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Abstract—As more knowledge is vastly added to the
devices fuelling the Internet of Things (IoT) energy
efficiency and real-time data processing are great chal-
lenges that must be tackled. In this paper, we introduce
ADMin, a low-cost IoT framework that reduces on
device energy consumption and the volume of data
disseminated across the network. This is achieved by
efficiently adapting the rate at which IoT devices dis-
seminate monitoring streams based on run-time knowl-
edge of the stream evolution, variability and seasonal
behavior. Rather than transmitting the entire stream,
ADMin favors sending updates for its estimation model
from which values can be inferred, triggering dissem-
ination only when shifts in the stream evolution are
detected. Results on real-life testbeds, show that AD-
Min is able to reduce energy consumption by at least
83%, data volume by 71%, shift detection delays by 61%
while maintaining accuracy above 91% in comparison
to other IoT frameworks.

I. Introduction
As consumers embrace the prevalence of ubiquitously

connected smart devices, computing as we know it evolves
in surprising ways impacting our everyday life and forming
what is known as the Internet of Things (IoT) [27].
Network-enabled devices in the form of wearables, home
appliances, vehicles and drones differ from traditional
sensing devices. In particular, IoT devices feature logic
to produce analytic insights from raw monitoring data by
incorporating smart algorithms [25]. However, to produce
such an unprecedented wealth of insights intense process-
ing is often required and for a battery-powered device
processing along with constant data dissemination means
less battery life [15]. While IoT hardware capabilities are
projected to increase, battery capacity and bandwidth are
not growing in the same rate [2].

In spite attempts of augmenting IoT devices with the
power of the cloud there still exist numerous inhibitors
masked under constant data dissemination such as band-
width limitations and network latencies [6] [22]. According
to Cisco’s projections by 2019 IoT devices will be pro-
ducing 500 ZB of monitoring data [5] with IDC reporting
that by 2020 IoT monitoring data will account for 12% of
the digital universal [12]. Therefore, it is no wonder why
taming data velocity and energy efficiency are considered
as great challenges to overcome in IoT [20] [22].

The remedy to reduce data velocity and consequently
energy and bandwidth consumed for constant data dissem-
ination is to suppress IoT data with approximation tech-
niques [8] [28]. Ideally, an approximation technique will
decide based on an estimation model following the metric
stream evolution when values do not differ and can be
suppressed within certain accuracy guarantees. However,
in practice, current IoT approximation techniques are not
suitable for abrupt and volatile metric streams [18] [21]. In
turn, current cloud monitoring tools are not designed for
this task, assuming the cloud as the center of all connected
resources (e.g., VMs) when in reality IoT devices are
scattered across the Internet backbone [26] [29]. Hence,
the best they can do is to apply aggregation schemes to
reduce bandwidth consumption. However, these schemes
ignore significant knowledge that can be extracted from
the metric stream evolution and in particular trends and
seasonality behavior which are highly evident in IoT data
(i.e., human body indicators, environmental data) [1].

To address these challenges we introduce ADMin. AD-
Min is an open-source framework that efficiently adapts, in
place, the rate at which IoT devices disseminate monitor-
ing streams to receiving entities based on the evolution and
variability of the metric stream. To achieve this, ADMin
incorporates low-cost adaptive and probabilistic learning
algorithms which approximate the metric stream evolu-
tion. Thus, when metric stream values can be inferred from
ADMin’s estimation model, instead of sending these val-
ues, ADMin favors sending updates to its estimation model
instead. From the estimation model receiving entities can
then infer any missing values. In turn, dissemination to
metric receivers is enabled only when shifts are detected
and exceed the confidence intervals given by the user.
This significantly reduces on device energy consumption
allowing the IoT device’s network unit to remain for longer
periods in idle state and reduces the volume of data
disseminated to receivers, easing processing in large-scale
streaming networks. In order to reduce shift detection
delays and the rate of false alarms (values that initially
appear as shifts but are not), ADMin takes into account
seasonality knowledge. In case seasonality is not helpful in
the estimation process, ADMin detects this using online
statistical testing, thus ignoring its contribution.



Fig. 1: PV Panel Current Production Trace

Fig. 2: Weather Station Temperature Trace
Preview of our results. A thorough evaluation was
conducted by comparing the performance and accuracy
of ADMin to other state-of-the-art IoT frameworks. All
testbeds utilize real-life traces from different domains
and in specific, from a photovoltaic production panel, a
weather station and a wearable device. Figures 1-3 depict
these traces in comparison to ADMin. Results show that
ADMin reduces energy consumption by at least 76%,
data volume by 60%, while maintaining accuracy always
above 86% when compared to a baseline approach. When
incorporating seasonality knowledge, energy consumption
is reduced by at least 83%, data volume by 71% while
accuracy is always above 91%. Most importantly, the
false alarm rate and shift detection delays are reduced by
47% and 61% respectively, when compared to other IoT
frameworks. Moreover, our wearable dataset containing
raw timestamped data (steps, heartrate, calories, active
minutes) for a span of 6 months in 2016 is open-sourced.
To the best of our knowledge, this makes it one of the
largest activity tracking datasets publically available1.

