
Query-Driven Descriptive Analytics for IoT
and Edge Computing

Moysis Symeonides∗, Demetris Trihinas†∗, Zacharias Georgiou∗, George Pallis∗, Marios D. Dikaiakos∗

∗ Department of Computer Science, University of Cyprus
Email: { msymeo03, trihinas, zgeorg03, gpallis, mdd }@cs.ucy.ac.cy

† Department of Computer Science, University of Nicosia
Email: { trihinas.d }@unic.ac.cy

Abstract—With consumers embracing the prevalence of ubiq-
uitously connected smart devices, Edge Computing is emerging
as a principal computing paradigm for latency-sensitive and in-
proximity services. However, as the plethora of data generated
across connected devices continues to vastly increase, the need
to query the “edge” and derive in-time analytic insights is more
evident than ever. This paper introduces our vision for a rich
and declarative query model abstraction particularly tailored
for the unique characteristics of Edge Computing and presents
a prototype framework that realizes our vision. Towards this,
the declarative query model enables users to express high-level
and descriptive analytic insights, while our framework compiles,
optimizes and executes the query plan decoupled from the
programming model of the underlying data processing engine.
Afterwards, we showcase a number of potential use-cases which
stand to benefit from the realization of query-driven descriptive
analytics for edge computing. We conclude by elaborating on the
open challenges that still must be addressed to realize our vision
and potential research opportunities for the academic community
to further advance the current State-of-the-Art.

Index Terms—Edge Computing, Cloud Computing, Big Data,
Stream Processing, Query Execution

I. INTRODUCTION

The emergence of the Internet of Things (IoT) is resulting
in the proliferation of a diverse set of smart and internet-
connected devices that are now diffused into our everyday
lives with the promise to change the way we understand,
monitor and interact with the physical and digital universe [1].
Inevitably, the number of devices and IoT generated data are
exploding, with reports stating that 2019 has entered with more
than 3.6 Billion IoT devices being used rigorously on a daily
basis,which are projected to generate 500ZB by the end of
the year [2], [3]. This means, more data and more traffic
on the already congested Internet highways. Consequently,
offloading data processing to remote clouds is constraining
IoT applications aspiring to offer latency-sensitive services
such as self-driving vehicles, video surveillance and content
streaming [4]. Thus, it seems inevitable that data needs to
be processed at the network edge to achieve shorter response
times, more efficient processing and less network pressure [5].

Edge computing refers to the enabling technologies allowing
computation to be performed at the logical extremes of the
network, such as on downstream data, on behalf of cloud

services, and upstream data, on behalf of IoT services [6]. The
rationale of edge computing is that computing should happen
at the proximity of the data source with the “edge” constituting
any computing and network resources along the path between
data sources and the cloud. In this context, as IoT hardware
continues to evolve, sensory data can be converted from raw
signals to relevant information in proximity to IoT sensors
instead of being transferred back-and-forth to the cloud [7].

To this end, IoT service providers are embracing big data
frameworks, such as Spark and Flink, to process big data
streams and extract analytic insights from edge realms, while
hiding most of the complexities related to resource man-
agement, scheduling, and fault tolerance [8]. However, these
frameworks are not designed for the unique characteristics
found in edge realms but are rather optimized for homoge-
neous machine clusters found in cloud infrastructures [9].
In contrast, edge servers are usually geo-distributed across
wide areas of coverage and, thus, data processing on the
edge incurs huge network penalties for task coordination and
data exchange [10] and serious privacy risks [11] in typical
IoT application scenarios, such as road and vehicle safety
surveillance [12]. Ignoring the reality that network “distance”
among edge servers is usually not uniform, can lead to serious
inefficiencies when data processing produces intermediate
results required to execute complex analytic queries [13].

Nonetheless, recently a number of frameworks have been
proposed to derive analytic insights for edge computing and
network telemetry. For example, Edgent [14] and Sonata [15]
are frameworks providing micro-kernel run-times with small
footprints that are particularly tailored to deriving streaming
analytics on IoT gateways, network routers,and edge devices.
However, the use of these, and of the aforementioned big
data frameworks, implies advanced knowledge of a particular
programming model for the underlying processing engine and
(usually) require multiple lines of code just to write a single
query [16]. This limits the ability of IoT platform operators to
quickly submit exploratory and ad-hoc queries not envisioned
beforehand in the system design phase. Therefore, the design
and implementation of query abstractions that are decoupled
from underlying processing engines and which can express
explicitly the modeling, compilation and optimization needs of

processing analytic insights on the edge, is an open research
challenge [17] [18]. The focus of this work is to introduce our
vision for query-driven analytics in edge computing realms by
rethinking the query description, compilation and execution.

The main contributions of this paper are:
• A rich and declarative query model which abstracts com-

plex analytics definition from the computing capabilities
of distributed data engines. This includes several query
operators to derive high-level analytic insights, along with
execution optimizations and constraints tailored for edge
computing to achieve latency, robustness and even privacy
requirements. Thus, IoT platform operators can express
complex analytic queries without any knowledge of the
programming model of the underlying processing engine
by solely using high-level directives and expressions. In
turn, analytic insight descriptions can be reused without
any alterations and executed on multiple and different
underlying processing engines.

• A high-level architecture of a prototype framework
implementing the envisioned query model. We elaborate
on all necessary modules that comprise the framework
and describe the input/output of each module and its
relationships. Moreover, we elaborate on how optimized
query plans are compiled and executed seamlessly on
(cooperative) data processing engines.

• Four realistic use-cases, which illustrate the value of
the envisioned query model and prototype framework.
They are inspired from diverse application areas, namely
transportation, datacenter energy regulation, healthcare
analytics, and microservices for content streaming.

• A description of the open challenges that must be
addressed to realize our vision, and potential research
opportunities for the academic community to further
advance the current State-of-the-Art.

• The formal grammar of the envisioned query model is
open-sourced1 and can be used to extend data processing
language parsers and query validation tools.

The rest of the paper is structured as follows: Section II intro-
duces the envisioned query model. Section III presents a pro-
totype framework for the query model. Section IV showcases
four diverse use-cases embracing the proposed framework.
Section V elaborates on the open challenges towards realizing
our vision. Finally, Section VI concludes the paper.

II. A QUERY MODEL FOR EDGE COMPUTING

The envisioned query model aspires to offer users the ability
to construct insights, namely new high-level and complex
analytics, out of raw data streams2. An insight can be seen as
another metric stream that is produced from the composition,
transformation, and aggregation of multiple metric streams.
Grammar 1 presents in EBNF format the expressivity of the
query model language syntax.

An Insight description at its simplest form is composed
by: (i) a COMPUTE statement applied on a Composite

1 https://github.com/UCY-LINC-LAB/edge-computing-query-model
2 The terms data stream and metric stream are used interchangeably.

(i.e., math expression, aggregate); (ii) an EVERY statement
denoting the Interval at which the composite is evaluated,
and can take the form of a TimePeriod (e.g., 5 MINUTES)
or be TupleBased (e.g., 1 KILO, meaning every 1000
datapoints); and (iii) an optional WITH statement capturing
an AND-separated list of user-defined query execution
optimizations and constraints. A user can assign an identifier
to an insight for it to be used as input to other insights.

