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Abstract—Complex networks often exhibit co-evolutionary
dynamics, meaning that the network topology and the state of
nodes or links are coupled, affecting each other in overlapping
time scales. We focus on the co-evolutionary dynamics of online
social networks, and on Twitter in particular. Monitoring the
activity of thousands of Twitter users in real-time, and tracking
their followers and tweets/retweets, we propose a method to infer
new retweet-driven follower relations. The formation of such
relations is much more likely than the exogenous creation of
new followers in the absence of any retweets. We identify the
most significant factors (reciprocity and the number of retweets
that a potential new follower receives) and propose a simple
probabilistic model of this effect. We also discuss the implications
of such co-evolutionary dynamics on the topology and function
of a social network.

I. INTRODUCTION

Online Social Networks (OSNs), such as Twitter and Face-
book, have changed how individuals interact with society, how
information flows between actors, and how people influence
each other. These are all complex dynamic processes that are
now widely studied empirically and in large scale, thanks to
the availability of data from OSNs. Most OSN studies focus
on one of the following two aspects of network dynamics.
Dynamics on networks refer to changes in the state of network
nodes or links considering a static topology [6, 39]. Dynamics
of networks, on the other hand, refer to changes in the topol-
ogy of a network, without explicitly modeling its underlying
causes [24]. As noted by Gross and Blasius in [13], however,
real OSNs typically exhibit both types of dynamics, forming
an adaptive, or co-evolutionary, system in which the network
topology and the state of nodes/links affect each other through
a (rather poorly understood) feedback loop.

Dynamic processes in OSNs, such as information diffusion
or influence, are obviously affected by the underlying network
topology, but they also have the power to affect that topology.
For instance, users may decide to add or drop a “friendship” or
“follower” relation depending on what the potential “friend”
or “followee” has recently said or done in the context of
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that OSN. Previous empirical or modeling OSN studies often
choose to ignore such co-evolutionary dynamics, mostly for
simplicity, assuming a static network topology, or assuming
that the topology and node/link states are decoupled and evolve
in separate time scales [25].

In this paper, we focus on co-evolutionary dynamics in
the context of Twitter. Twitter users create follower-followee
relations with each other. A directed link from a user R to
a user S, denoted by R→ S, means that R is a follower of
S, receiving S’s tweets; S is referred to as a followee of R.
R can choose to propagate a tweet of S to her own followers,
denoted by F(R), creating a retweet. When a follower L∈F(R)
receives a retweet of S through R, L can choose to add S to
her followers. We call this sequence a Tweet-Retweet-Follow
(TRF) event, and refer to its three main actors as Speaker S,
Repeater R, and Listener L. TRF events represent a clear case
of co-evolutionary dynamics: information propagation (tweet-
retweet) causes a topology change (new follower).

Figure 1 shows this sequence of events for the simplest
TRF case in which R→ S and L→ R. In general, the Repeater
R may not be a follower of S but she may receive S’s tweet
through a cascade of retweets. Additionally, the Listener L may
receive multiple retweets of S from the same or from different
Repeaters. The contributions of this study are:

1) We propose a measurement approach to detect TRF
events, based on near real-time monitoring of a Speaker’s
activity and followers.

2) We show that the formation of new follower relations
through TRF events is orders of magnitude more likely
than the exogenous arrival of new followers in the absence
of any retweets.

3) We identify the most significant factors for the likelihood
of a TRF event: reciprocity (i.e., is Speaker S already
following Listener L?), number of received retweets (i.e.,
how many retweets of S were received at L during a given
time interval ∆), and of course the interval ∆ itself.

4) We propose a simple but accurate two-parameter model
to capture the probability of TRF events.

5) We discuss the implications of TRF events in the structure
and function of social networks.

II. RELATED WORK

Preferential attachment [7] is a common way to think about
the formation of new ties in a social network. It is based on the
idea that it is more likely for well-connected people to attract



Fig. 1. Network co-evolution: a Tweet-Retweet-Follow event.

new ties. Subsequent research provided a deeper understanding
by exploring mechanisms such as user similarity [17, 28]
and directed closure [11, 22, 31]. For instance, Romero and
Kleinberg [31] studied the directed closure process in Twitter.
This process states that there is an increased likelihood for a
node A to follow a node C if there already exists a direct path
of length two from C to A. They showed that this process
is taking place at a significantly higher rate than what would
be expected by chance, but this rate also varies significantly
among different users. Here, we identify TRF events as a
plausible mechanism for the emergence of directed closure.