The rest of the paper is structured as follows: Sec-
tion 2 presents the related work. Section 3 the problem
statement. Section 4 introduces ADMin while Section 5
presents the evaluation. Section 6 concludes the paper.

II. Related Work
To date, there exists a number of shift detection and

data reduction techniques for monitoring metrics. For
example, PELT is an algorithm that can be used to
detect optimal shifts in the evolution of a metric [16]. In

1https://github.com/dtrihinas/FitbitDataExtractor

Fig. 3: Heartrate Trace from Wearable Device
turn, Singular Value Decomposition (SVD) and Piecewise
Constant Approximation (PCA) techniques can produce
compressed metric digests via curve fitting [14]. However,
a common denominator for these techniques, is that they
were not originally developed for metric streams running
on monitoring sources scattered across IoT networks.

In contrast to the above, Silberstein et al. [23] introduce
a framework that provides sensor networks with metric
suppression for monitoring query responses that do not
differ between sensors. The proposed mechanism reduces
energy consumption but with the caveat that sensors must
have knowledge of the network topology. In turn, Deli-
giannakis et al. [7] suggest buffering metric values at each
sensing device and rather than transmitting all content, a
base signal (wavelet) of fewer values is transmitted instead.
The original signal is then reconstructed by the base signal
within a certain accuracy. However, in order to provide
such a base signal, a large portion of the signal must first
be stored on the monitoring source.

LANCE [28] is a framework that reduces the bandwidth
consumed for metric value dissemination by edge devices.
Instead of sending all metric values, LANCE sends sum-
maries of windowed values in the form of an average.
The receiver then decides based on user-defined policies
if the summarized values are of interest and must be
downloaded or not. Another approach is G-SIP, proposed
by Gaura et al [8]. G-SIP is an IoT framework that
sends metric updates only when the metric stream changes
in a way that cannot be predicted from previous value
knowledge. As a prediction mechanism, G-SIP uses an
exponential weighted average to follow the rate at which
the metric stream changes in time. Hence, if the rate of
change exceeds a threshold, metric updates are sent to
the remote service, otherwise dissemination is suppressed.
The downside of these frameworks is that they are slow to
react to abrupt and volatile changes and static thresholds
are used which are fixed upon initialization.

ADWIN [3] is an adaptive shift detection framework for
streams. It uses a Naive Bayes predictor to maintain up-to-
date estimations of the conditional probabilities describing
a metric stream and is able to reduce shift detection delays
and the false alarm ratio. To achieve this, it follows a linear
approach with two sliding windows to detect shifts based
on given confidence intervals. However, while dissemina-



tion is triggered when a shift is detected, all metric values
collected up to the shift are still disseminated. In turn,
Matsubara et al propose RegimeCast [18], a tensor-based
framework that detects arbitrary length shifts in metric
streams. RegimeCast also forecasts possible future events
(e.g., a person after sweeping floor most likely will mop
it). However, RegimeCast is a server-side framework not
intended to run on IoT devices.

Finally, techniques such as AdaM [25] and L-SIP [8],
reduce on device energy consumption and data volume,
but tackle the problem by dynamically adjusting the rate
at which metrics are generated based on the monitor-
ing stream evolution. We note that such techniques can
complement our framework, thus further reducing energy
consumption and the volume of IoT disseminated data.

III. Problem Statement
A. Preliminaries

We define a metric stream M = {di}n
i=0 published by a

monitoring source on an IoT device to a receiving entity, as
a large stochastic sequence of independent and identically
distributed (i.i.d) datapoints di, where i = 0, 1, ..., n and
n → ∞. Each datapoint di is a tuple (eid, ti, vi, ...)
described, at the minimum, by a unique identifier eid, a
timestamp ti and a value vi. A datapoint may include a set
of other attributes (e.g., location coordinates), although
for brevity, when describing a datapoint we will omit these
attributes without loss of generality. In turn, no assump-
tions are made for the type and number of generated
datapoints which depend solely on the task assigned to
the monitoring source. Therefore, receiving entities have
no control on the input rate, with datapoint dissemination
scheduled by monitoring sources based on some push-based
metric delivery protocol (e.g., pub/sub) [26].