InsightID = COMPUTE <Composite>

EVERY <Interval>

[WITH <Optimizations>]

A Composite is composed by a CompositeExpr,
which is either a simple expression, denoted as Expr, or
is recursively constructed via left and right-hand composite
expressions operated by a binary operation (e.g., ADD, DIV).
An Expr can be an Aggregate function (e.g., MEDIAN),
a MetricStream or a Number. Optionally, a Filter can
be attached to an Expr so that left-hand operations are only
processed if the filter predicate evaluates to true. As such, a
Filter is composed from applying a relational operation
and a CompositeExpr on a metric, with users also able
to concatenate multiple filters with logical operators. In turn,
an Aggregate is either window-based or accumulated. The
difference is in the application of the aggregate on the metric
stream. For window-based aggregates, a Window is needed
to denote the Interval of interest for aggregating values
which may take an optional temporal Offset for aggregates
to be applied on historical data. For accumulated aggregates
the result is computed solely based on previous values.

Both windowed and accumulated functions accept as in-
put a MetricStream, which is composed from a list of
Metrics and an optional Membership description. Multi-
variate metric streams composed of multiple dimensions (e.g.,
GPS coordinates) are supported with the ability for metric
dimensions to be used as query variables. The Membership
description is used in a Composite when metrics are
compiled as aggregates from multiple data sources; when
the Membership is omitted, only measurements satisfying
the metric description from all data sources are considered
in the insight computation. Filters can be attached and
applied directly to a MetricStream. Furthermore, in the
Composite definition, an optional BY statement is available,
which permits grouping the expression evaluation based on a
given Metric key.

Map operators (MapOp) can be applied over a
MetricStream to provide data transformations. Such
operators are the ABS which returns the absolute value
and the GEOHASH which hashes spatial coordinates to an
alphanumeric string. Since an abstract declarative model is
unable to cover every demand users may have, a user-defined
operator can be utilized. Specifically, with the keyword
FUNCTION, a user can denote the function name and block
of code or the location of a script to execute.

The optional WITH statement allows users to define certain

https://github.com/UCY-LINC-LAB/edge-computing-query-model

〈Insight〉 ::= [〈InsightId〉 =] COMPUTE 〈Composite〉 EVERY
〈Interval〉 [WITH 〈Optimizations〉]

〈Composite〉 ::= 〈CompositeExpr〉 [FROM 〈MetricStream〉] [BY
〈Metric〉]

〈CompositeExpr〉 ::= (〈CompositeExpr〉 〈BinOp〉 〈CompositeExpr〉)
| (INSIGHT〈InsightId〉 〈BinOp〉 INSIGHT〈InsightId〉)
| 〈Expr〉

〈Expr〉 ::= 〈Aggregate〉 [WHEN 〈Filters〉]
| 〈MetricStream〉
| 〈Number〉
| 〈MapOp〉 (〈Expr〉)

〈BinOp〉 ::= ADD | MUL | SUB | DIV
〈Aggregate〉 ::= 〈WindowedFunc〉 (〈Composite〉 { , 〈Composite〉 })

| 〈WindowedFunc〉 (〈MetricStream〉, 〈Window〉)
| 〈WindowedFunc〉 (〈MetricStream〉, 〈Window〉, 〈offset〉

)
| 〈AccumFunc〉 (〈MetricStream〉)

〈WindowedFunc〉 ::= SUM
| COUNT
| PRODUCT
| MEAN
| GEOMETRIC MEAN
| MIN
| MAX
| VARIANCE
| SDEV
| MEDIAN
| MODE
| PERCENTILE[〈Percent〉]
| TOP K[〈PositiveInt〉]
| HISTOGRAM[〈PositiveInt〉]
| FORECAST [〈PositiveInt〉]
| CORRELATION

〈AccumFunc〉 ::= RUNNING SDEV
| RUNNING COUNT
| RUNNING MEAN
| RUNNING MAX
| RUNNING MIN
| EWMA[〈Percent〉]
| PEWMA[〈Percent〉]

〈MetricStream〉 ::= 〈Metrics〉 [WHEN 〈Filters〉]
〈Metrics〉 ::= 〈Metric〉 { , 〈Metric〉 }
〈Filters〉 ::= 〈Filter〉 { [AND|OR] 〈Filter〉 }
〈Filter〉 ::= 〈Metric〉 〈RelOp〉 〈CompositeExpr〉
〈RelOp〉 ::= ‘>’ | ‘>=’ | ‘==’ | ‘!=’ | ‘<’ | ‘<=’ | ’IN’
〈InsightId〉 ::= 〈String〉
〈Metric〉 ::= 〈String〉
〈Window〉 ::= 〈Interval〉
〈offset〉 ::= 〈Interval〉
〈Interval〉 ::= 〈TimePeriod〉 | 〈TupleBased〉
〈TupleBased〉 ::= 〈PositiveInt〉 〈SizeUnit〉
〈SizeUnit〉 ::= D | H | K | M | G | T
〈TimePeriod〉 ::= 〈PositiveInt〉 〈TimeUnit〉 [AT 〈time〉]
〈TimeUnit〉 ::= MILLIS | SECONDS | MINUTES | HOURS
〈Optimizations〉 ::= 〈Optimization〉 [AND 〈Optimization〉]
〈Optimization〉 ::= SALIENCE〈PositiveInt〉

| MAX ERROR〈Percent〉 AND CONFIDENCE〈Percent〉
AND AWARENESS ON 〈Awareness〉

| SAMPLE (〈Percent〉|〈Size〉)
| SIGNATURE 〈HashCode〉
| ALLOW WHEN 〈Filters〉
| ALLOW ON (DEDICATED|〈PositiveInt〉 NODES)

〈Awareness〉 ::= COMPUTATIONS | ACCURACY
〈MapOp〉 ::= ABS | SQR | SQRT | ENCRYPT | GEOHASH | 〈udfName〉
〈UDF〉 ::= FUNCTION 〈udfName〉 (*〈param〉) { code }
〈udfName〉 ::= 〈String〉
〈param〉 ::= 〈String〉

Grammar 1: Query Model Syntax in EBNF

Fig. 1: Framework High-Level and Abstract Overview

optimization strategies and constraints to improve runtime per-
formance and privacy requirements. Specifically, SALIENCE
denotes the importance of an insight, allowing a user to
prioritize the execution of a particular query over others.
SAMPLE, on the other hand, allows users to specify that query
execution can be applied on a percentage of the available
measurements so that an approximate answer is given in a
fraction of the time required to execute the query on the entire
data. Our model enables users to set the MAX ERROR and
CONFIDENCE, which are optimization constraints allowing
for the query to be executed on a sample of the data,
where the constructed sample must satisfy the aforementioned
constraints. The AWARENESS ON statement defines execu-
tion policies that denote how the processing engine should
enforce optimization strategies. In particular, AWARENESS
ON COMPUTATION denotes that the processing engine must
attempt to minimize computation cost while still satisfying
other constraints; AWARENESS ON ACCURACY emphasizes
the priority of minimizing approximation errors. In terms of
privacy, the query model supports user role and data movement
restrictions. The keyword SIGNATURE permits a signature-
based, group of users and/or group of edge nodes to execute a
query. The ALLOW keyword provides an important constraint
for restricting execution to specific geographic regions when
in need of complying with certain data movement legislation
(e.g., data cannot be moved outside national borders). In turn,
users can specify the number of edge nodes (e.g., 3 NODES)
that are to be executed on or even denote that execution must
be restricted to a DEDICATED shared-nothing node.