Golder and Yardi conducted a user study to identify
structural predictors for tie formation in Twitter. Their results
show that lack of transitivity has a negative effect in link
prediction [11]. Hopcroft et al. examined the question: “when
you follow a particular user, how likely will she follow
you back?” [17]. They showed that geographic distance and
homophily are good predictors of follow-back (“reciprocal”)
relations. Our work confirms that reciprocity amplifies signifi-
cantly the likelihood of TRF events. Leskovec et al. studied the
network evolution of four social networks and observed that
most edges are local, “closing triangles” in particular [22].

The literature on co-evolutionary dynamics has relied
mostly on abstract models so far, without sufficient empirical
validation. For instance, Kosma and Barrat examined how the
topology of an adaptive network of interacting agents and
of the agents’ opinions can influence each other [19]. When
agents rewire their links in a way that depends on the opinions
of their neighbors, the result can be either a large number of
small clusters, making global consensus difficult, or a highly
connected but polarized network. Shaw and Schwartz [33]
examined the effects of vaccination in static versus adaptive
networks. Interestingly, they show that vaccination is much
more effective in adaptive networks.Volz and Mayers studied
epidemics in dynamic contact networks and showed that the
rate at which contacts are initiated and terminated affects
the disease reproductive ratio [40]. Rocha et al. simulated
epidemics in an empirical spatio-temporal network of sexual
contacts [30], showing that dynamic network effects accelerate
epidemic outbreaks. Perra et al. studied the effect of time-
varying networks in random walks and search processes [29].
The behavior of both processes was found to be “strikingly
different” compared to their behavior in static networks.

The most relevant prior work, by Weng et al., analyzed
the complete graph and activity of Yahoo! Meme, to identify
the effect of information diffusion on the evolution of the
underlying network [42]. They show that information diffusion
causes about 24% of the new links, and that the likelihood of a
new link from a user X to a user Y increases with the number
of Y’s posts seen by X. More recently, Myers and Leskovec

showed that Twitter users gain or loose bursts of followers soon
after their tweet activity event [27]. These bursts increase both
the density of connections between a user’s followers and the
similarity of a user with her followers. Similarly to our work,
they show that 21% of all new follows are formed by users
who recently saw a retweet of the target user.

III. DATA COLLECTION

To identify TRF events we need to observe the appearance
of a new follower link from an arbitrary Listener L to a
monitored Speaker S, shortly after L has received a retweet
of S through a Repeater R. This requires information about
both the time of the retweet(s) as well as the time the
new follower link has appeared. The Twitter API, though
extended in functionality, does not provide information about
the creation time of follower relations. Furthermore, existing
link creation time inference methods [26] are not applicable in
our study because they cannot be used in real-time. To retrieve
(near) real-time timing we have implemented a Twitter data
retrieval system that periodically checks for new followers and
retweets in a given set of Speakers. We explain each step of
the process in the following paragraphs.

Selection of active Speakers: We obtain a number of
active Twitter users as potential Speakers through a stratified
sampling method. It has been reported that about 25% of
Twitter users have never posted any messages [1] and that
most users check their Twitter feeds rarely [21]. A random
user selection process would most likely visit a number of
users without recent posts, wasting a large number of our
limited Twitter API calls. The adopted sampling method
ensures that we monitor users that have recently posted a
tweet. Specifically, we crawl the Twitter search page [2] based
on a single-character search selected at random from the set
of [1− 9A− Za− z]. The search returns the latest 20 tweets
containing the search term. We identify the users that posted
these tweets and add them to our monitored Speakers set. For
each selected Speaker, we also collect information about their
“join time”, number of followees, followers and posted tweets.
For each observed tweet, we collect the time it was posted and
the posted message.

Given this set of monitored Speakers, we look for any
retweets of their tweets posted during the last two hours.We
only consider retweets that are flagged as such by the Twitter
API. For each retweet, we retrieve the set of followers, set of
followees of the Speaker and the Repeater R at the time instant
we first observed that retweet. Additionally, we collect the set
of followers and followees of the Repeater at that time.

