
Mobile Agent Platforms for Web Databases:

A Qualitative and Quantitative Assessment

George Samaras Marios D. Dikaiakos Constantinos Spyrou Andreas Liverdos

Department of Computer Science

University of Cyprus

P.O. Box 20537, 1678 Nicosia, Cyprus

fcssamara,mddg@cs.ucy.ac.cy

Abstract

In this paper we present practical experiences gath-

ered from the employment of two popular Java-based

mobile-agent platforms, IBM's Aglets and Mitsubishi's

Concordia. We present some basic distributed comput-

ing models and describe their adaptation to the mobile-

agent paradigm. Upon these models we develop a set

of frameworks for distributed database access over the

World-Wide Web, using IBM's Aglets and Mitsubishi's

Concordia platforms. We compare the two platforms

both quantitatively and qualitatively. For the quantita-

tive comparison, we propose, employ, and validate an

approach to evaluate and analyze mobile-agent frame-

work performance. For the qualitative assessment, we

present our observations about the programmability and

robustness of, and mobility provided by, the two plat-

forms.

1 Introduction

To better understand the performance behavior of
computer systems, it is helpful to de�ne relatively sim-
ple metrics highlighting particular aspects of perfor-
mance or particular bottlenecks. Also, to design sim-
ple, portable and scalable benchmarks that measure
how performance metrics vary with respect to system

parameters and/or application characteristics. Numer-
ous studies have assembled and used benchmarks to
evaluate the performance properties of existing sys-
tems, to enable performance prediction of future archi-
tectures, and to model the performance of interesting
classes of applications [7, 6, 3]. Notably, performance
benchmarking has proven to be complicated in the case
of distributed systems, which demonstrate a signi�cant
lack in methods and tools for performance analysis.

With the emergence of Internet as a world-wide in-
frastructure for communication and information ex-
change, Internet-based distributed applications have
gained remarkable popularity. One of the most promis-
ing approaches for developing such applications is
the Java-based mobile-agent paradigm [15, 28, 12].
Mobile agents are being used already in a variety
of Internet-based distributed computing applications:
Web databases [19], cooperative environments [2],
information-gathering systems [5], electronic commerce
systems [30], and so on. In that context, a distributed
application can be thought of as a dynamic group of
agents working in coordination to accomplish some
goal.

As the mobile-agent paradigm becomes prevalent in
distributed systems, we expect that the quest for pro-
gramming abstraction, code reuse, portability and per-
formance will lead to the emergence of mobile agent
application frameworks. A framework will o�er a set
of basic services (database queries, http requests, Web
queries), implementing some distributed computing
model. An application developer will choose a compu-
tational model according to performance and function-
ality requirements of the application. Consequently,
when trying to analyze the performance of mobile-
agent-based distributed systems, we need to employ
metrics and benchmarks that take into account: a)
the relevant application frameworks and their basic ser-
vices; b) the underlying computational model, and c)
the context of use of the application frameworks and
the workload characteristics arising in it. Neverthe-
less, the identi�cation of metrics and benchmarks for
mobile-agent platforms is hard, given the dynamic na-
ture of mobile-agent applications, the applicability of
mobile agents in a wide spectrum of resources (LAN,
WAN, wireless networks, PCs, workstations) and the
fact that mobile agent applications have not reached

yet a level of widespread adoption that will determine
which frameworks are successful and popular.

In this paper, we address issues pertinent to the
performance analysis of mobile agent-based distributed
systems. In particular, we focus on mobile agent frame-
works providing distributed database access over the
World Wide Web and present several computational
models that are pertinent to this application. The
choice of Web databases is not random: previous re-
search has established the advantages of the mobile
agent approach over other state-of-the-art techniques
[19]. We propose a number of benchmarks to assess
basic performance properties of mobile agent platforms
and compare the performance of di�erent mobile agent-
based frameworks for distributed database access over
the Web. Finally, we describe our experiences with two
Mobile Agent platforms that we used to provide dis-
tributed database access over the Web: IBM's Aglets
and Mitsubishi's Concordia. We compare the two plat-
forms both qualitatively and quantitatively.

The remaining of the paper is organized as follows:
Section 2 presents a brief de�nition of computational
models pertinent to relevant distributed computing ap-
plications. Section 3 describes the adaptation of these
models to the mobile agent-based, Web-database ap-
plication. In Section 4 we present two popular Java-
based platforms, IBM's Aglets Workbench [4] and Mit-
subishi's Concordia [13], and discuss our practical ex-
periences from deploying the two platforms for Web
databases. Section 5 presents a performance analysis
methodology that we propose to compare the imple-
mentation of di�erent frameworks for Web databases.
We conclude in Section 6.

2 Mobile-Computing Software Models

The inadequacy of the traditional client-server ap-
proach to support wireless and mobile applications
has resulted in the development of new computational
paradigms. To evaluate emerging paradigms and assess
their implementation, we need to identify the computa-
tional models upon which these paradigms will be em-
ployed and tested. In this section, we describe briey
the various agent-based computational models perti-
nent to the mobile computing environment. A detailed
description of these models, and their strengths and
weaknesses, is given in [22].

2.1 Extended Client-Server Models

Extensions of the client-server model are merely
based in the introduction of stationary agents placed
between the mobile client and the �xed server. The

agents alleviate the constraints of the communication
link by performing various communication optimiza-
tions. Furthermore, the introduction of agents allevi-
ates any client-side resource constraints, by undertak-
ing part of the functionality of resource-poor mobile
clients. The degree to which this is achieved depends
on the placement and functionality of agents.