III. A PROTOTYPE FRAMEWORK

Figure 1 provides a high-level and abstract overview of how
a framework servicing the envisioned query model should be
realized. Users and third-party services submit ad-hoc queries
to derive analytic insights irrespective of the underlying pro-
cessing engine via the framework API. Ideally, users should
also be able to compile and submit their queries through a user-
friendly dashboard. Adopting the declarative query modeling
approach, users describe analytic insights through a simple
and powerful query modeling language, instead of thoroughly

Fig. 2: Exemplary Abstract Syntax Tree (AST)

specifying and programming the sequence of the streaming
operations needed to compose the desired query. The former,
despite the flexibility and control offered, increases complexity
and can cause unnecessary pains, shifting user attention away
from the actual purpose of analytic insight description.

After query submission, the Parser decomposes the query
to form an Abstract Syntax Tree (AST) that materializes the
syntactic rules of Grammar 1. Figure 2 depicts the AST for the
first query in Example 1, where each subtree corresponds to a
grammar rule while the leaves are the tokens and symbols of
the query model. An insight is syntactically correct when the
tree can be successfully constructed, meaning that the grammar
rules have been matched. In the case of a syntax error, no valid
AST can be constructed and therefore the process must stop
and the user notified of the identified syntax mistakes.

If no error is found, the AST is next passed to the Optimizer
so that a query execution plan can be constructed by mapping
the AST to a pipeline of stream operations. However, a naive
mapping is extremely inefficient as it can potentially result
in increased data movement and unnecessary intermediate
re-computations. Therefore, the Optimizer must first ensure
that no circular or antagonizing predicates are found in the
AST to prevent error-prone and exhaustive query executions
at runtime. In turn, the Optimizer should also enrich the
query plan under construction to clean the input stream, early
on, from data not required in the query computation while
also devising a plan for increasingthe reuse of intermediate
results and adhering to in-memory caching of results from
previous executions. At the end of this process, the query
execution plan documents runtime scheduling and enforcement
decisions along with an optimized version of the AST. With
the application of the above steps early on, the optimized query
plan prohibits redundant data to pass for further processing,
saving valuable network and computational resources.

With the query execution plan in hand, the Compiler
proceeds by recursively traversing the (optimized) AST and
automatically mapping it to the respected sequence of stream
operators (e.g. map, reduce, filter) of the underlying data pro-
cessing engine programming model. For instance, the MEAN
should be mapped to the following code for Apache Spark:

Fig. 3: IoT-based Collaborative Edge for Transportation Services

stream.map((k,v) -> (k, (v,1)))
.reduceByKey(((v1,c1), (v2,c2))

-> (v1+v2, c1 + c2])
.map((k, (sum, count)) -> {

if (count != 0) {
avg = sum / count
return (key, avg)

} else {
return (key, 0)

}
})

The final output is a set of packaged stream processing jobs,
which contains a pipeline of streaming operations for each
analytic insight description.

IV. MODEL EXPRESSIVITY AND USE-CASES

This section introduces four realistic use-cases which aid the
illustration of the expressivity of the envisioned query model.

A. IoT Transportation Analytics

Suppose that a taxi company equips its fleet with GPS
tracking devices to derive real-time monitoring data in an
attempt to provide high-quality services for its customers, to
increase revenue and driver commissions. The devices collect
data such as trip start/end time and location, operating city
segment, fare amount, passenger count, etc. These metrics are
rigorously updated and disseminated at runtime to the closest
geo-distributed IoT gateway with the company installing mul-
tiple gateways across the city. To achieve even better services,
the company integrates real-time weather data from open-
access meteorological stations and makes agreements with the
public bus authority and an app-based car sharing service to
share real-time data (e.g., bus route delay, car operating city
block, etc) and form collaborative edge services (Fig. 3).

First, let us assume that management desires a summarized
view of certain descriptive statistics over different sliding
intervals. As such, the following queries compute: (i) the
average fare amount in a 1 hour sliding window with new
datapoints considered every 5 seconds and with fare amounts
grouped by operating city segment; and (ii) the city segment,
in a 10 minute sliding window, in which the buses of the
transportation authority are experiencing the largest route
delays (see Example 1). The former is a particularly useful
query as an increase in route delay experienced by buses is
a signal that the company should reroute taxis to the area to
potentially increase revenue.

average_fare_amount_per_area =
COMPUTE MEAN(taxis_fare_amount, 1 HOURS)
BY city_segment EVERY 5 SECONDS

max_bus_delay_per_area =
COMPUTE MAX(buses_delay, 10 MINUTES)
BY city_segment EVERY 5 SECONDS

Example 1: Descriptive Statistics

Our envisioned query model supports more than just de-
scriptive statistics with queries also composed by multiple
composite expressions and supporting different sliding win-
dows and updating intervals. The benefits of our approach are
twofold: First, users can compose more complex queries. Sec-
ond, the user can expand the metric stream evolution over time.
For example, if the taxi company wants to make suggestions to
its drivers, such as in which area they should focus to increase
their commissions, it can issue the following queries: (i) find
the top-5 city segments based on the difference between the
average total income of the current month compared to the
previous (1 month offset from the current);and (ii) find the
top-10 city segments in which the taxis gain the most profit
per passenger (see Example 2).
top_5_areas_increase =

COMPUTE TOP_K[5] (
(MEAN(total_amount, 1 MONTH)-

MEAN(total_amount, 1 MONTH, 1 MONTH)
) BY city_segment) EVERY 1 HOURS

top_10_taxis_most_profit_areas =
COMPUTE TOP_K[10](

SUM(total_amount, 1 MONTH) BY city_segment
/
COUNT(taxi_passenger, 1 MONTH) BY city_segment

) EVERY 1 HOURS

Example 2: Composite Analytic Queries

Querying streaming data from multiple data sources is not a
trivial process. To fill this gap, the query model is transparent
towards data sources. Example 3, depicts a query description
which outputs the city segments with the least number of
vehicles in a 15min sliding window when the temperature
drops below 10◦C by integrating data from the taxi fleet, bus
network, car sharing service and meteo stations.
city_segment_min_num_of_vehicles =

COMPUTE MIN(
COUNT(buses, 15 MINUTES) BY city_segment +
COUNT(sharing, 15 MINUTES) BY city_segment +
COUNT(taxis, 15 MINUTES) BY city_segment

) WHEN temperature <= 10 EVERY 10 SECONDS

Example 3: Query with Multiple Data Sources

A more sophisticated case is forecasting metric values to
make better decisions. Example 4, depicts a query description
where the taxicab management issues a query to forecast
the mean bus delay per bus stop for the next 3 hours and
filter the metric values so that only buses experiencing delays
(bus delay > 0) are consider in the mean calculation. De-
lays in public transportation can potentially increase taxicab
income and this query gives insight to which set of bus stops
are, and potentially will be, experiencing delays.

filtered_forecasting_delay =
COMPUTE FORECAST[3](

MEAN(bus_delay WHEN > 0, 1 HOURS)
) BY stopID EVERY 1 MINUTES

Example 4: Metric Filtering and Forecasting

The companies decide to open a public interface which
allows third-party services to run real-time queries on top of
their APIs. For example, a travel application can issue a query
to find the closest means of transportation for its customers
by using the GEOHASH function, with geohash length equals
to ten. Example 5, depicts such a query where a customer
of the travel app is interested in finding the closest taxis or
car-sharing vehicles, but not buses, to transport them.

closest_taxis_car_sharing_vehicles =
COMPUTE vehicleID
FROM (taxis, car_sharing)
WHEN GEOHASH[10](cusLoc) == GEOHASH[10](vehLoc)
EVERY 1 MINUTES

Example 5: Find Closest Datapoints

We note that this use-case is inspired by publically available
data from the New York transportation authority [19], the
Dublin smart city bus network [20] and Uber [21].