Monitoring of Speakers: The previous process results in
a number of possible TRF events, whenever a follower of



a Repeater receives a retweet of a monitored Speaker. To
identify new followers we need to examine any changes in
the Speaker’s followers before and after the retweet. To do so,
we retrieve the set of followers of the Speaker periodically,
approximately every 5 minutes. We identify a TRF event when
the set of followers of S gains a new member (Listener L) that
was previously seen in the set of followers of R. At that point
we log the time L was seen to follow S and calculate TRF
latency as the time difference between the time R retweeted S
and the time L followed S. If L received multiple retweets of
S (as the same tweet from multiple Repeaters, multiple tweets
from the same Repeater, or multiple tweets from multiple
Repeaters), we assign the TRF event to the most recent retweet
of S received by L. The intuition here is that the most recent
tweets will appear at the top of L’s inbox and they are more
likely to be read than older retweets. At this point we also
collect the set of followers and followees of the Listener.

Every 5 minutes, we also update the set of monitored
Speakers as follows. If a selected Speaker has not posted any
tweets during the last 24 hours, we stop monitoring that user
and select a new Speaker using our sampling method. The
reason is that most new follower relations tend to occur within
few hours from the time a Speaker has been active [4, 41].

a) Data collection system: Due to the complexity and
the real-time nature of our data collection process, we need
a large Twitter API request throughput. We used Twitter’s
API 1.0, which limits users to 350 API requests per hour.
To increase this request throughput we use a large number
of distributed hosts, provided by PlanetLab, as proxies for
accessing Twitter [9]. Our collection process is coordinated
by a “dispatcher” application located at Georgia Tech. The
dispatcher decides what data are required at any point in time
and instructs a number of “workers” to request that data from
Twitter. Each worker is assigned a single Planetlab host that
routes API requests to Twitter. When a worker runs out of
requests it deactivates itself and notifies the dispatcher. At that
point the dispatcher generates a new worker, providing it with
a fresh request workload.

We divide the data collection process to small independent
processes, each of them requiring the smallest possible number
of requests. In this way, we partition different parts of the
Speaker monitoring process to a number of workers, speeding
up the collection process. For instance, when requesting an up-
date for a Speaker, the retrieval of tweets, retweets and follower
sets are executed through different Planetlab hosts. Further, we
limit the number of concurrently monitored Speakers to 500
to avoid overloading both Twitter and our collection system.

b) Bot-filtering: A major concern for any Twitter
dataset is to avoid bots. Such accounts act differently than
most regular Twitter users, biasing the analysis. To identify
and remove bot accounts from our dataset we revisited each
account three months after the initial data collection to check
which of those accounts have been suspended by Twitter. This
practice has been used by Thomas et al. [38] as “ground
truth” for the Twitter bot detection problem. Further, it has
been reported that only few bots survive Twitter’s policies for
more than a week [34]. In our data, about 1% of the observed
users were suspended by Twitter (uniformly distributed across
Speakers, Repeaters, and Listeners), accounting for roughly
10% of the observed TRF events.

Dataset-1 To estimate the exogenous and endogenous
probabilities (Section IV) we use a small-scale dataset (com-
pared to the dataset used in the rest of the paper). Specifically,
we monitor 200 unique Twitter users (Speakers) for a period
of 10 days. For each Speaker, we collect periodically (every
30 minutes) her Twitter timeline, tweets and retweets, along
with the list of her followers. We also collect the followers
of every follower of the 200 monitored Speakers. Based on
this dataset we can observe all Tweet-Retweet (TR) events for
every monitored Speaker over the course of 10 days, and so
we can ask whether a Speaker has gained one or more new
followers among the set of Listeners of her retweets.

Dataset-2 In the rest of the paper we use a larger dataset.
This dataset was collected during one week, from September
19 to September 25, 2012. During this time period, we col-
lected about 300 GBytes of raw Twitter data. In this dataset we
monitored 4,746 Speakers that posted 386,980 tweets. These
messages were retweeted 146,867 times by 83,860 distinct
Repeaters. Twitter allows users that are not following a Speaker
to retweet her messages. For this reason, in Dataset-2, we do
not require that the Repeaters are followers of the Speaker.
After removing bot accounts, we end up with 7,451 observed
TRF events. This figure represents 17% of the new follower
links observed in our dataset.

IV. ENDOGENOUS VERSUS EXOGENOUS LINK CREATION

A user also gains new followers due to exogenous factors,
such as Twitter’s “Who to follow” service [14]. Here, we com-
pare the likelihood with which a user gains new followers when
there are no recent retweets of her messages (exogenous link
creation) compared to the case that she gains new followers
when at least one of her messages has been recently retweeted
(endogenous link creation).