B. Adaptive Monitoring Dissemination Overview
Monitoring stream dissemination is a fundamental pro-

cess of IoT devices commonly implemented by periodically
disseminating collected datapoints, such that for a fixed
period of time T , the i-th datapoint is reported at ti = i·T .
Due to its simplicity, this approach is widely adopted by
monitoring systems although for battery-powered sensing
devices, metric stream dissemination is the primary energy
drain [21]. Thus, we argue that periodically disseminating
metric streams features energy and resource constraints,
especially when consecutive metric values do not vary.

To accommodate these challenges adaptive dissemina-
tion is used. Adaptive dissemination is the process of
applying approximation techniques to sensed datapoints
in order to reduce the communication overhead by sup-
pressing from dissemination consecutive datapoints with
“little” change in their metric values. How much “change”
is considered as “little” depends on the given confidence
δ ∈ [0, 1], denoting the probability with which esti-
mated datapoints are approximated from sensed data-
points. Each monitoring source must maintain a runtime

estimation model, denoted as ρ(M), capturing knowledge
of the monitoring stream evolution. This model is then
disseminated to interested receivers. Let the model be
reported at the i-th time interval. From this point, the
receiver operates on the assumption that sensed data-
points can be approximated within the given confidence
by a forecasting function of the estimation model, denoted
as f(). Therefore, subsequent k-datapoints reported at
tk = ti + k · T | k ⊆ Z+, are inferred from the model
with di+k|i = f(ρ(M), di). At the same time, the monitor-
ing source withholds datapoint dissemination, interacting
with the receiver only when shifts in the metric stream
render the model no longer able to describe the metric
stream evolution within the given confidence guarantees.
At this point the monitoring source must disseminate to
the receiver an updated version of the estimation model.
C. Requirements & Objectives

Obviously, absolute guarantees defeat the purpose of
adaptive monitoring dissemination. In turn, if a degree of
imprecision is tolerable but the estimation model cannot
follow the metric stream evolution, then constant model
updating will be required. Hence, metric dissemination will
be replaced with model dissemination but the energy drain
will not be reduced. Thus, the following requirements must
be taken into consideration when designing an adaptive
monitoring dissemination framework:
R1: The estimation process must be lightweight and
performed in place right on the monitoring source itself.
R2: The estimation process must be efficient, meaning it
must infer overall less costs than actually disseminating
all collected datapoints and later discarding them.
R3: While parameters of the framework can be tweaked,
no user should be required to enter “magic numbers” for
any given parameter.
R4: The framework must be practical, achieving good
performance for numerous and diverse real-life testbeds.

Thus, our main objective is: to provide an estimation
model capable of capturing runtime knowledge of the metric
stream evolution to produce approximate datapoint values
within given confidence guarantees and detect when these
guarantees are violated to update the model in real-time.
This will allow IoT devices to preserve energy by reducing
the volume of disseminated IoT data while ensuring accu-
racy guarantees are maintained at all times.

IV. The ADMin Framework
To address the above objective, we have designed the

ADaptive Monitoring dissemINation framework. ADMin
provides IoT devices with model-based monitoring dis-
semination, by adapting the rate at which metrics are
disseminated to receiving entities based on the evolution,
variability and seasonality of the metric stream. ADMin is
developed in java as a lightweight framework embeddable
in the source code of IoT devices (e.g., raspberry Pi,
android devices). It can also be ported to other popular
programming frameworks as it has no external source code



dependencies. Figure 4 depicts ADMin embedded in the
software core of an IoT device. ADMin coordinates metric
value dissemination by interacting, as a proxy, between the
Sensing and Network Unit of the IoT device.

In particular, when the Sensing Unit collects a new dat-
apoint it is passed through ADMin’s API to the Adaptive
Stream Estimation module. This module updates a local
reference estimation model capturing the metric stream
evolution and trend. Trend estimation assists in reducing
any lagging effects in the estimation process of the current
stream evolution. At the same time, this module labels
the current datapoint as “expected” or “unexpected”, as
documented in Section IV-A. If the datapoint is “ex-
pected”, meaning it can be inferred by the model, it is
suppressed; otherwise, the datapoint is locally stored and
will be disseminated when dissemination is triggered.

After updating the evolution and trend, the Seasonal-
ity Enrichment module detects if seasonality enrichment
provides a more accurate estimation of the metric stream
evolution via online statistical testing. If so, it enriches the
model with seasonality knowledge; otherwise, the estima-
tion will roll-back to the model’s previous estimation state.
Although seasonality enrichment is optional, as shown in
Section V, if a metric stream exhibits such behavior, the
estimation error and shift detection delay are significantly
reduced. However, detecting the optimal seasonal period-
icity is a complex problem by itself [1]. Thus, the user
may enable ADMin to utilize the lightweight tensor-based
and parameter-free ComCube framework to determine the
near-optimal seasonal periodicity [19].