Mobile
Host

Application

Client Agent
Application

Server

Wireless link

Fixed Network

Figure 1. The Client-Agent-Server Model.

The Client-Agent-Server Model: A popular ex-
tension to the traditional client-server model is a three-
tier model, called client-agent-server (C/A/S) model
[26, 17, 8]. The C/A/S model uses a messaging and
queuing infrastructure for communication between the
mobile client and the agent, and between the agent
and the server (see Figure 1). Agents are used in
a variety of forms and roles in this architecture. At
one extreme, an agent acts as the complete surrogate
of a mobile host on the �xed network. In this case,
any communication to and from the mobile host goes
through the mobile host's agent. At the other extreme,
the agent is attached to a speci�c service or applica-
tion, e.g., web browsing [10] or database access [17].
Any client's request and server's reply associated with
this application is communicated through this service-
speci�c agent. In this scenario, a mobile host must be
associated with as many agents as the services it needs
access to.

The Client-Intercept-Server Model: The
shortcomings of the client-agent-server model are ad-
dressed by the deployment of an agent that will run
at the mobile device of the end-user, along with the
agent of the C/A/S model that runs within the wire-
line network (see Figure 2) [23, 10] . The client-side
agent intercepts client's requests and cooperates with
the server-side agent to perform optimizations for re-
ducing data transmission over slow links, to improve
data availability and to sustain the non-interruption of
the mobile computation.

From the point of view of the client, the client-
side agent appears as the local proxy of the server,
which is co-resident with the client. Since the pair of
agents is virtually inserted in the data path between
the client and the server, the model is also called client-

Mobile
Host

Application

Client
Application

Server

Wireless link

Fixed Network

Client
Intercept

Server
Intercept

Figure 2. The C/I/S Model.

intercept-server (C/I/S) instead of client-agent-agent-
server model [23, 10]. This model is more appropri-
ate for heavy-weight clients with enough computational
power and secondary storage to support the client-side
agent. The model provides a clear distinction and sepa-
ration of responsibilities between client and server-side
agents. Legacy and existing applications can be exe-
cuted as before since the agent pair shields them from
the limitations of mobility and the wireless media.

2.2 Mobile-Agent Technologies

In mobile applications data may be organized as col-
lections of objects, in which case objects become the
unit of information exchange between mobile and static
hosts. Objects encapsulate not only pure data but also
information regarding their manipulation, such as op-
erations for accessing them. Incorporating active com-
putations with objects and making them mobile leads
to mobile agents.

Mobile agents are processes dispatched from a
source computer to accomplish a speci�ed task [25,
27, 15, 28]. Each mobile agent is a computation along
with its own data and execution state. In this sense,
the mobile agent paradigm extends the RPC commu-
nication mechanism, according to which a message is
just a procedure call whereas now it is an object with
state and functionality. After its submission, the mo-
bile agent proceeds autonomously and independently of
the sending client. When the agent reaches a server, it
is delivered to an agent execution environment. Then,
if the agent possesses necessary authentication creden-
tials, its executable parts are started. To accomplish
its task, the mobile agent can transport itself to an-
other server, spawn new agents, or interact with other
agents. Upon completion, the mobile agent delivers the
results to the sending client or to another server.

By letting mobile hosts submit agents, the burden
of computation is shifted from the resource-poor mo-
bile hosts to the �xed network. Mobility is inherent
in the model; mobile agents migrate not only to �nd
the required resources but also to follow mobile clients.

Mobile
Host

Mobile
Agent

Application

Server

Application

Server

Mobile
Agent

Mobile
Agent

Mobile
Agent

Application

Server

Application

Client

Wireless link

Fixed Network

Figure 3. The Mobile Agent Model.

Finally, mobile agents provide the exibility to adap-
tively shift load to and from a mobile host depending
on bandwidth and other available resources. Mobile-
agent technology is suitable for wireless or dial-up en-
vironments [20, 15].

2.3 Mobile Agents and the C/S Model

Mobile agents give rise to new computational mod-
els for mobile computing, which we collectively call the
Mobile-Agent Model (see Figure 3). This model en-
ables a high degree of exibility as it incorporates the
advantages of mobile-agent platforms. It should be
noted that the Mobile Agent model is orthogonal to
the client-server model and its extensions, since mobile
agents can be used to dynamically materialize [24] and
extend models like the C/S, C/A/S and C/I/S. Such
an approach presents many bene�ts in the wireless and
dial-up environments, as well as in the world of Internet
services and applications [15].

For example, the server-side agent of the C/A/S and
C/I/S model may be seen as a stationary agent, i.e.,
an agent lacking the ability to migrate to other servers.
One can implement these agents, however, as mobile
agents that are placed at the client and the server dy-
namically. Furthermore, the server-side agent may be
permitted to move within the �xed network, \follow-
ing" its associated client, to remain \near" the client
and yet within the �xed network. Once the server-side
agent starts roaming the �xed network, it can commu-
nicate with the client not only via messaging but also
via mobile agents. These agents can also roam the �xed
network and connect to other servers before returning
to the client, thus enhancing the model's exibility.