We focus here on potential new followers L of S that were
already following a follower of S. That is, we only examine
three-actor relations in which L → R and R → S. We then
ask “is it more likely that L will follow S (L→ S) when L
received a retweet of S through R (TRF event) or when L did
not receive any retweet from her followees that follow S (TF
event)?” Figure 2(a) illustrates the TRF and TF events. Note
that the difference between endogenous (TRF) and exogenous
(TF) events is the retweet of S from R; the local structure and
the activity of S remain the same in both cases.

We estimate the probability PEXO(∆) of exogenous new
followers as follows. Consider a tweet of Speaker S at time ts.
Suppose that this tweet is not retweeted by any of the followers
of S in the period [ts, ts+∆]. Let Φ(S, ts) be the set of followers
of followers of S that are not directly following S at ts, i.e.,
Φ(S, ts) = {X : X 6∈ F(S, ts),X ∈ F(Y, ts),Y ∈ F(S, tS)}. What is
the fraction of these users that follow S by time ts +∆?

PEXO(∆) =
|L : L ∈Φ(S, ts),L ∈ F(S, ts +∆)|

|Φ(S, ts)|
(1)

Similarly, we estimate the probability PENDO(∆) of en-
dogenous new followers as follows. Consider again a tweet
of Speaker S at time ts but suppose that this message has been
retweeted by a specific follower of S, referred to as Repeater
R, at time tr > ts. Let ΦR(S, tr) be the subset of Φ(S, tr) that
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Fig. 2. (a) Controlling for the structural relation between S, R and L and for the activity of S allows us to compare the likelihood of a new follower L when
L received a retweet of S (i) compared to the case that L did not receive a retweet of S (ii). The arrow direction shows who follows whom. Orange nodes
represent tweet or retweet activity. Red edges show the extent of information propagation. Green dashed edges show new follower links. (b) Probability that a
Speaker S gains at least one new follower L within an interval ∆ from the time of a tweet (TF) or retweet (TRF) of S. The Listener L is not a follower of S at
the time of the tweet (TF) or retweet (TRF).

includes only followers of R. What is the fraction of these
users that follow S by time tr +∆?

PENDO(∆) =
|L : L ∈ΦR(S, tr),L ∈ F(S, tr +∆)|

|ΦR(S, tr)|
(2)

In a small-scale dataset (Dataset-1), we observed 4,945
new followers for the 200 monitored Speakers over 10 days.
TRF events accounted for 42% of these new links. This shows
that TRF events are rather infrequent, compared to tweets and
retweets, but they are responsible for a large percentage of the
new links in Twitter.

Figure 2(b) compares the two probabilities for increasing
values of ∆, averaged across all TF and TRF events in our
dataset. We omit confidence intervals because they are too
narrow. Note that the probability of endogenous new followers
is consistently much higher than the probability of exogenous
new followers. Especially for short ∆ (up to 2 hours), PENDO
is three orders of magnitude higher than PEXO. The difference
drops to two orders of magnitude and remains stable even for
values of ∆ larger than 24 hours.

Please note that the previous comparison does not prove
causality: we cannot be certain whether a user L decided to
follow S because she received a retweet of S. However, if L
had not received that retweet it would be 100-1000 times less
likely that she would follow S within a given time interval.

Figure 2(b) shows that PENDO increases significantly as ∆

increases to about 24 hours. After that point, PENDO saturates
to a value that is about 10−2. It can be argued that this
underestimates the actual TRF probability. The reason is that
a large fraction of Twitter users are either completely inactive
or they do not visit Twitter often. Recent statistics report that
only 20% of registered users visit Twitter at least once per
month [35]. Additionally, a report from Pew Internet [3] in
2010 reported that only 36% of Twitter users check their inbox
at least once a day.

V. TRF CHARACTERISTICS

The previous analysis verifies our initial intuition that
the likelihood with which a user L follows a user S greatly
increases when L receives a retweet of S. Furthermore, this
likelihood is also affected by the length of the interval between
the retweet and the time L observed that retweet. We now give

a more precise definition of Tweet-Retweet-Follow events. We
say that a Tweet-Retweet-Follow event between users S, R, and
L, where R might not be a direct follower of S, occurs when
we observe the following sequence of events:

(a) S tweets a message M at time ts,
(b) A user R retweets M at some time tr > ts,
(c) A user L, who is a follower of R (i.e. L→ R) at tr but not

a follower of S, follows S by time tl , where tl ∈ [tr, tr +∆].