Next, the Shift Detection module determines if there
is a shift in the metric stream evolution rendering the
estimation model as inconsistent or if the local storage
has reached maximum capacity. If so, the Network Unit is
enabled and a compressed message containing an updated
version of the estimation model and the contents of the
local storage, is disseminated to interested receivers. Oth-
erwise, monitoring dissemination is suppressed with the
Network Unit remaining in an idle state.
A. Adaptive Estimation Model

We base our approach such that the estimation model is
maintained in constant time and space (O(1) complexity),
thus satisfying R1, which requires a low-cost estimation
model able to run on IoT devices with limited processing
capabilities. In turn, our estimation model incorporates
enough knowledge of the metric stream to allow us to
provide long-range approximations, thus reducing contin-
uous model updates and satisfying R2. ADMin supports
model parameterization, although as input it only requires
from the user to provide the certain confidence δ. The
confidence will be obeyed by the estimation model, thus
satisfying R3. As mentioned in Section III, no assumptions
are made on the type or domain of the data, thus pro-
viding a generic framework and satisfying R4. Algorithm
1 provides an abstract overview of ADMin’s adaptive

Fig. 4: The ADMin Framework embedded to IoT Device
estimation model which captures runtime knowledge of the
metric stream evolution, trend and seasonality.
Evolution estimation. When a datapoint is made avail-
able, ADMin will compute the current metric stream
evolution ρ(M), by using a moving average, denoted as
µi. This will give an initial estimation for the next dat-
apoint value, denoted as v̂i+1. Moving averages provide
one-step ahead estimations. They are easy to compute,
though many types exist, and can be calculated on the fly
with only previous value knowledge. A cumulative moving
average for streaming data is the Exponential Weighted
Moving Average (EWMA), µi = αµi−1 + (1−α)vi, where
a weighting parameter α, is introduced to decrease expo-
nentially the effect of older values. However, the EWMA
features a significant drawback; it is volatile to abrupt
transient changes [25]. Thus, we adopt a Probabilistic
EWMA (PEWMA) [4], which dynamically adjusts the
weighting based on the probability density of the given ob-
servation. The PEWMA acknowledges sufficiently abrupt
transient changes, adjusting quickly to long-term shifts
in the metric evolution and when incorporated in our
algorithmic estimation process (steps 1-2), it requires no
parameterization, scaling to numerous datapoints.

µi =
{
vi, i = 1
α(1− βPi)µi−1 + (1− α(1− βPi))vi, i > 1

(1)

Equation 1 presents the PEWMA where instead of a
fixed weighting factor, we introduce a probabilistically
adaptable weighting factor ãi = α(1 − βPi). In this
equation, the p-value, is the probability of the current vi

to follow the modeled distribution of the metric stream
evolution. In turn, β is a weight placed on Pi and as β → 0
the PEWMA converges to a common EWMA2. The logic
behind probabilistic reasoning is that the current value
vi depending on it’s p-value will contribute respectively
to the estimation process. In turn, if a datapoint falls
inside the prediction intervals determined from the given
confidence, it is labeled as “expected” or “unexpected”

2 For simplicity in our model we will consider β = 1



Algorithm 1 Adaptive Estimation Model
Input: datapoint d(ti, vi), confidence δ given by user and

local storage buf
Output: updated estimation model
Ensure: µi, σi, Xi, Si are initialized (see Section IV-A)

and k ← 0 after dissemination

compute p– and z–value
1: Pi, Zi ← probDistro(vi, v̂i, σi) (eq. 2)

update estimation model
2: µi, σi ← updPEWMA(Pi, vi) (eq. 1)
3: Xi ← updTrend(µi) (eq. 3)
4: Si ← updSeasonality(µi, Xi, L) (eq. 5)

if datapoint is unexpected then store in buffer
5: if isDatapointUnexpected(δ, Pi, Zi) then
6: buf ← vi

7: end if
8: y1 ← µi + kXi (eq. 4)
9: y2 ← µi + kXi + Si (eq. 6)

is seasonality enrichment beneficial?
10: if T–Test(δ, σi, y1) > T–Test(δ, σi, y2) then
11: v̂i+1 ← y1
12: else
13: v̂i+1 ← y2
14: end if
15: k ← k + 1
16: return estModel(v̂i+1, µi, σi, Xi, Si)

otherwise. Therefore, we update the weighting by 1− βPi

so that sudden ”unexpected” spikes are accounted for in
the estimation process, however, offer little influence to
subsequent estimations, thus restraining the model from
overestimating subsequent vi’s. In turn, if an “unexpected”
value turns out to be a shift in the metric stream evolution,
as the probability kernel shifts, subsequent “unexpected”
values are awarded with greater p-values, allowing them
to contribute more to the estimation process. Moreover,
in [25] the authors show that for the PEWMA, the α
parameter can take a wide range of values if a small im-
precision can be tolerated as most of the error is absorbed
by the probabilistic weighting.