The combination of the mobile-agent model with
\traditional" software models for mobile computing
gives rise to new software models. For instance, the
employment of mobile agents for client-server com-
munication, instead of messages, leads to the \mo-

bile" client-server (C/S-MA), \mobile" client-agent-

server (C/A/S-MA) and \mobile" client-intercept-

server (C/I/S-MA) models.

In these cases we denote as messenger agents the
mobile agents used by the server and the client to
communicate. In such a scenario, the client creates a
messenger mobile agent and submits it to the server
machine. Upon reception, the server processes the
information presented by the messenger agent. In a
more exible approach, a server could re�ne and ex-
tend the messenger agent and then launch it to other
servers on the network. When the messenger agent �n-
ishes its task, it returns with the results to the server.
The server �lters out any unnecessary information and
transmits to the mobile client only the relevant data.
Such an approach entails enhancing servers and clients
with capabilities to process mobile agents, i.e. mod-
ifying/re�ning their state and is, in some respect, in
accordance with current research on active networks
[26]. An extended taxonomy of software models for
Mobile Computing, according to the connection modal-
ity between clients and servers (client-server, client-
agent-server, etc.) and the communication paradigm
employed to establish and manage connections, is pre-
sented in Table 1.

3 Mobile Agents for Web Databases

The emergence of the World-Wide Web as a uni-
versal networking infrastructure for information ex-
change has created the need and the opportunity for
providing distributed-database access over the Web.
The current commercial client-server approach to Web
databases employs applet-based methodologies for ac-
cessing database systems using the JDBC API and
JDBC drivers for database connectivity [11]. In most
commercial applications, a Web browser downloads an
applet from the remote Web server; the applet down-
loads and initiates a JDBC driver and uses a complex
set of JDBC interfaces to connect to the remote SQL
server. This approach o�ers limited exibility because
it is di�cult to adapt it to the computational models
presented earlier, and it is inadequate in supporting
multiple database systems. Furthermore, under the
applet-based approach, the client needs to maintain
a connection to the server and to download various
JDBC classes1, for the whole duration of the client-
server interaction. This reduces its stability and ro-
bustness [19]. Within the wireless and dial-up environ-
ment these setbacks are further exacerbated.

1The size of typical JDBC drivers ranges between 350 and

500 KB.

Improved Web-based distributed access to database
systems (e.g., SQL servers) can be established using
mobile-agent technologies [19]. In that case, the re-
sulting application frameworks can be formulated in
concordance with the computational models described
in Section 2, with mobile agents being used to dynam-
ically materialize components of the models.

3.1 C/S-MA for Web Databases

The deployment of mobile-agent models o�ers an
approach to database access over the Web, which is
totally di�erent than the applet-based approach. The
mobile-agent approach (named C/S-MA) is based on
using mobile agents between the client interface and the
server machine to provide database connectivity, pro-
cessing and communication. In particular, the DBMS-
applet creates and launches a mobile agent (or agents
if necessary) that travels directly to the remote SQL
server. At the SQL server, the mobile agent initiates a
local JDBC driver, connects to the database and per-
forms any queries speci�ed by the sending client [19].
When the mobile agent completes its task at the SQL
server, it dispatches itself back to the client machine di-
rectly into the DBMS-applet from where it was initially
created and �red. Note that database capabilities are
dynamically acquired not at the client but at the server
side. Mobile agents that acquire such capabilities are
called DBMS-agents [19].

Recent work has explored the performance advan-
tages of using mobile agents for Web-database access
versus the traditional approach [19]. By using a DBMS
mobile agent (namely the DBMS-Agent) to encapsu-
late all interactions between the client applet and the
SQL server machine, the client applet becomes light
and portable. This result is achieved by avoiding the
downloading and initialization of JDBC drivers at the
client's DBMS-applet. Instead, the DBMS-agent loads
the JDBC driver at the SQL server. The single respon-
sibility of the client is to specify the URL address of the
database server, the query to be performed, security
certi�cates and an itinerary. The rest is the responsi-
bility of the DBMS-agent. The e�ect on performance is
signi�cant; experiments conducted with IBM's Aglets
Workbench [4] have shown that in the wireless and dial-
up environments and for average sized transactions,
the mobile agents framework improve performance by a
factor of two [19]. Even on a �xed network, the employ-
ment of the mobile agent model resulted in comparable
to the applet-based approach performance.

Notably, the DBMS-agent is independent of the var-
ious JDBC driver implementations. The DBMS mo-
bile agent cannot (and is not supposed to) be aware of

Communication Interaction Modality
Paradigm between Clients and Servers

Messaging C/S C/A/S C/I/S Mobile
Messenger Agents C/S-MA C/A/S-MA C/I/S-MA Agent Model

Table 1. Software Models for Mobile Computing.

SQL Server +

DBMS-Assistant Agent
Agent Server +

Web Server +
Agent RouterWeb Client

DBMS-agent +

page + DBMS-applet +
Client downloads HTML

Messenger agent

Client issues request DBMS-agent DBMS-agent "parks"
at the SQL-server

Messenger agent carries
queries and results back
and forth

to the DB, performs requests, sends
results to client and remains connected.

Parked DBMS-agent connects

Figure 4. C/A/S-MA for Web databases.

which JDBC driver to load when it arrives at an SQL
server. Upon arrival at the SQL server's context, the
DBMS-agent is informed of all available JDBC drivers
and corresponding data sources. The DBMS-agent is
then capable of attaching itself to one or more of these
vendor data sources. Finally, besides database con-
nectivity, the functionality of the DBMS-agent may
include many other optimizations and tasks, such as
query coordination to support the execution of multi-
ple client queries [18], or view materialization to com-
pose a view with information from multiple URLs that
are of interest to the client.