We collected a larger dataset (Dataset-2) that we use to
analyze and model TRF events. In this dataset we observe
7,451 TRF events, which represent 17% of the observed new
follower relations.

∆ is the only parameter in this definition and it affects the
likelihood of TRF events. Figure 3(a) shows the percentage
of identified TRF events as a function of the parameter ∆. As
expected, the number of TRF events increases with ∆ but most
of them occur within 24 hours from the corresponding retweet.

Retweet latency: Figure 3(b) distinguishes between
retweets that resulted in at least one TRF event (TRF retweets)
and retweets that did not result in a TRF event (TR retweets).
The analysis of these retweet events shows that more than 90%
of them occur in less than an hour from the corresponding
tweet; we refer to this time interval as retweet latency. This
result supports the idea that “retweeting users” tend to act soon
after new information becomes available.

TRF latency: We observe new L→ S relations even 4 days
after L has received a retweet of S, as shown in Figure 3(c).
However, more than 80% of the TRF events occur in less than
24 hours after the retweet. Unless stated otherwise, in the rest
of this paper we set ∆=24 hours.

a) TRF probability : For each monitored Speaker, we
collect at each sampling instant her list of followers F(S),
tweets, retweets, Repeaters and the set of followers for each
Repeater F(R). We then identify the set of Tweet-Retweet (TR)
events for each retweet of Speaker S: T R(S,R,L, tr, I∆). A TR
event denotes that Listener L received a message of S at time
tr through a retweet by Repeater R. The indicator variable I∆

is 1 if L followed S during a time period of length ∆ after tr.

We could define the TRF probability as the fraction of
TR events for which I∆=1. This calculation, however, does
not consider that a Listener may receive multiple retweets (of
the same or different tweets) of that Speaker. It would not be
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Fig. 3. (a) Percentage of identified TRF events as function of ∆. (b) Retweet latency for all observed retweets. We plot separately retweets that lead to a
TRF event, and retweets that do not (TR retweets). (c) Delay between the time of a retweet of Speaker S and the time the Listener L follows S.

realistic to assume that the Listener will decide whether to
follow the Speaker immediately after each retweet. Typically,
users do not read each tweet immediately when it is generated,
nor they have an infinite attention span that would allow them
to consider all tweets in their inbox [41]. It is more reasonable
to expect that each time a user opens her inbox she reads
several recent tweets at the same time. So, we assume that a
Listener decides whether to follow a Speaker based on a group
of received retweets that were recently received.

Specifically, we group TR events into Retweet Groups (RG)
as follows. Each RG is represented as RG(S,L, tr,n, I∆), where
S and L are the Speaker and Listener, respectively, tr is the
timestamp of the first retweet in that group, and n is the number
of retweets of S received by L during the time window < tr, tr+
∆ >. Note that these retweets may be generated by different
Repeaters. The indicator variable I∆ is 1 if L followed S by the
end of the previous time interval. If L followed S at time tr ≤
t ≤ tr +∆, the corresponding RG includes only those retweets
received by L before t; any subsequent retweets are ignored
because L already follows S.

Based on this Retweet Grouping method, we calculate the
TRF probability PT RF(∆) as the fraction of RGs for which
I∆=1.

b) Factors that affect the TRF probability: We now
examine a number of factors that may affect the TRF prob-
ability. The small magnitude of the TRF probability makes
the identification of important factors more challenging [15];
the following results, however, are given with satisfactory
statistical significance (see p-values in Table I).

Table I lists the structural and informational factors (fea-
tures) we consider. We use logistic regression to analyze how
these features correlate with the TRF probability. Based on (3),
we estimate the correlation coefficient κi for each factor Xi. κi
denotes the effect of Xi to the “odds” of TRF events,

ln
(

PT RF

1−PT RF

)
= κ0 +

n

∑
i=1

κi Xi (3)

Table I shows the odds ratio and the corresponding 95%
confidence interval for each feature. An odds ratio ρ represents
a ρ× PT RF increase in the TRF probability for every unit
increase of the corresponding feature. Thus, odds ratios close
to 1 suggest that those features have no major effect on
the TRF probability. Table I shows that all odds ratios are
statistically significant (p < 0.01).