Assuming, as stated in Section III, a stochastic and i.i.d
distribution as the bare minimum for a metric stream,
we adopt a Gaussian kernel N(µ, σ2), which satisfies the
aforementioned requirements. Thus, Pi is the probability
of vi evaluated under a Gaussian distribution, which is
computed by Equation 2. Nonetheless, we note that while
a Gaussian distribution is assumed, if prior knowledge of
the distribution is available and given by the user then
only step 1 must change in the estimation process.

Pi = 1√
2π

exp(−Z
2
i

2 )

Zi = vi − v̂i

σi

(2)

To reduce the volume of disseminated data, ADMin will

suppress “expected” datapoints that can be approximated
by the estimation model. Intuitively, the more consecu-
tive datapoints that can be approximated by the model
the larger the compression of the metric stream will be.
Nonetheless, uncertainties in the form of anomalies can
be introduced when sensing the physical world. Thus, “un-
expected” datapoints are locally stored and disseminated
when dissemination is triggered3 (steps 5-6).
Trend estimation. First-order moving averages only
perform one-step ahead estimations. Thus, solely using
the mean to forecast subsequent k-estimations is error
prone. Therefore, having updated the evolution of the
metric stream we then compute the current trend (step
3), denoted as Xi and shown in Equation 3:

Xi =
{
vi − vi−1, i = 2
γ (µi − µi−1) + (1− γ) Xi−1, i > 2

(3)

Equation 3 adopts Holt’s Trend method [10] which cap-
tures an estimation of the metric stream growth/decay at
the end of each i-th time interval. In this equation, γ is a
smoothing parameter for the trend in the range [0, 1] with
γ usually set to 1 for a perfect linear effect or a value > 0.9
for a damped effect [24]. The ultimate goal of this method
is to reduce lagging effects in the estimation process which
are highly evident in time intervals with trends. Thus, any
lagging effects are reduced by bringing the moving average
to the appropriate value base. Therefore, after updating
the trend, it can now be used with the PEWMA to
approximate and forecast subsequent k-values as follows:

v̂i+k|i = µi + k Xi (4)

Seasonality estimation. Seasonality is defined as the
tendency of the metric stream to exhibit behavior that
repeats itself every L periods (e.g., hourly, daily) [1]. IoT
data, such as human body indicators and environmental
data, present seasonality behavior [11]. In this context,
we compute the seasonality contribution (step 4), denoted
as Si, by adopting the Holt-Winter’s Seasonality method
(Equation 5) [9]. In this method, the seasonal contribution
Si, is computed based on the seasonal factor Si−L of the
last season (e.g., mean of the datapoints collected the
previous hour), while ω is a smoothing parameter in the
range [0, 1] and usually set to a value < 0.5.

Si =
{

0, i < L

ω (vi − µi −Xi) + (1− ω) (vi − Si−L), i > L
(5)

With the addition of seasonality knowledge Equation 4 can
now be formed as:

v̂i+k|i = µi + k Xi + Si (6)

However, in real-life systems perfect seasonal behavior is
rarely observed. Rather, seasonality behavior is exhibited
although irregularities in the form of noise are introduced

3Anomalies may be a sign of quality degradation for an IoT device



Algorithm 2 Adaptive Shift Detection
Input: estModel, confidence δ, local storage buf and

actT ime denoting if actual shift time is returned
Output: msg for dissemination
Ensure: length(buf) < max(buf)

1: if dissemination triggered then
2: hi ← updShiftThres(δ, σi) (eq. 10)
3: end if
4: ci ← updLikelihood(vi, v̂i, µi, σi) (eq. 9)
5: Ci,low, Ci,high ← updCusum(ci) (eq. 7)
6: Gi,low, Gi,high ← updDecision(ci) (eq. 8)
7: if Gi,{low, high} > hi then
8: if actT ime == true then
9: ts ← getActShiftTime(Ci,low, Ci,high) (eq. 8)

10: return msg(ts, buf, estModel)
11: else
12: return msg(buf, estModel)
13: end if
14: end if

in the seasonal cycle (e.g. Fig. 2-3) [11]. Thus, considering
prior knowledge, may result in overestimating subsequent
vi’s, if the current evolution completely differs from the
seasonal behavior [1]. To address such irregularities, two
online pairwise T-tests (steps 10-14) are conducted to
evaluate and select which contribution –before (y1) or after
(y2)– seasonality enrichment, allows ADMin to deliver a
more accurate estimation.