B. Energy Consumption in Datacenters

Datacenter energy consumption can reach up to 10 KW/min
with the UN reporting that in 2016 datacenters accounted for
at least 2% of global greenhouse gas emissions [22]. ICT
giants triggered by economic and environmental incentives, are
expanding their datacenters with the use of renewable energy
sources (e.g., wind, solar). This, motivates us to investigate the
use of our query model for intelligent adjustment of datacenter
energy consumption to variations of energy production and
fluctuations in computing demand [23]. In this use-case,
suppose that an ICT firm has three ”green” datacenters (DC-
A, DC-B and DC-C), which are powered by both the national
electricity provider and photovoltaic power harvesting stations.
A wide range of sensors are placed in all datacenter racks and
the photovoltaic stations.

At first, the engineering team for DC-A wants to monitor
the temperature of all physical racks in the datacenter and
receive real-time alerts only when extreme values are detected.
A measurement, in this case, is considered abnormal when the
current value is more than three standard deviations from the
running mean. This query is depicted in Example 6.

abnormal_temp = COMPUTE rackID
WHEN temp > (RUNNING_MEAN(temp)

+ 3 * RUNNING_SDEV(temp))
EVERY 5 SECONDS

Example 6: Abnormal Value Detection

Some queries are more latency-independent than others,
e.g., a reporting query that runs once a day and summarizes
daily statistics can be delayed for a few seconds or even
minutes, without any inconvenience. Example 7, first, depicts
a query deriving a 5-bucket histogram on the daily energy
consumption of each rack and features a salience of 2 to denote

that, in the case of a high load influx, this query should not be
prioritized over queries with higher priority (default salience is
0). Thus, high priority queries are executed first, until resource
saturation, and other queries are queued until resources are
released. As such, the latter query is prioritized over other
queries. In turn, as smoke is of utmost importance to detect
possible fires, platform operators can also set the DEDICATED
flag to enforce the underlying processing engine to guarantee
that the query is executed on a shared-nothing (edge) server.

datacenter_energy_consumption_histogram =
COMPUTE HISTOGRAM[5](

daily_energy_consumption
) BY rackID EVERY 1 DAY AT 23:59 GMT
WITH SALIENCE 2

smoke_mean = COMPUTE MEAN(smoke)
BY rack_room EVERY 1 SECONDS
WITH SALIENCE 5 AND ALLOW ON DEDICATED

Example 7: Prioritized Query Execution

Next, assume operating costs per datacenter are modeled as
the multiplication of local KWh cost and datacenter electrical
energy consumption minus renewable electricity generation.
Moreover, there is a set of compute/energy intensive queries
which can increase the company operating costs. To tackle
these cases, the firm decides to adaptively run these queries on
the datacenter currently featuring the least costs. The following
depicts how one can model the previous statement.

cost = COMPUTE (
PRICE_PER_KWh * (

MEAN(consumption, 1 HOUR) BY DC_ID -
MEAN(generated_solar_energy, 1 HOUR) BY DC_ID

)
) EVERY 15 MINUTES

query = COMPUTE MEAN(consumption, 5 MINUTES)
EVERY 1 MINUTES
WITH ALLOW WHEN dc_cost == MIN(cost)

Example 8: Adaptive and Cost-aware Query Execution

Sampling enables the execution of a query description on
a portion of the data stream to significantly increase query
response time. An abstract query language should hide details
of the sampling technique implementation from the user and
only expose parameterization. Taking this into consideration,
a user can set the sample size at the query level. The following
query is executed on 40% of data stream.

sample_energy_generation =
COMPUTE MEAN(energy, 30 MINUTES)
BY rackID EVERY 1 MINUTES
WITH SAMPLE 0.4

Example 9: Sample Query Execution

However, sampling introduces error in the query results. Ap-
proximation error is acceptable for certain queries but it should
be measurable. As such, users can use sampling and bound the
error instead of defining the sample size. Example 10 depicts
such a case where the query is executed on a sample of the
data with the relative error upper-bounded at 5% in a 95%
confidence interval. In turn, by applying the AWARENESS ON

Fig. 4: Geo-Distributed Clinic Network

COMPUTATIONS policy, the query attempts to minimize the
number of computations assuming the error constraints are still
satisfied by the processing engine.

sampling_computation_awareness =
COMPUTE PEWMA[0.5](energy) BY rackID
EVERY 1 MINUTES
WITH CONFIDENCE 0.95 AND MAX_ERROR 0.05
AND AWARENESS ON COMPUTATIONS

Example 10: Computation Awareness and Bounded Sampling Error

Another possible execution strategy configuration is applying
AWARENESS ON ACCURACY, where the underlying process-
ing engine must prioritize accuracy guarantees in favor of
compute offloading, e.g., achieving a certain sampling size.

C. Privacy-Aware Healthcare Analytics

In 2017 the average healthcare cost per capita in the US was
$10,224 [24]. Healthcare-service digitization is one promis-
ing approach for reducing healthcare costs and improving
healthcare efficiency. However, national and regional privacy-
preserving regulations render the processing of health-related
data a complex endeavor. To this end, IoT-based healthcare
networks must implement integrated and secure privacy pre-
serving mechanisms in their service provision.

In this general context, suppose that there exists a healthcare
provider with a number of private clinics under its network
spanning across a large geographic region, e.g., European
Union (Fig. 4). Each patient holds a personal health card that
gives permission to visit any clinic in the healthcare provider
network. When a doctor examines a patient, the healthcare
provider system generates a smart contract on the patient’s
card and any data part of the transaction is encrypted before
being published to the IT infrastructure. Furthermore, we
assume there are patients who need of daily health monitoring,
and who are given home monitors and wearable devices [25].
These devices publish encrypted biosignals such as blood
pressure, heartbeat rate, sugar levels and more. Next, we
showcase a series of exemplary insights derivable by the
envisioned query model.

Patients with long-term illnesses (i.e., diabetes, arrhythmia)
are equipped with the health monitoring devices. The health-
care provider correlates every device with patient’s card id, so
that every measurement is a new transaction for the system.
The nearest clinic is immediately notified when a patient is

facing an urgent incident. To achieve this, a set of continuous
queries are run for each patient like the following:
extreme_heartbeat =

COMPUTE MEAN(heart_beat, 1 MINUTE)
WHEN >= 190 BY patientID
WITH SIGNATURE ’authority_signature’

Example 11: Signature-Based Encrypted Query

The identity of a patient must always remain private, although
when an incident occurs, the nearest clinic must be informed
to take action and immediately send an ambulance. Due to
privacy concerns, patient data is only accessed by signature-
based decryption. A signature is unique for each entity in
the system. For instance, the nearest clinic has a signature
that can decrypt the data of its patients and any patient in
need that is in its geographic jurisdiction. In turn, a patient
and his/her signature (health card) can only decrypt his/her
data. Therefore, a doctor has access to a patient data streams
only if there is an alarming situation which may escalate
to a serious emergency (e.g., patient heartbeat is over 190
bpm). Privacy-aware query abstractions are supported by the
envisioned query model. Therefore, when a doctor tries to run
a query, our system evaluates first the rule mentioned above,
then the doctor’s query will run only on data he has access to.
COMPUTE patient_stream EVERY 5 MINUTES