The “Twitter age” of the Speaker, the number of followers
and followees (factors that were previously shown to correlate
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Fig. 4. PT RF (∆), Reciprocal PT RF (∆,↔) and Non-reciprocal PT RF (∆,→).

with Twitter activity) as well as the tweeting [18, 21] and
retweeting [36] rate of the Speaker, show no correlation
with the TRF probability. Similar results are obtained when
examining the age and number of followers or followees of
the Listener. We have also examined a number of aggregated
informational features, namely the Speaker’s overall activity
and her daily tweeting activity. Both features show no signif-
icant correlation with the TRF probability.

Reciprocity: A structural feature that examines the reverse
relation between S and L, i.e., whether S was already following
L when L received one or more retweets of S, has a large effect
on the TRF probability. Reciprocity increases the probability
that L will follow S by 27.3 times compared to the base
TRF probability. Previous work has shown reciprocity to be a
dominant characteristic of several online social networks such
as Twitter [21], Flickr [8], and Yahoo 360 [20].

In 44% of the observed TRF events, S was following L
prior to the formation of the reverse link. Figure 4 shows
PT RF(∆) independent of reciprocity (solid line), when reci-
procity is present (dashed line), and when reciprocity is not
present (dotted line). When reciprocity is present, the TRF
probability, denoted by PT RF(∆,↔), is one order of magnitude
larger than the probability without reciprocity, denoted by PT RF
(∆,→). For ∆ > 3 hours, PT RF(∆,↔) further increases and
gradually becomes up to two orders of magnitude larger.

The large quantitative effect of reciprocity on the TRF
probability implies that there may be different reasons for the
formation of a link from L to S in that case. The existence
of the reverse link, S→ L, could imply that these two users
have some prior relation. They may know each other in other
social contexts (online or offline) or they may belong to similar
interest groups. In such cases, the retweet of S can make L
aware of the existence and activity of S in the Twitter network.

Number of tweets and repeaters: Earlier social influence
studies showed that the probability that an individual adopts



∆ p p×q p p×q
Without reciprocity With reciprocity

1 hour 0.5×10−4 0.12×10−4 8.1×10−4 7.2×10−4

3 hours 0.5×10−4 0.13×10−4 11.0×10−4 8.5×10−4

6 hours 0.6×10−4 0.14×10−4 13.0×10−4 9.3×10−4

12 hours 0.6×10−4 0.15×10−4 17.6×10−4 9.3×10−4

24 hours 0.7×10−4 0.16×10−4 24.0×10−4 10.2×10−4

48 hours 0.8×10−4 0.16×10−4 33.1×10−4 10.2×10−4

TABLE II. ESTIMATED VALUE OF THE TWO MODEL PARAMETERS p
AND p×q

a new behavior increases with the number of her ties already
engaging in that behavior [5, 6, 10, 16, 32]. Similarly, we
examine whether the number of tweets and retweets of S
received by L affects the TRF probability. It turns out that
PT RF increases with both the number of distinct tweets of S
that L receives (odds ratio = 2.01), and with the number of
distinct Repeaters that L received retweets from (odds ratio =
2.08).

For simplicity, we choose to aggregate the number of
distinct Repeaters and the number of distinct tweets of S that L
received into a single parameter: the total number n of retweets
(potentially not distinct) of S that were received by L in a time
period of length ∆. This new factor has high correlation with
the TRF probability (odds ratio = 1.25, p < 0.001). Figure 5-
left shows the TRF probability in the absence of reciprocity
(L→ S) while Figure 5-right shows the TRF probability in the
presence of reciprocity (L↔ S), as a function of n.

c) TRF model: We now construct a simple model for
the probability of TRF events. The objective of this exercise
is to create a parsimonious probabilistic model that can be
used in analytical or computational studies of co-evolutionary
dynamics in social networks.

The model considers two independent mechanisms behind
each TRF event: How many retweets n of Speaker S did the
Listener L receive? And, did L actually observe (i.e., read) this
group of retweets? The simplest approach is to assume, first,
that the n received retweets are either observed as a group with
probability p or they are completely missed, and second, that
each observed retweet causes a TRF event independently and
with the same probability q. Then, the probability of a TRF
event after receiving at most n retweets is

PT RF(n) = p× (1− (1−q)n) (4)

Thus, the probability of a TRF event after only one received
retweet is p×q. For a large number of received retweets, the
TRF probability tends to the observation probability p.