B. Adaptive Shift Detection
Algorithm 2 introduces an abstract overview of AD-

Min’s adaptive shift detection approach, which is based
on the lightweight and online Cumulative Sum test
(CUSUM). The CUSUM, denoted as Ci, is a hypothesis
test for detecting shifts in i.i.d timeseries [17]. In particu-
lar, there are two hypothesis θ′ and θ′′ with probabilities
P (M, θ′) and P (M, θ′′), where the first corresponds to the
statistical distribution of the metric stream prior to a shift
(i < ts) and the second to the distribution after a shift
(i > ts) with ts denoting the time interval the shift occurs.
The CUSUM is computed with sequential probability
testing on the instantaneous log-likelihood ratio given for
a metric stream at the i-th time interval, as follows:

ci = ln P (Mi, θ
′′)

P (Mi, θ′)
Ci,{low, high} = Ci−1,{low, high} + ci

(7)

where low and high denote the separation of the CUSUM
to identify both positive and negative shifts respectively.

The typical behavior of the log-likelihood ratio includes
a negative drift before a shift and a positive drift after
the shift. Thus, the relevant information for detecting a
shift in the evolution of the metric stream lays in the
difference between the value of the log-likelihood ratio and
the current minimum value. A decision function, denoted
as Gi, is used to determine a shift in the metric stream

when its outcome surpasses a threshold (also referred to as
a decision interval) denoted as h and measured in standard
deviation units. The time interval at which a shift actually
occurs, is computed from the CUSUM as follows:

Gi,,{low, high} = {Gi−1,{low, high} + ci}+

ts = arg min
j≤s≤i

(Cs−1) (8)

In Equation 8, z+ = sup(z, 0), ti is the time ADMin
detects the shift and tj is the time the last shift prior
ts occurs. Now, let us consider the particular case of an
IoT metric stream constituted of i.i.d datapoints following
a Gaussian kernel with the metric stream supposed to
undergo possible shifts in its evolution modelled by a
moving average. Thus, θ′ and θ′′ can be rewritten as
µ′ and µ′′ respectively, with µ′ representing the current
evolution, while µ′′ the output of the estimation model
with µ′′ = µ′+ ε, and ε denoting the estimated magnitude
of change of the metric stream evolution. As the metric
stream evolution is used to provide an estimation for v̂i,
the magnitude of change is equal to ε = v̂i − vi. In turn,
let P (M,µ′) and P (M,µ′′) be computed from Equation 2.
With some calculations [13], ci in Equation 7 is rewritten
as follows to perform the decision-making process with
only previous value knowledge:

ci,{low, high} = ± |ε|
σ2

i

(vi − µ′ ∓
|ε|
2 ) (9)

However, the CUSUM test features two significant draw-
backs: (i) determining the actual ts requires linear time;
and (ii) the threshold h is never updated to reflect the
runtime evolution shift of the metric stream. In regards
to the first drawback, if exact knowledge of ts is not
required, then ti, the time a shift is detected from ADMin,
can be used as an approximate answer. Nonetheless, in
cases of metric streams with gradual trends, ti may greatly
differ from ts [17]. However, in the case where trend and
seasonality behavior knowledge is added to the estimation
process, the metric stream is approximated by ADMin
with greater accuracy by quickly adapting to unexpected,
abrupt and volatile changes of the metric stream. Thus,
with the estimated magnitude of change approximating
the actual change in the evolution of the metric stream, the
decision function is able to reduce shift detection delays. In
regards to the second downside, the rationale for choosing
h is primarily based on both reducing the risk of falsely
indicating a shift in the metric stream distribution while
also preserving the ability of the CUSUM to promptly
detect shifts that matter. Hence, we follow an adaptive
approach where h is updated after a dissemination is
triggered, based on the number of standard deviations
respecting the given user-defined confidence [17]. In turn,
an optional positive value (hmin) may be used to restrict
the sensitivity of the CUSUM so as to not oscillate between
low values when the metric stream is relatively stable.

hi = max{hmin, h(δi, σi)} (10)



V. Evaluation
In this section we present a thorough evaluation of AD-

Min by comparing its performance and accuracy to other
state-of-the-art IoT frameworks with the experimentation
based on real-life testbeds and traces.