WITH
ALLOW WHEN MEAN(heart_beat, 1 MINUTES) >= 190

AND doctor_id IN (doctor_ids)
AND region == clinic_region

Example 12: Restricted Access to Query Results

The spread of diseases is crucial both for epidemiologists
and healthcare authorities. A common timeseries or time met-
ric evolution analysis can provide useful evidence of epidemic
alarms. For instance, even a small increment in the prevalence
of a disease (e.g., 2%) can put the public in significant danger.
The following insights detect the previous statement and can
be a useful indicator for public healthcare services.
malaria_12_hour =
COMPUTE(
COUNT (disease WHEN == malaria, 12 HOURS)/
COUNT(disease,12 HOURS))

BY region EVERY 12 HOURS

malaria_current =
COMPUTE(

RUNNING_COUNT(disease WHEN == malaria)/
RUNNING_COUNT(disease))

BY region EVERY 12 HOURS

malaria_alert =
COMPUTE(INSIGHT malaria_12_hour

- INSIGHT malaria_current)
WHEN >= 0.02 EVERY 12 HOURS

Example 13: Data Stream Temporal Evolution

Correlation is a statistical technique employed to evaluate
potential association between two variables, that is very use-
ful in data-science analysis scenarios. Therefore, assume the
healthcare provider wants to evaluate the correlation of heart
attack probability and patient age grouped by their sex for a
sliding time window. The following demonstrates this query:

correlation =
COMPUTE CORRELATION (

COUNT(disease WHEN == heart_attack),
MEAN(patient_age)

) BY patient_sex EVERY 1 MONTHS

Example 14: Correlation Analysis

D. Microservices Auto-Scaling for Content Streaming

Software teams of all sizes are embracing the DevOps
philosophy to rapidly deliver applications by adopting the mi-
croservice paradigm which decomposes business functionality
to discrete and loosely-coupled services [26]. According to
recent studies, monitoring and auto-scaling are two of the
most important challenges for microservices at scale [27].
This use-case explores content streaming (e.g., video, music,
documents) when the microservices paradigm is embraced
to offer in time and highly-available content to users across
the world. From a design point of view, the application
consists of separate services, each performing a particular
task: user management, content browsing, content streaming
and front-end; are deployed over multiple cloud availability
regions. Monitoring agents placed within the environment and
application logic, publish metrics to an analytics service which
uses the envisioned query model. The role of this service
is to analyze data regarding resource utilization (e.g., CPU,
memory, network) and application behavior (e.g., throughput,
active users). The service provider will submit a set of ad-hoc
queries to detect potential performance inefficiencies, security
risks and resource behavior abnormalities.

The most concrete question in a company is how to provide
the best services with the minimum cost. Achieving high QoS
with microservices is not a trivial task. One approach is to
continuously monitor a set of low-level metrics (e.g. latency)
and when an alert is raised to enable the Auto-Scaler to execute
a scaling action (e.g., add new service instance). Thus our
system can send data to the Auto-Scaler when specific insights
generate values like the following queries:

mean_latency = COMPUTE MEAN(latency) EVERY 5 SECONDS

scale_out = COMPUTE
INSIGHT mean_latency WHEN >= 500

EVERY 5 SECONDS

scale_in = COMPUTE
INSIGHT mean_latency WHEN < 500

EVERY 5 SECONDS

Example 15: Insights used in Other Queries

Moreover, our model accepts multiple conditions connected
by logical operators which support users declaring complex
queries. The following rule evaluates to true if the average
CPU of all microservices is over 80%, in a 5 minute window,
and, at the same time, memory usage is over 70%:

scale_out = COMPUTE instance_id WHEN
INSIGHT avg_cpu >= 80 AND
INSIGHT avg_ram >= 70

EVERY 5 SECONDS

Example 16: Complex Rule-Based Scaling

However, a naive resource utilization monitoring approach can
potentially end up provisioning unnecessary resources and
increase cloud costs. For example, from a QoS perspective,
a streaming provider desires service latency to be well below
500ms and at the same time minimize costs. According to cost,
we should have in mind that there are many cloud providers
and each provider has different pricing polices. Below we
describe how a user can find the service with the maximum
latency, which exceeds the 500ms per region:

services_latency = COMPUTE
MEAN(latency, 5 MINUTES) WHEN > 500 BY service
EVERY 60 SECONDS

overloaded_services = COMPUTE
MAX(INSIGHT services_latency) BY region
EVERY 60 SECONDS

Example 17: Overloaded Services of Each Region

Streaming content features specific restrictions for different
geographic regions and countries. For instance, the content
provider has permission for content (.e.g, movie) in country
A but not in country B. Thus, requests for content from
country B must be denied. To offload the content streaming
service, the IT department decides to redirect these requests
to the analytics service and filter the content permission
requests there. However, this functionality does not exist by
default in the query model. Nevertheless, the query model
grammar supports user-defined functions. As such, the IT team
creates two UDFs, the first ipToCountry which takes the
IP as input and returns the country of origin, and the second
legalCountries which takes as input the contentID and
returns a set of countries in which distribution of a particular
content is permitted.

FUNCTION ipToCountry(userIP){....}
FUNCTION getLegalCountries(contID){....}
new_requests = COMPUTE request

WHEN ipToCountry(userIP)
IN getLegalCountries(contID)

EVERY 5 SECONDS

Example 18: User-Defined Functions

V. QUERY MODEL REALIZED ON THE EDGE

This Section describes open challenges that must be ad-
dressed and potential research opportunities for the academic
community to further advance the current State-of-the-Art.

A. Reusing Intermediate Analysis Results

To date, distributed data processing engines (e.g., Hadoop,
Spark) de-facto consider and evaluate both analytic queries
and composite expressions as independent processes. Thus,
execution is completely isolated, even if two or more queries
and composites, feature pipeline components which operate
on the same composite ruling and data. However, a process-
ing engine may execute the same operators multiple times
in a single query. This increases compute time and incurs
significant communication penalty if the tasks are scheduled
for execution on multiple and different machines because

of task coordination and data exchange [10]. Furthermore,
ignoring that the network connections between edge servers
are usually not uniform, can lead to serious inefficiencies
when data processing produces intermediate results [13]. Thus,
taking into consideration how to re-use intermediate results,
from the query execution plan definition, can dramatically
improve performance. Although, reusing intermediate results
has been studied [28] [29], it still remains an open challenge
for edge computing, and distributed streaming processing in
general. The following are cases where reducing intermediate
recomputations can significantly improve performance:

1) Same composition across different insights: A user
submits two different queries in which there are common
operators applied to the same data stream(s). For instance, a
query computes the average of a metric in a 10min window and
another which filters all metric values exceeding three times
the previous average. With only this system optimization, in
our prior work [16], we noticed a significant response rate
improvement of up to 38% in edge realms.

2) Same operators across different compositions: The user
submits two different queries with completely different op-
erators. The system generates some possible query execution
plans and tries to figure out possible gains in each case. For
instance, a user wants to know the standard deviation and the
sum of the same portion of data. An analytics engine must
consider which is more profitable: (1) computing separately
standard deviation and sum, or (2) compute the sum, once,
and then calculate the standard deviation as composition of
sums and counts.