As shown in Figure 5-left, the measured TRF probability
PT RF(→,n) without reciprocity seems to “saturate” after n
exceeds about 10-20 retweets. The same trend is observed
in the case of reciprocity (Figure 5-right), but the saturation
appears earlier (after around 5-10 retweets). The model of (4)
captures the dependency with n quite well. The parameters p
and q depend on reciprocity as well as on the time window
∆, as shown in Table II. Reciprocity increases significantly
both the observation probability p and the probability p× q
that a single received retweet will cause a TRF event. As
expected, increasing the observation time window ∆ increases
the observation probability. The effect of ∆ on the probability
p×q is weaker, especially when there is no reciprocity.

VI. IMPLICATIONS OF TRF EVENTS

Most prior work in online social networks focused either
on the exogenous evolution of the topology (dynamics of
network) or on influence and information diffusion on static
networks (dynamics on network), ignoring the potential cou-
pling between these two dynamics. In this paper, we considered
co-evolutionary dynamics in the specific case of the Twitter
online social network. Our study focused on the addition of
new links through the so-called Tweet-Retweet-Follow events.
We showed that TRF events, although infrequent compared to
tweets or retweets, occur in practice and they are responsible
for a significant fraction (about 20%) of the new edges in
Twitter. Through (near) real-time monitoring of many Twitter
users, we showed how to identify TRF events and investigated
their temporal and statistical characteristics. More than 80% of
TRF events occur in less than 24 hours after the corresponding
retweet. The main factors that affect the probability of a TRF
event are reciprocity and the total number of retweets received
by the Listener.

We now discuss how TRF events may gradually transform
the structure of a social network. We consider two fundamen-
tally different network topologies, and discuss the implications
of TRF events from the information diffusion perspective.

Effect on topologies with directed cycles: The left graph
of Figure 6(a) shows a weakly connected network, which may
be a subset of the Twitter topology. A directed cycle exists
between some of its nodes, namely A→ B→D→ E↔C→ A.
Let us focus on the largest directed cycle in this network, i.e.,
in its largest Strongly Connected Component (SCC). The ties
of the participating nodes may also include links to or from
nodes out of this cycle, such as the E↔ F relation.

Suppose that A posts a tweet at some point in time and C
decides to retweet it. Node E will receive that retweet and may
follow A (TRF event). It is easy to see that, after a sufficiently
large number of TRF events, the nodes of this directed cycle
will form a fully connected directed graph, as shown in the
right graph of Figure 6(a) (red edges denote connections
created through TRF events), in which everyone is following
all others. This transformation can only take place when a
cycle already exists in the initial network; TRF events cannot
create directed cycles. So, when an initial network includes a
directed cycle, a sequence of TRF events may transform that
cycle into a clique in which everyone can generate information
that all others receive directly from the source.

Effect on hierarchical topologies: The left graph of
Figure 6(b) shows a hierarchical weakly connected directed
network. Again, this network may be a subset of the Twitter
topology. This network contains no directed cycles, but a
number of sink nodes (i.e. nodes with no outgoing edges; A
and B in this example).

User F may receive a retweet of A and B through C, and
she may then decide to follow them. After a sequence of TRF
events, this network can then reach the topological equilibrium
shown in the right graph of Figure 6(b), in which no new links
can be added through TRF events. More generally, suppose
that F ′(X) = {X1, . . . ,Xn} is the set of followees of X . The set
of Speakers that X may receive a retweet from can be defined
recursively as F ′U (X) = F ′(X)∪ (F ′U (X1)∪ . . .F ′U (Xn)); if user
X does not have any followees then F ′U (X) is the empty set.
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Fig. 5. Empirical (solid) and model-based (dashed) TRF probability PT RF (→,n) (left) and PT RF (↔,n) (right) as a function of the number n of received retweets
of S at L, for four different values of ∆

Factor Description Odds ratio 95% CI
Structural Features

|F(S)| Number of followers of S 1.000 [1.000,1.000]
|F ′(S)| Number of followees of S 0.999 [0.999,0.999]
AGE(S) Number of days since S joined Twitter 0.998 [0.998,0.998]
S→ L Reciprocity: whether the Speaker was following the Listener at the time of the

TR event
27.344 [25.663,29.136]

Informational Features
|ST (S)| Total number of tweets of S 1.000 [1.000,1.000]
Arate(S) Rate of S tweets per day 0.989 [0.988,0.991]
Tweets(S,L,∆) Number of distinct tweets of S received by L during period ∆ 2.010 [1.781,2.270]
Retweets(S,L,∆) Number of distinct retweets of S received by L during period ∆ 1.603 [1.371,1.873]
Repeaters(S,L,∆) Number of Repeaters R that L received tweets of S from during period ∆ 2.076 [1.889,2.282]

TABLE I. LIST OF EXAMINED FACTORS.