In summary, the role of the DBMS-agent in the
mobile-agent framework is to convey the various
database requests to the SQL server and bring back
the result. The proposed mobile-agent-based frame-
work is quite exible and scalable. It also allows the
clients to be lighter, autonomous, and robust. Unfor-
tunately, an agent is �red to the database server and
a local JDBC connection is established every time a
request is issued, thus introducing an unnecessary and
undesirable overhead.

3.2 C/A/S-MA for Web databases

Turning to the C/A/S-MA model, the (server-side)
agent of the model can be a mobile agent dynamically
created at the client, and then sent and parked at the
SQL server. Database connectivity is now the respon-
sibility of the \parked" agent. A JDBC connection can
be established and maintained for the whole duration
of the client's application, thus eliminating the previ-
ous limitation of creating an agent and a connection
per request. Between this parked agent and the re-
mote client, another agent carries requests and results
back and forth.

Based on this variation (see Figure 4), upon the
�rst client request, two DBMS-agents are �red from
the DBMS-applet at the client. The �rst one is called
the \parked DBMS-agent" and is the client's surro-
gate for database access located on the �xed network.
Its role is to \camp" at the SQL server's agent con-
text, load the appropriate JDBC driver, connect to the
database, submit requests, and collect and �lter the an-
swers. The second agent is the messenger agent. The
messenger agent is responsible for carrying the requests
and results back and forth to the DBMS-applet. All re-
quests are transmitted to the parked DBMS-agent via
the messenger agent. E�ectively, the two agents have
dynamically materialized the C/A/S-MA model. Fur-
thermore, these two agents may have the same itinerary
and thus, if the parked DBMS-agent moves to another
server the messenger agent can deterministically fol-
low it, thus dynamically maintaining the client-agent-
server model. An additional bene�t of this approach
is the ability of the messenger agent to roam around
the network before returning to the client. Hence, the
messenger agent can connect to and interact with other
servers before returning to the client.

The e�ect on performance is quite signi�cant; ex-
periments conducted with IBM's Aglets Workbench
[4] have shown that in the wireless and dial-up envi-
ronments and for average-size transactions, this mo-
bile framework improved performance over the \tra-
ditional" applet-based approach by a factor of two to
three [19]. It is worth noting that in these environ-
ments, C/A/S-MA performed better than the C/S-MA
model [19]. Even on a �xed network, the employment
of this model resulted in performance comparable to

the applet-based approach.

3.3 C/A/S for Web databases

The traditional C/A/S model can be materialized by
letting the client communicate with the agent through
messages instead of mobile agents. This is approach
achieved by replacing the messenger agent with two
types of messages. The �rst type, delivered from
the DBMS-applet to the DBMS-agent, contains the
client query and any additional directions to the parked
DBMS-agent. The second type, delivered from the
parked DBMS-agent to the DBMS-applet, contains the
results of the last query. This methodology demon-
strates a true service-speci�c client-agent-server appli-
cation. The agent is literally inserted into the path
between the client and the server communicating with
each other via messages. By using a DBMS-agent
parked at the server, we avoid the reconnection cost;
by using messages instead of the messenger agent we
eliminate the time of negotiation and the amount of
data transmitted between the client and the server.

The e�ect on performance is quite signi�cant; ex-
periments conducted with IBM's Aglets Workbench [4]
have shown that in the wireless and dial-up environ-
ments, and for average-size transactions, the client-
agent-server-based framework improved performance
by a factor of ten over the \traditional" applet-based
approach. Over the C/A/S-MA approach, perfor-
mance is improved by a factor of three [19]. Even on a
�xed network, the employment of this model gave per-
formance gains over the applet-based approach ranging
from 30% to 40% [19].

3.4 C/I/S-MA for Web databases

Employing the client-intercept-server model intro-
duces a database-speci�c agent residing at the mobile
client, in addition to the database agent at the �xed
network. The \database" agent at the client is called
client-side agent whereas the database agent at the
�xed network is called server-side DBMS-agent. While
the server-side agent at the �xed network might serve
multiple clients, the client-side agent is unique to the
client. In contrast to its server-side counterpart, the
client-side agent does not need to possess database ca-
pabilities (i.e., JDBC connection capabilities). The
agent pair cooperates to intercept and control commu-
nications over the wireless link for reducing network
tra�c and query processing.

Functionality at the client-side agent might include
various optimizations such as client-side view materi-
alization, caching to support disconnection and weak

connectivity, or an asynchronous-disconnected mode,
to allow queries that cannot be satis�ed by the view to
be automatically queued when connectivity is lost and
resumed when connectivity is re-established [10, 1].

As in the case of the client-agent-server model, we
can implement the client-side agent as a mobile agent.
In this case, upon the �rst client request, the DBMS-
applet creates two agents: the client-side agent and the
server-side DBMS-agent. The client-side agent remains
at the client while the server-side agent is dispatched
to the appropriate server. The two agents communi-
cate and cooperate to execute various queries/requests.
Both agents are maintained for the duration of the ap-
plication. Again, communication can be performed ei-
ther via agents (i.e., the C/I/S-MA model) or via mes-
sages (i.e., the C/I/S model).