3) Same composition across different offsets: We assume
the following example, where global consumption has
a composite expression that includes the mean of electricity
consumption of last hour and the mean of electricity consump-
tion an hour before. An analytics engine must recognize this
state and compute and cache the first part of the composite
expression, for an hour, in order to reuse it later.

global_consumption =
COMPUTE

MEAN(consumption, 1 HOUR)/
MEAN(consumption, 1 HOUR, 1 HOUR)

EVERY 15 MINUTES

Example 19: Indermentiate Results Optimization

4) Same data stream, but with sampling: Now, we have
two compositions with the same composite expression but
with different sampling rate. The simplest way is to re-use
the composition of the insight with the maximum portion of
the sample. On the other hand, we can apply data shedding at
various places in the query plan [30]. This approach discovers
the optimal placement for data shedders according to reusing
intermediate results in other queries, although it still ignores
the network overhead.

5) Re-use results across users: In this situation, users
decide to share or not (intermediate) results. If they chose
to share, a smart contract, possibly enabled via blockchain
technology, will be created between interested users. This

contract tracks shared results and the system can retain both
privacy and transparency in the query execution cycle.

B. Security and Privacy

Security and data privacy are essential end user require-
ments for IoT services which collect and process sensitive
data. Zhang et al. [31] enumerate security requirements for
edge computing: confidentiality, integrity, availability, au-
thentication, access control, and data privacy. The classi-
cal security problems inherited from cloud computing are
hurting edge computing. In addition, keeping computations
near data sources significantly benefits latency-sensitive ser-
vices, although, security-wise low-power edge services are
susceptible to DDoS attacks [32]. In turn, offloading sensitive
data from IoT devices to the cloud hinders man-in-the-middle
attacks [33]. The envisioned query model features provisions
for data confidentiality, restricted access control and preserving
data access across geographic regions. However, all security
threats must be defeated in every layer of the underlying
system by enforcing appropriate security mechanisms comple-
menting privacy-aware query-driven analytics, which is still a
significant and open research challenge.

C. Multiple and Heterogeneous Data Processing Engines

The query model abstractions cover a wide range of useful
query-driven analytic operators which hide implementation
details from the underlying data processing engines. Con-
sequently, moving away from the datacenter and closer to
the “edge” means that not only data sources are diverse and
spanning across geographic regions, but also that multiple
and heterogeneous data processing engines must be combined
together to derive deep analytics and in-time insights. To ac-
complish this, one approach is to embrace a federation layer on
top of the distributed processing engines that orchestrates ana-
lytic job scheduling, heterogeneous resource (de-)provisioning
and data exchange among these engines [34] [35]. Another
approach is for distributed processing engines to “speak” the
“same” language by embracing some open specification which
eliminates the overhead of a federation layer. Organizations
such as OpenFog Consortium 3 and OpenEdge Computing4

are promising initiatives already developing standards for edge
computing architectures and resource exchange. However,
there still is need for significant progress in terms of devis-
ing open and standardized mechanisms for data management
developed on top of edge resources that will provide high-
speed and reliable data exchange between edge participants
and cross-fog services.

D. Query Execution Placement

Queries and data computations in general have various
characteristics. For instance, queries may require multiple re-
computations, others may require numerous data exchanges
among worker nodes and others may have privacy restrictions.
A query execution engine must comply with these constraints.

3 https://www.openfogconsortium.org/
4 http://openedgecomputing.org/

Our query model features a number of edge computing con-
straint operators for specifying where to execute a query, e.g.,
dedicated execution, selecting number of edge servers and
restricting execution availability region. The current State-
of-the-Art attacks the reduction of: (i) computations and
energy consumption [1] [36], by dynamically adapting the
data processing rate when certain error can be tolerated; and
(ii) dynamically adapting data exchange intensity between
cooperating workers of the query processing engine [37] [38]
and the cloud [39] [40], when deriving complex analytic
insights in geo-distributed environments. However, there is still
need of significant progress in constraining query execution
to comply with privacy-preserving constraints across edge
computing resources.

E. Sampling, Uncertainty and Multiple Data Streams

Sampling enables query execution on a fraction of the
data to significantly improve response time by receiving
approximate answer(s). This is extremely beneficial when
exact answers are not required and resources are limited.
In our query model, sampling is abstracted by hiding the
implementation details of the underlying technique. Moreover,
users can either request the execution on a specific sample
size uniformly derived or denote the maximum error that can
be tolerated in specific confidence intervals to reduce output
uncertainty [41]. In turn, users can also specifically instruct the
underlying engine to minimize the number of computations or
approximation error as long as certain constraints are satisfied.
The latter is particularly useful when the sample size is
explicitly requested so that compute power is used to improve
sample quality.

In regards to the sampling technique, both reservoir and
stratified sampling have been explored for edge computing. In
reservoir sampling, a random and fixed sample is probabilisti-
cally selected without replacement from a dataset of unknown
size. This property and the fact that it can be performed
online makes it ideal for streaming analytics. However, each
measurement is selected with equal probability and this can
significantly alter the sample statistical quality, if multiple and
heterogeneous data sources comprise the input stream [42].
In stratified sampling, each data source is sampled inde-
pendently [43]. This reduces the error and improves sample
quality, but works only if the statistics of all data streams
are known (e.g., stream length). However, this assumption is
unrealistic in practice.

To address this problem, Weighted Hierarchical Reservoir
Sampling, denoted as WHRS, combines both reservoir and
stratified sampling [44]. In this approach, the input is first
stratified on each worker receiving measurements into data
streams. Then, reservoir sampling is applied but with the
difference that the reservoir size of each independent data
source is dynamically adjusted at runtime. This is achieved
through a weighting mechanism, where the significance of
each stratified reservoir is periodically updated. Using WHRS
in edge realms has shown promising results [44] [16].

https://www.openfogconsortium.org/
http://openedgecomputing.org/

Nonetheless, sampling in geo-distributed environments suf-
fers from privacy leaks [45]. In turn, there is still significant
progress to be made when input is comprised of multivariate
and dependent metrics as the complexity to reduce the sam-
pling space can potentially be more expensive than processing
the entire input stream. A radically different approach is
envisioned by Triantafyllou et. al [46], whom suggest data-less
query execution by introducing machine learning algorithms
to learn from the results of previous, and related, queries and
will predict within certain confidence the results of the current
query.

F. Query Prioritization

When a streaming engine is in stable state, queries run
simultaneously but when high workload occurs the underlying
engine may not be able to process them concurrently. Current
systems assume queries are of equal importance and are
processed in a round-robin fashion. This forces the underlying
engine to build up irreversible queuing delays for all queries.
In the literature, implementations use load shedding from
queries to defeat overload circumstances despite that users
need high-quality results only on some queries [30]. The query
model enables users to define the priority for query execution
which reflects their importance according to user preferences.
To this end, when a high influx of workload happens, queuing
low prioritized queries will alleviate system pressure without
affecting result quality of high prioritized and important in-
sights. Nonetheless, this is a significant open challenge which
cannot be solved by simply employing a priority queue for
query execution. Consider for instance two queries A and B,
with B the higher priority one. Although B must be prioritized,
B may only be scheduled for execution every 5s while A
every second. Clearly, these queries overlap every 5s and
priority based execution should only be considered then. In
addition, operators, by submiting ad-hoc queries, can affect
the performance of the underlying engine and, consequently,
every long-running streaming query, thus, prioritization is also
bound to change.