(a) Circular topology (b) Hierarchical topology

Fig. 6. (a) An initial network that includes a directed cycle. A sequence of TRF events can transform this cycle to a clique, meaning that the corresponding
users gradually form a tightly knit community. (b) A hierarchical initial network. A sequence of TRF events can transform this multi-layer hierarchy into a
two-layer hierarchy in which each sink node is directly followed by a set of other nodes (its “sphere of influence”), while each non-sink node follows at least
one sink node.

It is easy to see that, after a sufficiently large number of TRF
events, a multi-layer hierarchical network will converge to a
two-layer hierarchy in which every non-sink user X follows
all users in F ′U (X). Then, an initial sink node X will be
followed directly by all users that had a directed path towards
X in the initial network. A consequence of TRF events in
such hierarchical networks is the emergence of some highly
influential users that were the sink nodes in the initial network.
Further, non-sink nodes will be partitioned, with the users in
each partition following a distinct set of sink nodes.

The previous two topologies are obvious extremes. In
practice, a given weakly connected subset of Twitter users
may contain groups of nodes that form directed cycles as
well as nodes that do not belong in any directed cycle.
An interesting question then is: given a weakly connected
directed social network, what fraction of its nodes belong to
the longest directed cycle (i.e., largest SCC) in that network?
If this fraction is large, the network resembles the example of
Figure 6(a), while if it is close to zero the network is similar
to the example of Figure 6(b).

We investigated the previous question based on samples
of the actual Twitter topology, at least as it was measured

by Kwak et al. [21] in 2010. We collected weakly connected
network samples using the Random-Walk [23] and Snowball
(Breadth-First-Search) [12] sampling methods. The largest
SCC was determined with Tarjan’s algorithm [37].

In the case of moderately large samples, between 1,000 to
1,000,000 nodes, the largest SCC contained consistently more
than 90% of the nodes. This result suggests that the Twitter
topology is closer to the network of Figure 6(a) than to the
network of Figure 6(b). The creation of such large cliques,
however, may require a very long time, and it may also be
impractical for a user to follow thousands of other users.
Consequently, we are more interested in smaller samples,
including only tens or hundreds of Twitter users.

Figure 7 shows the percentage of Twitter users that are
included in the SCC of small network samples, in the range
of 10-1,000 nodes. Each point is the average of 1,000 samples
of that size and the error bars represent 95% confidence inter-
vals. Independent of the sampling method, the SCC typically
includes the majority of the nodes even for samples of few tens
of users. The SCC percentage increases to about 80-90% for
networks with more than 200-400 users. These results imply
that co-evolutionary dynamics, and the TRF mechanism in
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Fig. 7. Fraction of Twitter nodes in the largest SCC for different sample
sizes, using two sampling methods.

particular, have the potential to gradually create very dense
communities of users in which everyone is following almost
everyone else, as long as the involved users are active, tweeting
and retweeting information.

VII. CONCLUSIONS

Most prior work in online social networks focused either on
the exogenous evolution of the topology (dynamics of network)
or on influence and information diffusion on static networks
(dynamics on network), ignoring the potential coupling be-
tween these two dynamics. In this paper, we considered co-
evolutionary dynamics in the specific case of the Twitter online
social network. Most of our study focused on the addition of
new links through the so-called Tweet-Retweet-Follow events.
We showed that TRF events, although infrequent compared to
tweets or retweets, occur in practice and they are responsible
for a significant fraction (about 20%) of the new edges in
Twitter. Through (near) real-time monitoring of many Twitter
users, we showed how to identify TRF events and investigated
their temporal and statistical characteristics. More than 80% of
TRF events occur in less than 24 hours after the corresponding
retweet. The main factors that affect the probability of a
TRF event are reciprocity and the total number of retweets
received by the Listener. Based on these findings, we have
proposed a simple probabilistic model for the probability of
TRF events. We have also discussed how TRF events can affect
the structure of the underlying social network. TRF events
tend to transform directed cycles into cliques, creating closely
knit communities of users in which everyone is following
everyone else. The analysis of samples from the 2010 Twitter
topology shows that weakly connected groups of more than
200-400 users contain large directed cycles that include more
than 80-90% of the users. In ongoing work, we plan to
use the probabilistic model proposed in this paper, extended
with a model of unfollow events, to simulate co-evolutionary
dynamics on a Twitter-like synthetic network.
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