The C/I/S model(s) o�er more exibility than the
C/A/S model(s). For the speci�c application of Web-
database access, however, the resulting performance is
identical to that of the C/A/S model(s) because no
extra collaboration is needed between the two agents
for processing SQL queries.

4 Aglets versus Concordia

4.1 IBM Aglets

The Aglets Software Development Kit (ASDK) is an
environment for programming mobile Internet agents
(Aglets) in the Java programming language [9]. An
Aglet is a Java object that has the ability to move (be
dispatched) autonomously from one computer host to
another. This transportation is possible between hosts
with a preinstalled Tahiti server, which is an Aglet
server program implemented in Java. A running Tahiti
server listens to the host's ports for incoming Aglets
and messages. Tahiti captures arriving Aglets, follow-
ing a First Come First Served policy, and provides
them with an Aglet context. In this context, Aglets
can run their code, communicate with other Aglets,
collect local information and move to other hosts.

The transportation procedure is as follows [4]: Call-
ing method dispatch on an Aglet will immediately
lead to the invocation of its onDispatching method.
On completion of this method, all threads created by
the given Aglet are killed and the Aglet is transferred
to its destination. The Tahiti server of the destination
captures the Aglet and invokes the onArrivalmethod,
followed by the run method. Meanwhile, the Aglet's
new proxy is sent by the destination Tahiti Server to
the Tahiti Server of the origin. Communication be-
tween the Aglet and the origin Server is conducted
throught that proxy.

The protocol used for the transportation of the
Aglet, is the Aglet Transfer Protocol (ATP) by IBM,
which is an application-level protocol for distributed
agent-based systems [14]. ATP de�nes four stan-
dard request methods for agent services, which are
dispatch, retract, fetch and message. Currently,
the Aglets framework does not attempt to optimize the
transfer of an agent's bytecode. The transport proto-
col does not perform checks to �nd whether it needs
to transfer a given class bytecode to a given destina-
tion. In every transfer, all the needed classes are trans-
ferred. If, however, certain classes are in the destina-
tion cache, the Aglets framework utilizes those instead
of the ones just transferred, thus improving transfor-
mation and downloading time.

A very important and useful property of Aglets is
their ability to communicate with each other. Inter-
aglet communication is supported by an object-based
messaging framework that is location-independent, ex-
tensible and synchronous/asynchronous. This frame-
work is based on a simple callback scheme that re-
quires an Aglet to implement handlers only for the
kinds of messages that is supposed to understand.
The message callback method in the Aglet class is the
handleMessage. You don't call this method directly
when you wish to send a message to an Aglet. Instead,
you invoke either the sendMessage for synchronous, or
sendAsyncMessage method for asynchronous messag-
ing, on the proxy which serves as a message gateway
for the Aglet. One of the bene�ts of using the proxy
is that it provides the programmer with a location-
independent interface for sending messages to Aglets,
because the interface is the same, regardless of whether
you are using a remote or a local proxy to send a mes-
sage. It should be noted that

The Aglet technology does not provide any Man-
agers (until now), so the programmer is forced to im-
plement any managers that is going to use. Managers
can be implemented as separate agents.

The Tahiti server (currently version v1.1b, we use
v1.0.3 with size 2.25MB) can be installed at any plat-
form that supports Java Virtual Machine (JVM). This
means that before installing Tahiti at a machine, you
have to successfully install on it the Java Development
Kit (JDK) or Java Runtime Environment (JRE).

Fiji Applet is an abstract applet class of a Java
package called \Fiji Kit", which allows Aglets to be
�red from applets. The FijiApplet maintains an Aglet
context from which Aglets can be created, dispatched,
and retracted back, but not dispatched to it. For a
Java-enabled Web browser (like Netscape Communi-
cator) to host and �re Aglets, two more components
are required and are provided by IBM. These are: an

Aglet (�ji) plug-in allowing the browser to host Aglets,
and an Aglet router that must be installed at the Web
server. The Aglet router's purpose is to capture incom-
ing Aglets and forward them to their destination.

4.2 Mitsubishi's Concordia

Concordia is a framework for the development, exe-
cution and management of mobile agent applications
written in Java [9]. The design goals of Concordia
have focused on providing complete coverage of exible
agent mobility, support for agent collaboration, persis-
tence of agent state, reliable agent transmission, agent
security, and the ability to add intelligence [13, 29].

The Concordia system is made up of several inte-
grated components. The Concordia server is the major
block, inside which the various Concordia Managers
reside. One of these managers is the Agent Manager,
which provides the communication infrastructure that
enables agents to be transmitted from and received by
nodes on the network, and the management of the life-
cycle of the agent.

Transmission is made possible by the Conduit
Server, which is part of the Agent Manager. An agent
program initiates its transfer by invoking the local Con-
duit Server's methods. The agent's execution is sus-
pended and a persistent image of it is created. The
Conduit Server inspects the agent's Itinerary Object
to determine its destination; then, it proceeds to send
an image of the agent to the Conduit Server of the Con-
cordia System at the destination machine. There, the
agent is again stored persistently before the acknowl-
edgment of its receipt.

The Queue Manager manages inbound and out-
bound queues for reliable transport of agents across a
network. The Queue Manager communicates with its
local Conduit Server and performs handshaking with
other remote Queue managers for reliable agent trans-
mission.