G. Adaptive Configuration, Scheduling and Load Balancing

Tuning big data analytics frameworks is a mix of varying
configurations which could be changed between applications,
infrastructures, and processing engines. The problem is getting
even harder when we introduce to the picture stream process-
ing in edge realms. Whenever an insight generates results, it
could possess different resources, thus, the static definition
of configurations, scheduling and work balancing could be
inefficient.Approaches for dynamic tuning of configurations
on distributed engines already exist [47] [48]. For instance,
to achieve low latency, high throughput, and adaptability; a
parameter which can increase the parallelism of a streaming
system (e.g., Spark) is the dynamic configuration of the data
block size [49] [50], while also, adjusting the number of
batches that are grouped together [29] and the number of
concurrent queries executed together [51]. Nonetheless, pro-

viding adaptive configuring, focused on Edge perspectives, to
improve query execution robustness is still an open challenge.

VI. CONCLUSION

This paper attempts to bridge the gap in the current State-
of-the-Art of IoT and edge computing research, by introducing
a rich and declarative query model for offering IoT services
query-driven descriptive analytics on the ”edge.” Concisely,
users rapidly compose analytic queries with a framework
which automatically compiles and schedules these queries into
processing jobs, utilized for the edge environment, in order
to derive runtime analytic insights. We have described the
functional expressivity of the query model like complex query
definition, approximate answers, privacy constraints, execution
placement, user-defined functions and more. Furthermore, we
have outlined a prototype framework embracing the envi-
sioned query model. With the framework, query definition
is decoupled from the programming model of the underlying
distributed processing engines. Moreover, we introduced a set
of possible IoT-based use-cases which profit from query-driven
descriptive analytics on the edge. Finally, we demonstrate open
challenges which must be tackled to realize our vision and
possible research opportunities in the area.
Acknowledgement. This work is partially supported by the EU
Commission in terms of Unicorn 731846 (H2020-ICT-2016-1)
and ICARUS 780792 (H2020-ICT-2016-2017) projects and by the
Cyprus Research Promotion Foundation in terms of COMPLEMEN-
TARY/0916/0010 project.

REFERENCES

[1] D. Trihinas, G. Pallis, and M. Dikaiakos, “Low-Cost Adaptive Mon-
itoring Techniques for the Internet of Things,” IEEE Transactions on
Services Computing, pp. 1–1, 2018.

[2] ITPro, “Next big things in IoT predictions for 2020,” https://goo.gl/
MXaahB, 2018.

[3] Cisco, “Global Cloud Index,” https://goo.gl/KYDLkk, 2018.
[4] B. Zhang, N. Mor, J. Kolb, D. S. Chan, K. Lutz, E. Allman,

J. Wawrzynek, E. Lee, and J. Kubiatowicz, “The cloud is not enough:
Saving iot from the cloud,” in 7th USENIX Workshop on Hot Topics in
Cloud Computing (HotCloud 15), Santa Clara, CA, Jul. 2015.

[5] W. Shi and S. Dustdar, “The promise of edge computing,” Computer,
vol. 49, no. 5, pp. 78–81, May 2016.

[6] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp.
637–646, Oct 2016.

[7] X. Sun and N. Ansari, “Edgeiot: Mobile edge computing for the internet
of things,” IEEE Communications, vol. 54, no. 12, pp. 22–29, 2016.

[8] K. Kloudas, M. Mamede, N. Preguiça, and R. Rodrigues, “Pixida:
Optimizing data parallel jobs in wide-area data analytics,” Proc. VLDB
Endow., vol. 9, no. 2, pp. 72–83, Oct. 2015.

[9] J. Ren, H. Guo, C. Xu, and Y. Zhang, “Serving at the edge: A scalable
iot architecture based on transparent computing,” IEEE Network, vol. 31,
no. 5, pp. 96–105, 2017.

[10] D. Trihinas, L. F. Chiroque, G. Pallis, A. F. Anta, and M. D. Dika-
iakos, “ATMoN: Adapting the ”Temporality” in Large-Scale Dynamic
Networks,” in 2018 IEEE 38th International Conference on Distributed
Computing Systems (ICDCS), July 2018, pp. 400–410.

[11] Q. Zhang, Y. Wang, X. Zhang, L. Liu, X. Wu, W. Shi, and H. Zhong,
“Openvdap: An open vehicular data analytics platform for cavs,” in 2018
IEEE 38th International Conference on Distributed Computing Systems
(ICDCS), July 2018, pp. 1310–1320.

[12] M. Satyanarayanan, P. Simoens, Y. Xiao, P. Pillai, Z. Chen, K. Ha,
W. Hu, and B. Amos, “Edge analytics in the internet of things,” IEEE
Pervasive Computing, vol. 14, no. 2, pp. 24–31, Apr.-June 2015.

https://goo.gl/MXaahB
https://goo.gl/MXaahB
https://goo.gl/KYDLkk

[13] V. D. Maio and I. Brandic, “First hop mobile offloading of dag
computations,” in 2018 18th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGRID), May 2018, pp. 83–92.

[14] Apache, “Edgent,” http://edgent.apache.org/, 2019.
[15] A. Gupta, R. Harrison, M. Canini, N. Feamster, J. Rexford, and

W. Willinger, “Sonata: Query-Driven Streaming Network Telemetry,”
in Proceedings of SIGCOMM’18, Aug 2018.

[16] Z. Georgiou, M. Symeonides, D. Trihinas, G. Pallis, and M. Dikaiakos,
“StreamSight: A Query-Driven Framework for Streaming Analytics in
Edge Computing,” in Proceedings of the 11th International Conference
on Utility and Cloud Computing (UCC 2018), 2018.

[17] A. Jonathan, A. Chandra, and J. Weissman, “Multi-Query Optimization
in Wide-Area Streaming Analytics,” Proceedings of the ACM Symposium
on Cloud Computing - SoCC ’18, pp. 412–425, 2018. [Online].
Available: http://dl.acm.org/citation.cfm?doid=3267809.3267842

[18] S. Nastic, S. Sehic, M. Vgler, H. L. Truong, and S. Dustdar, “Patricia –
a novel programming model for iot applications on cloud platforms,” in
2013 IEEE 6th International Conference on Service-Oriented Computing
and Applications, Dec 2013, pp. 53–60.

[19] NYC, “Taxi & Limousine Commision,” https://goo.gl/X9rCpq, 2018.
[20] Dublin, “Smart City ITS,” https://data.smartdublin.ie/, 2018.
[21] Z. ul-hassan Usmani, “My uber drives dataset (kaggle),” 2017.
[22] U. N. C. Change, “ICT Sector Helping to Tackle Climate Change,” https:

//unfccc.int/news/ict-sector-helping-to-tackle-climate-change, 2016.
[23] A. Tryfonos, A. Andreou, N. Loulloudes, G. Pallis, M. D. Dikaiakos,

and G. E. G. Nikolas Chaztigeorgiou, “ENEDI: Energy Saving in
Datacenters,” in Global Conference on Internet of Things, ser. 2018
IEEE GCIoT, 2018.

[24] OECD, “Health Statistics 2017,” https://goo.gl/tVcdkK, 2017.
[25] A. Tsavourelou, N. Stylianides, A. Papadopoulos, M. D. Dikaiakos,

S. Nanas, T. Kyprianoy, and S. P. Tokmakidis, “Telerehabilitation
Solution: Conceptual Paper for Community-Based Rehabilitation of
Patients Discharged after Critical Illness,” International Journal of
Telerehabilitation, vol. 8, no. 2, pp. 61–70, 2016.

[26] D. Trihinas, A. Tryfonos, M. Dikaiakos, and G. Pallis, “DevOps as
a Service: Pushing the Boundaries of Microservice Adoption,” IEEE
Internet Computing, vol. 22, no. 3, pp. 65–71, 2018.

[27] “Red Hat 2017 Microservices Survey,” https://www.redhat.com/en/blog/
state-microservices, 2018.