We compare ADMin to three frameworks: G-SIP [8],
LANCE [28] and ADWIN [3], described in Section II.
Specifically, G-SIP uses an EWMA as its estimation
model, to follow the rate at which the metric stream evo-
lution changes in time, triggering datapoint dissemination
only if this rate exceeds a threshold policy. We adopt
a policy which determines if the estimation falls in the
confidence interval given as input by the user. Similar
to G-SIP is LANCE, which also uses an EWMA as its
estimation model but for summarizing datapoint values in
a given window (N = 32 gave the best results). The re-
ceiver downloads the datapoints only if the summarization
exceeds a threshold policy. We will adopt a similar policy
to G-SIP. On the other hand, ADWIN follows a linear
approach with two sliding windows used to detect shifts in
the metric stream (N = 20 gave the best results). ADWIN
uses a Naive Bayes predictor as its estimation model. We
will compare all frameworks to ADMin under different
configurations and conduct each experiment with a tight
confidence parameter of δ = 0.9. For the frameworks using
a moving average, we set the smoothing parameter to
α = 0.45, which is the best configuration for both G-SIP
and LANCE. We will also leave the trend and seasonality
smoothing parameter for G-SIP and ADMin to a default
value of γ = 0.95 and ω = 0.35 respectively.

A. Traces, Testbeds and Evaluation Metrics
Table I presents an overview of the real-life traces used

to evaluate the under comparison frameworks. In this table
we also present the number of shifts in the metric stream
that comprise the ground truth for our evaluation, as
obtained from PELT, an optimal offline shift detection
algorithm [16]. In turn, Figures 1-3 visually depict these
traces, where, at a glance, one can observe that each of
these traces exhibit irregular seasonality behavior.

The experiments for the PV and Temperature traces
are run on a Raspberry Pi (1st gen, Model B) with
512MB of RAM and an ARM processor (single-core,
700MHz) while emulating the data load of each trace.
The Raspberry Pi was selected as a suitable testbed, as it
features similar limited processing capabilities of other IoT
“smart” devices (e.g., home monitors, activity trackers).
The Heartrate raw readings were fed to the Android Wear
Emulator hosting an app computing heartrate BPMs.
We set the processing capabilities of the emulator to
the specifications of a Fitbit Charge HR wearable device
(single-core ARM 32MHz processor, 128MB Memory).

We evaluate each framework towards: (i) shift detection
accuracy, meaning both the number of correctly detected
shifts (true positives) and the number of false alarms
(false positives); (ii) shift detection delay, which is the

difference in time to when a framework detects a shift from
the actual time of occurrence; (iii) data volume reduction
and accuracy at the receiver-side; and (iv) total energy
consumption, based on the model depicted in Equation
11, where Pidle denotes the power in idle state; Pcpu the
processor power (including CPU, L1 cache and memory);
τcpu the CPU time; Pi/o the power for I/O; τcpuwait the
I/O time; while Pnet strictly denotes the power consumed
for disseminating packets over the network.

E = Pidle · τidle + Pcpu · τcpu + Pio · τcpuwait + Pnet · τnet

(11)
B. Experiments

At first, let us denote the different configurations for
our framework. ADMin denotes our framework without
any seasonality enrichment while ADMin S1 and AD-
Min S2 feature seasonality configurations. Specifically,
ADMin S1 uses a static seasonal period configured once
upon initialization and representing seasonal knowledge
corresponding to the previous day hourly average (e.g.,
for the current day at 11.05am the average between 11-
11.59am of the previous day is considered). On the other
hand, ADMin S2 uses the output of the ComCube frame-
work [19], which provides a near-optimal approximation of
the seasonal periodicity (L in eq. 6).

In our first evaluation we compare each framework abil-
ity to detect the actual shifts in the evolution of the metric
stream. From Figures 5a-5c, we observe that ADMin
achieves, in all configurations, high accuracy approaching
the ground truth. ADWIN has a slightly lower accuracy
although it is comparable to ADMin (less than 10% differ-
ence). However, G-SIP and LANCE feature shift accuracy
that significantly varies between traces and is never higher
than 73% and 65% respectively. Most importantly, we note
the high number of false alarms observed from LANCE
and G-SIP due to their restrictive shift detection process.
On the other hand, ADMin is able to achieve a low false
alarm ratio and when incorporating seasonality knowledge
this ratio is drastically reduced. Specifically, with seasonal
knowledge ADMin false alarm ratio is under 10% and at
least 47% less than the other frameworks.