Communication in Concordia relies on the Java RMI
system [16] which allows an object running in one Java
Virtual Machine (JVM) to invokemethods on an object
running in another JVM. One of the central features
of RMI is its ability to download the bytecode of an
object's class if the class is not de�ned in the receiver's
virtual machine. To ensure security of all its transmis-
sions, Concordia uses the SSLv3 (Secure Socket Layer)
protocol to transmit agent information from one sys-
tem to another.

To run Concordia agents one has to �rst down-
load and install the Concordia System (currently ver-
sion 1.1.2) available as a self-extracting �le which in-
cludes the Concordia Server Components, the Java

Runtime Environment (JRE), Concordia Documenta-
tion and Concordia examples. There are two editions,
the free evaluation kit used for our evaluation and the
full-blown version. Concordia currently runs on Mi-
crosoft's Win32 operating systems and on Solaris.

Concordia pro-
vides an abstract class called ConcordiaApplet that
extends Java's applet class. There is no need to in-
stall the Concordia System on a client machine be-
cause ConcordiaApplet implements a class provided
by Concordia, namely AgentTransporter that acts as
a lightweight Concordia Server. Applet security restric-
tions do not allow the successful loading and initializa-
tion of the applet from a Web server, however, because
AgentTransporter uses local resources, thus violating
security restrictions. To overcome these problems we
had to install manually a number of class �les at the
client machine.

Concordia implements interagent
messaging through the concept of events, which are
Java objects posted at the Event Manager of a Concor-
dia Server. An object, mobile or stationary, wishing to
post or receive particular types of events, must connect
to, and register with, the Event Manager of one or more
Concordia Servers. The Event Manager keeps track of
agent movements and takes care of event distribution.
Furthermore, Concordia implements a framework for
synchronous or asynchronous agent collaboration. Last
but not least, it provides a powerful way of expanding
the potential of agents by allowing them to interact
with Java applications installed on a Concordia node.
These applications are called Service Bridges and act
as gateways between Concordia and resources installed
locally at the host machine. An agent can call meth-
ods of a Service Bridge and get back its results. Ser-
vices o�ered by Service Bridges can be registered with
a directory service running in one or more Concordia
Servers. With this directory running, agents need not
explicitly know where each Service Bridge resides as
they can make their requests through the directory.

4.3 A qualitative comparison

Programming using Aglets Software Development
Kit (code writing and debugging) is simple and easy
because of Aglet's class structure. The programmer
has to override speci�c methods (e.g., onCreation,

onDispatching, onArrival, etc.) to specify agent
behavior. We had some problems deploying applica-
tions, but these were solved easily thanks to the exam-
ples, documentation, and the lively Aglet's mailing list
(aglets@kdel.info.eng.osaka-cu.ac.jp).

Although our Aglet applications were generally

quite robust, we often experienced Aglet router failures
and, less often, Tahiti server failures. We believe that
this problem is due to implementation speci�cs and
machine con�guration. We also observed that Aglet
systems are more robust running under the UNIX op-
erating system.

Developing Concordia applications (code writing
and debugging) was also quite easy. The examples
and documentation shipped with Concordia were help-
ful. We had problems deploying Concordia applica-
tions because of insu�cient documentation regarding
the known problems and their work-around, such as
the ConcordiaApplet security problem, the fact that
an applet cannot send an agent directly to a Concordia
Server but only to an AgentTransporter. There is a
mailing list supporting the Concordia community, but
it is not very active. Our Concordia-based applications
were robust.

Both platforms support weak mobility in the sense
that, during an agent transfer, only the agent state is
serialized and not the execution stacks and program
counters of the various threads executed by the agent
at transfer time. Consequently, all threads are termi-
nated before a transfer occurs. This, is due to JVM's
built-in security model which does not allow a program
(and for that matter any Java-based mobile agent, a
Concordia agent or Aglet) to directly access and ma-
nipulate the execution stack. Thus, while in theory
an agent should be able to migrate with all its state
(i.e., heap, execution stack, and registers), in reality
Concordia and Aglets are only able to serialize/trasfer
only the data on the heap (i.e., its instance variables),
essentially following a weaker notion of mobility.

Concordia is based on RMI and provides a more
optimized agent transfer protocol than Aglet's ATP.
Concordia transfers only an image of the agent; all
other objects are transfered on a need-to-use basis. In
contrast, Aglets Workbench transfers all the objects
reacheable by the agent object, in each and every trans-
portation of this agent. Note that, in Concordia, once
the necessary classes are transferred to the destination,
no other transfer is required since subsequent agent
transportation �nds those classes in the local cache.

Aglets provide a more structural programming
model that is based on the \callback" methodology:
before any major event in an Aglet's life, a \callback"
method is invoked to allow the Aglet to prepare for
that event. For example, before an Aglet is actually
dispatched to a new location, the Aglet's ondispatch
method is invoked. This method indicates to the Aglet
that is about to be send to a new host. In the body
of ondispatch, the Aglet code must decide whether to
go or not. If it decides to go, it must complete any

un�nished business and prepare its state for serializa-
tion/transfer. While this methodology provides some
bene�ts, this level of indirection handicaps its perfor-
mance. Concordia, on the other hand, directly speci�es
the method to be executed as a result of a major event
(dispatch, etc.). This increases performance but min-
imizes the agent's exibility in preparing itself for a
major event.