[28] A. Wasay, X. Wei, N. Dayan, and S. Idreos, “Data Canopy,” Proceedings
of the 2017 ACM International Conference on Management of Data -
SIGMOD ’17, pp. 557–572, 2017.

[29] S. Venkataraman, A. Panda, K. Ousterhout, M. Armbrust, A. Ghodsi,
M. J. Franklin, B. Recht, and I. Stoica, “Drizzle: Fast and Adaptable
Stream Processing at Scale,” Proceedings of the 26th Symposium on
Operating Systems Principles - SOSP ’17, 2017.

[30] B. Babcock, M. Datar, and R. Motwani, “Load shedding for aggregation
queries over data streams,” Proceedings - International Conference on
Data Engineering, vol. 20, pp. 350–361, 2004.

[31] J. Zhang, B. Chen, Y. Zhao, X. Cheng, and F. Hu, “Data security
and privacy-preserving in edge computing paradigm: Survey and open
issues,” IEEE Access, vol. 6, pp. 18 209–18 237, 2018.

[32] K. Bhardwaj, J. C. Miranda, and A. Gavrilovska, “Towards IoT-DDoS
Prevention Using Edge Computing,” in USENIX HotEdge 18, 2018.

[33] I. Stojmenovic and S. Wen, “The fog computing paradigm: Scenarios
and security issues,” in 2014 Federated Conference on Computer Science
and Information Systems, 2014, pp. 1–8.

[34] G. Premsankar, M. D. Francesco, and T. Taleb, “Edge computing for
the internet of things: A case study,” IEEE Internet of Things Journal,
vol. 5, no. 2, pp. 1275–1284, April 2018.

[35] M. Zhanikeev, “A cloud visitation platform to facilitate cloud federation
and fog computing,” Computer, vol. 48, no. 5, pp. 80–83, 2015.

[36] E. Gaura, J. Brusey, M. Allen, R. Wilkins, D. Goldsmith, and R. Rednic,
“Edge Mining the Internet of Things,” Sensors Journal, IEEE, vol. 13,
no. 10, pp. 3816–3825, Oct 2013.

[37] R. Viswanathan, G. Ananthanarayanan, and A. Akella, “CLARINET:
Wan-aware optimization for analytics queries,” in 12th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI 16),
Savannah, GA, 2016, pp. 435–450.

[38] K. Hsieh, A. Harlap, N. Vijaykumar, D. Konomis, G. R. Ganger,
P. B. Gibbons, and O. Mutlu, “Gaia: Geo-distributed machine learning
approaching LAN speeds,” in 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 17). Boston, MA: USENIX
Association, 2017, pp. 629–647.

[39] T. Jorg, R. Antonio, A. Istemi Ekin, B. Pramod, C. Ruichuan, V. Bimal,
J. Lei, and F. Christof, “Sieve: Actionable insights from monitored met-
rics in distributed systems,” in Proceedings of Middleware Conference
(Middleware), 2017.

[40] D. Trihinas, G. Pallis, and M. Dikaiakos, “ADMin: adaptive monitoring
dissemination for the internet of things,” in IEEE Conference on Com-
puter Communications (INFOCOM 2017), Atlanta, USA, May 2017.

[41] S. Agarwal, H. Milner, A. Kleiner, A. Talwalkar, M. Jordan, S. Madden,
B. Mozafari, and I. Stoica, “Knowing when you’re wrong: building fast
and reliable approximate query processing systems,” Proceedings of the
2014 ACM SIGMOD International Conference on Management of Data,
pp. 481–492, 2014.

[42] D. L. Quoc, R. Chen, P. Bhatotia, C. Fetzer, V. Hilt, and T. Strufe,
“StreamApprox,” Proceedings of the 18th ACM/IFIP/USENIX Middle-
ware Conference on - Middleware ’17, pp. 185–197, 2017.

[43] M. Al-Kateb and B. S. Lee, “Stratified Reservoir Sampling over Het-
erogeneous Data Streams,” ”International Conference on Scientific and
Statistical Database Management”, pp. 621–639, 2010.

[44] Z. Wen, D. Quoc, P. Bhatotia, R. Chen, and M. Lee, “ApproxIoT: Ap-
proximate Analytics for Edge Computing,” in 38th IEEE International
Conference on Distributed Computing Systems (ICDCS 2018), 2018.

[45] L. Fan and L. Xiong, “An adaptive approach to real-time aggregate
monitoring with differential privacy,” IEEE Transactions on Knowledge
and Data Engineering, vol. 26, no. 9, pp. 2094–2106, Sept 2014.

[46] P. Triantafillou, “Towards intelligent distributed data systems for scalable
efficient and accurate analytics,” Proceedings - International Conference
on Distributed Computing Systems, vol. 2018-July, pp. 1192–1202, 2018.

[47] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M.
Hellerstein, W. Hong, S. Krishnamurthy, S. R. Madden, V. Raman,
F. Reiss, and M. Shah, “TelegraphCQ: Continuous Dataflow Processing
for an Uncertain World,” Proceedings of the 2003 ACM SIGMOD
International Conference on Management of Data, vol. 20, no. June,
p. 668, 2003.

[48] M. A. U. Nasir, G. D. F. Morales, N. Kourtellis, and M. Serafini,
“When two choices are not enough: Balancing at scale in Distributed
Stream Processing,” 2016 IEEE 32nd International Conference on Data
Engineering, ICDE 2016, pp. 589–600, 2016.

[49] R. Birke, E. Kalyvianaki, W. Binder, M. Schmatz, and L. Y. Chen,
“Dynamic block sizing for data stream processing systems,” Proceedings
- 2016 IEEE International Conference on Cloud Engineering Workshops,
IC2EW 2016, pp. 216–222, 2016.

[50] Q. Zhang, Y. Song, R. R. Routray, and W. Shi, “Adaptive block and
batch sizing for batched stream processing system,” Proceedings - 2016
IEEE International Conference on Autonomic Computing, ICAC 2016,
pp. 35–44, 2016.

[51] D. Cheng, Y. Chen, X. Zhou, D. Gmach, and D. Milojicic, “Adaptive
scheduling of parallel jobs in spark streaming,” Proceedings - IEEE
INFOCOM, 2017.

http://edgent.apache.org/
http://dl.acm.org/citation.cfm?doid=3267809.3267842
https://goo.gl/X9rCpq
https://data.smartdublin.ie/
https://unfccc.int/news/ict-sector-helping-to-tackle-climate-change
https://unfccc.int/news/ict-sector-helping-to-tackle-climate-change
https://goo.gl/tVcdkK
https://www.redhat.com/en/blog/state-microservices
https://www.redhat.com/en/blog/state-microservices

	Introduction
	A Query Model for Edge Computing
	A Prototype Framework
	Model Expressivity and Use-Cases
	IoT Transportation Analytics
	Energy Consumption in Datacenters
	Privacy-Aware Healthcare Analytics
	Microservices Auto-Scaling for Content Streaming

	Query Model Realized on the Edge
	Reusing Intermediate Analysis Results
	 Same composition across different insights
	Same operators across different compositions
	Same composition across different offsets
	Same data stream, but with sampling
	Re-use results across users

	Security and Privacy
	Multiple and Heterogeneous Data Processing Engines
	Query Execution Placement
	Sampling, Uncertainty and Multiple Data Streams
	Query Prioritization
	Adaptive Configuration, Scheduling and Load Balancing

	Conclusion
	References

