerant data processing in healthcare iot based on fog computing,” IEEE
Transactions on Network Science and Engineering, pp. 1–1, 2019.

[14] V. Karagiannis, S. Schulte, J. Leitão, and N. Preguiça, “Enabling fog
computing using self-organizing compute nodes,” in 3rd IEEE Fog and
Edge Computing (ICFEC), 2019.

[15] “Istio.” [Online]. Available: https://github.com/istio/istio
[16] “Linkerd.” [Online]. Available: https://github.com/linkerd/linkerd
[17] G. Siegemund and V. Turau, “A self-stabilizing publish/subscribe mid-

dleware for iot applications,” ACM Trans. Cyber-Phys. Syst., vol. 2,
no. 2, pp. 12:1–12:26, Jun. 2018.

[18] M. Canini, I. Salem, L. Schiff, E. M. Schiller, and S. Schmid, “Re-
naissance: A self-stabilizing distributed SDN control plane,” in ICDCS,
2018, pp. 233–243.

[19] S. Chattopadhyay, S. Chatterjee, S. Nandi, and S. Chakraborty, “Aloe:
An elastic auto-scaled and self-stabilized orchestration framework for
iot applications,” in IEEE INFOCOM, 2019, pp. 802–810.

[20] S. Dolev, C. Georgiou, I. Marcoullis, and E. M. Schiller, “Practically-
self-stabilizing virtual synchrony,” J. Comput. Syst. Sci., vol. 96, pp.
50–73, 2018.

[21] A. Binun, M. Bloch, S. Dolev, R. M. Kahil, B. Menuhin, R. Yagel,
T. Coupaye, M. Lacoste, and A. Wailly, “Self-stabilizing virtual ma-
chine hypervisor architecture for resilient cloud,” in 2014 IEEE World
Congress on Services, 2014, pp. 200–207.

[22] P. Blanchard, S. Dolev, J. Beauquier, and S. Delaët, “Practically self-
stabilizing paxos replicated state-machine,” in Networked Systems NE-
TYS, 2014, pp. 99–121.

[23] “Dublin smart city bus network data.” [Online]. Available: https:
//data.smartdublin.ie/

[24] C. Arad, J. Dowling, and S. Haridi, “Message-passing concurrency
for scalable, stateful, reconfigurable middleware,” in Middleware 2012.
Springer Berlin Heidelberg, 2012, pp. 208–228.

[25] “Chaos monkey tool.” [Online]. Available: https://github.com/Netflix/
chaosmonkey

10

https://www.vinnova.se/p/autospada-automotive-stream-processing-and-distributed-analytics-oodida-phase-2/
https://github.com/istio/istio
https://github.com/linkerd/linkerd
https://data.smartdublin.ie/
https://data.smartdublin.ie/
https://github.com/Netflix/chaosmonkey
https://github.com/Netflix/chaosmonkey

	Introduction
	Related Work
	Problem and System Description
	Proposed Solution-.15em
	Correctness Proof
	Evaluation
	Information Delay
	Runtime Footprint

	Conclusions
	References