Table II depicts the average time required to detect a
shift in the evolution of the metric stream. We observe
that ADMin outperforms the other frameworks by reducing
shift detection time by at least 29%. Moreover, ADMin S1
and ADMin S2 are able to reduce shift detection time
even more. For traces with irregular seasonality behavior
such as the temperature and heartrate trace where more
than one seasonal cycles may exist (e.g., daily, weekday,
weekend patterns) ADMin clearly outperforms the other
frameworks. Specifically, ADMin S2 achieves a reduction
in shift detection time of at least 67%. This also justifies
the use of low-cost streaming frameworks such as Com-
Cube, which support ADMin by fine-tuning the seasonal
periodicity. Hence, ADMin is able to reduce the time
required to detect shifts in the metric stream evolution by



Trace
Name

Origin Data
Points

Optimal
Shifts

Description

PV Current PV Panel 1209598 194 A Photovoltaic (PV) current production trace collected from a PV panel every
1 second for a period of 2 weeks in Jan 2015

Temperature Meteo
Station

1209598 572 A Temperature trace collected from a remote weather station monitoring the
temperature every 1 second for a period of 2 weeks in Jan 2015

Heartrate Wearable 40908 202 A Heartrate trace collected from a Fitbit HR wearable device monitoring beats
per minute (bpm) of the person wearing the device for a month (Jun 2016)

TABLE I: Traces Used for Performance and Accuracy Evaluation

(a) PV Current Trace (b) Weather Station Temperature Trace (c) Heartrate Trace

Fig. 5: Correct and False Metric Stream Shift Detection Comparison

Fig. 6: On Device Energy Consumption Comparison
Framework PV Current

(Time
Intervals)

Temperature
(Time
Intervals)

Heartrate
(Time
Intervals)

ADWIN 9.34 ± 3.47 9.94 ± 3.84 10.39 ± 3.96
G-SIP 10.02 ± 3.96 11.76 ± 4.16 14.17 ± 4.93
LANCE 10.78 ± 4.12 12.63 ± 3.92 15.97 ± 4.12
ADMin 6.04 ± 2.19 7.12 ± 1.97 8.03 ± 2.78
ADMin S1 3.13 ± 2.03 5.11 ± 2.10 6.22 ± 2.83
ADMin S2 2.62 ± 1.94 3.23 ± 2.26 4.73 ± 2.43

TABLE II: Metric Stream Evolution Shift Detection Delay

at least 29% and when incorporating seasonality knowledge
to the estimation model reduction is at least 67% when
compared to other frameworks.

In the next set of experiments we compare the ability of
each framework to reduce on device energy consumption
(Figure 6), as well as, the volume of IoT data and estima-
tion error at the receiver-side (Figures 7-8). We note that,
ADWIN is not present in the receiver-side comparison as
it does not apply a data reduction scheme to the metric
stream. Moreover, a reference baseline approach is added
to the comparison where dissemination is withhold by

Fig. 7: Data Reduction Comparison

applying a 10 time interval aggregation scheme.
From Figure 6 we observe that ADWIN features the

largest energy footprint although we have previously
shown that it is able to detect shifts in the metric stream
with accuracy comparable to ADMin. This is due to
the complexity of the ADWIN algorithm, linear in space
and time, along with the absence of a data reduction
scheme resulting in significant energy spent for datapoint
dissemination and the algorithm itself. On the other hand,
LANCE, G-SIP and ADMin have similar complexity re-
quirements. However, as previously shown, LANCE and
G-SIP feature a high false alarm ratio which enables the
network controller of the IoT device at least x2 times more
than ADMin. In turn, from Figure 7 one can observe that
the data reduction model of LANCE and G-SIP are not as
efficient as ADMin. In the case of LANCE, downloading
the entire window length of data when the summary
is labelled as meaningful drastically affects performance.
For G-SIP, not enough knowledge is preserved in the
estimation model (only comprised of an EWMA) after
datapoint dissemination, often triggering dissemination



Fig. 8: Receiver-Side Mean Absolute Percentage Error

in subsequent intervals for model updating. Nonetheless,
ADMin is able to reduce data volume by at least 71% which
accounts for a reduction in energy consumption of at least
83%. Most importantly, from Figure 8 one can observe
that in regards to accuracy ADMin outperforms the other
frameworks by always maintaining accuracy at the receiver
to at least 86%, increasing to at least 91% when seasonality
behavior is acknowledged by the estimation model.

VI. Conclusion
In this paper we have presented ADMin, an adaptive

monitoring dissemination framework for IoT devices. Our
main idea is to provide IoT devices with a lightweight and
model-based framework capable of adapting the rate at
which monitoring streams are disseminated to receiving
entities based on the evolution, variability and seasonality
of the stream. The ADMin framework reduces IoT device
energy consumption, as well as, allocated bandwidth and
the volume of data disseminated through IoT networks.
Exploiting the variability and seasonality of IoT moni-
toring streams, ADMin incorporates novel low-cost and
probabilistic learning algorithms which efficiently model
and estimate at runtime the monitoring stream evolu-
tion. Results show that ADMin is a viable solution that
is lightweight, practical and achieves a balance between
efficiency and accuracy for numerous diverse and real data.
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