An important issue when comparing mobile-agent
platforms is their compatibility with Java applets. Ap-
plets o�er the exibility of running on any machine
with minimum con�guration (a Web browser and a
plug-in). Concordia applets proved more powerful than
Fiji Applets as they can receive any agent launched
from anywhere and send and receive events in the same
manner. Fiji applets can only retract Aglets or com-
municate with Aglets that they launched. Of course,
Fiji applets are more secure and exible, as they can
download the application classes dynamically from the
Web server; this is not possible with the current version
of Concordia, which requires the application classes to
be preloaded on the client.

5 A Performance Analysis Framework

Performance evaluation of distributed systems and
applications is hard for several reasons:

� The absence of global time, control, and state
information in distributed systems, which makes
performance measurements hard.

� The heterogeneity and complexity of distributed
platforms, which makes it di�cult to characterize
key system performance aspects via small sets of
metrics.

� The existence of a great variety of computingmod-
els adopted by di�erent distributed applications:
client server, client-agent-server, mobile agent, etc.
Notably, a change in the computing model may re-
quire the adoption of di�erent performance met-
rics and representative benchmarks.

� The diversity of operations found in real dis-
tributed applications, which makes it hard to
model typical applications through simple and
portable benchmarks [21].

� The \uidity" of distributed computing systems
con�guration, especially in the presence of mobil-
ity. This uidity prevents the representation of
available system resources with small and simple
sets of parameters.

These factors are further exacerbated when deploy-
ing Internet-based distributed systems built on top of
Java-based mobile-agent platforms, because of the ex-
tra issues a�ecting performance, like the JVM, garbage
collection, etc. To study the performance of this kind of
distributed system we need to adopt appropriatemet-
rics representing the performance of key components
of systems and applications. Also, to provide bench-
marks that will: a) enable the performance character-
ization of key hardware and/or software components
of a distributed system under realistic workload condi-
tions; b) analyze the interplay of system and applica-
tion parameters with application performance, and c)
model the overall performance of important and inter-
esting classes of distributed applications. In this con-
text, benchmarks for mobile agent-based distributed
systems can be classi�ed in three categories according
to their complexity and utility:

� Micro-benchmarks: Short codes designed to isolate
and measure basic performance properties of a dis-
tributed system, corresponding to key, \low level"
system parameters [3]. For example, codes mea-
suring the performance of mobile-agent dispatch,
inter-agent communication and synchronization.

� Application kernels: Short, synthetic codes de-
signed to measure the basic performance prop-
erties of application frameworks of interest; e.g.,
codes that will assess the performance of Web
database access through a particular client-server
model. The conjecture here is that the perfor-
mance of these frameworks will determine to a
large extent the overall performance of distributed
applications built on top of them. Thus, applica-
tion kernels can be used to model overall applica-
tion performance.

� Full application codes: as it happens with paral-
lel system benchmarks, kernel performance is only
indicative of the overall application performance
[3]. Consequently, it is often useful to analyze the
performance of distributed systems executing real
applications with realistic workloads.

At this stage, it is premature to devise a set of
generic benchmarks covering most aspects of mobile-
agent performance, as mobile-agent platforms have not
being tested widely in real-world applications. Hence,
to compare the performance of di�erent mobile-agent
platforms, we explore a set of microbenchmarks. Fur-
thermore, we employ simple application kernels to as-
sess the relative performance of application frameworks
providing access to Web-based databases deployed on
Internet.

5.1 Microbenchmarks

As described in Sections 2 and 3, computing models
that use mobile agent technology employ the follow-
ing basic components: a) mobile agents to materialize
modules of the client-server model and its variations; b)
messenger agents as an approach for exible communi-
cation; c) messages as an e�cient communication and
synchronization mechanism. Therefore, microbench-
marks devised to test basic performance properties of
mobile-agent platforms must focus on measuring the
performance of frequently executed components, i.e.,
messenger agents and messages. To this end, we pro-
pose the following benchmarks that measure:

� [AC/L]: The overhead of creating and launching
messenger agents, which is represented by the time
to create and dispatch mobile agents with minimal
content.

� [MSG]: The overhead of messaging, that is, the
time to create and post messages.

� [ROAM]: The overhead of agent traveling, which
is represented by the time it takes an agent with
minimal content to return to its host node after
roaming along a given itinerary of hosts. The
agent has minimal interaction with the resources
of each host visited, e.g., it just queries the host's
identi�cation.

� [SYNC]: The synchronization overhead, which is
represented by the time to exchange a message
between two hosts (equivalent to the \ping-pong"
benchmark [7]).

Benchmarks are parameterized by the number of it-
erations they execute. We measure the total time to

completion of each benchmark for a chosen number of
iterations. In our tests, we choose iteration numbers
from 1 to 1000.
Microbenchmark Experiments: For the quan-

titative comparison we ran several tests implementing
the microbenchmarks presented above. In our tests, we
examine two scenarios: the �rst scenario presumes the
installation of the full agent-execution environment on
the hosts of the system under scrutiny. The second sce-
nario tests the case where the client has limited com-
puting resources, as in the case of mobile-computing
units, or connects from a machine with minimal con�g-
uration, i.e., Internet connectivity and a Java-enabled
Web browser. In the second scenario, the client is com-
municating with the mobile-agent platform by down-
loading an applet enhanced with agent-handling capa-
bilities (Fiji or Concordia applet).

Test 1 corresponds to benchmark [AC/L]. For this
test we launch and dispatch agents from a parked agent
to a remote Agent Server. We measure the time it takes
to create and launch the agents. For both platforms, we
employ agents (Aglets and Concordia agents) of iden-
tical, minimal, functionality. The size of the Aglet is
1.64 KB whereas the size of the Concordia agent used
is 693 bytes. The parked Aglet is 3.54 KB and the
parked Concordia Agent is 1.65 KB.

Test 2 corresponds to benchmark [AC/L] under the
second scenario, where we use an applet to launch
agents. The Fiji Applet is 4.8 KB in size and the Con-
cordia Applet is 3.61 KB.

Test 3 corresponds to benchmark [MSG]. A parked
Aglet/Concordia agent creates and sends/posts mes-
sages/events to a remote Aglet or Event Manager re-
spectively. The message/event carries a simple piece of
information - an integer expressing its ID. The size of
the message is 5 KB whereas the size of the event is
only 286 bytes.

Test 4 corresponds to benchmark [MSG] following
the second scenario, where messages are created and
launched from an applet. The applet sizes are 5.19 KB
for Fiji and 3.09 KB for Concordia.

Test 5 corresponds to benchmark [ROAM] with one
hop. An agent launches another agent to a remote
Agent Server. At its arrival, the agent prints its id and
returns back. Upon return to the sender, the agent is
re-dispatched towards the same destination.

Test 6 also corresponds to benchmark [ROAM] with
one hop, where applets act as agent launchers.

Test 7 corresponds to benchmark [SYNC], with mes-
sage exchange taking place between two agents. It is
a variation of Test 5 using messages: a message (or
event) is sent to a remote receiver. Once this message
is received, the receiver sends it back. The next mes-
sage is sent after the return of the previous one.

Test 8 corresponds to benchmark [SYNC] with mes-
sage exchange occurring between an applet and an
agent.

For the above tests we used a Pentium PC at
166MHz with 32MB of RAM running Microsoft Win-
dows 95 as the PC from where we launched the agents
and the messages and a Pentium Pro at 350 MHz
with 64MB of RAM running Microsoft Windows 95.
These computers were connected on a 10 Mbps Ether-
net LAN.

Discussion: Our microbenchmark tests provide
useful insights into three important aspects of Aglets
and Concordia performance: mobile agent dispatch
from agent servers, mobile agent dispatch from applets,
and messaging.

$JHQW�&UHDWLRQ�DQG�/DXQFK�IURP�$JHQW�WR�$JHQW

��� ���
����

����

�����

�����

������ ��� ���
����

����

�

��

���

���

���

���

���

� �� �� ��� ��� ����

,WHUDWLRQV

6
H
F
R
Q
G
V

$JOHWV

&RQFRUGLD

$JHQW�&UHDWLRQ�DQG�/DXQFK�IURP�$SSOHW�WR�$JHQW

���

�����

������

������

�����

�����
����

����
�����

�����������
�

���

���

���

���

����

����

����

����

����

� �� �� ��� ��� ����

,WHUDWLRQV

6
H
F
R
Q
G
V

),-,�$SSOHW

&RQFRUGLD�$SSOHW

Figure 5. [AC/L] Benchmark; results from Tests 1 and 2.

0HVVDJH�&UHDWLRQ�DQG�3RVWLQJ�IURP�$JHQW

��� ���
���

����

���
���

���

��� ����

����

������

�

�

��

��

��

��

� �� �� ��� ��� ����

,WHUDWLRQV

6
H
F
R
Q
G
V

$JOHWV

&RQFRUGLD

0HVVDJH�&UHDWLRQ�DQG�3RVWLQJ�IURP�$SSOHW

���

����

�����

�����

���
����

��� ��� ��� ��� ���� ����

�

��

���

���

���

���

���

���

���

���

���

� �� �� ��� ��� ����

,WHUDWLRQV

6
H
F
R
Q
G
V

),-,�$SSOHW

&RQFRUGLD�$SSOHW

Figure 6. [MSG] Benchmark; results from Tests 3 and 4.

In particular, results from Tests 1 and 5 show that
Concordia performs substantially better than Aglets in
agent dispatching from agent servers (see the diagrams
on the left side of Figures 5 and 7). This is attributed
to the fact that, when transporting an agent, Concor-
dia dispatches an image of it. This image retracts its
classes from the sender, on a need-to-use basis. In con-
trast, Aglets Workbench dispatches an Aglet together
with all the objects reacheable from this Aglet. Fur-
thermore, it is plausible that additional overhead is in-
curred by Aglets due to the extra level of indirection
introduced by their callback model.

Concordia performs worse than Aglets, however,
when dispatching agents from an applet. This can be
attested from Test 2 (Figure 5, right) and from a com-
parison between the two diagrams of Figure 7; note
that in Test 6 the performance di�erence between Con-

cordia and Aglets is smaller than in Test 5. This is
probably due to the fact that the current handling of
applets by the Aglets Workbench (through IBM's Fiji
Applet and plug-in) is more optimized than the work-
around we did to launch and receive Concordia agents
from applets. This workaround requires manual instal-
lation of Concordia/application classes on the client-
machine's local disk. It should be noted that, across
both platforms, dispatching agents from applets per-
forms substantially worse than dispatching agents from
agent servers.

Results from Test 3 (Figure 6) show that Aglets out-
perform Concordia in message creation and posting.
Concordia, however, performs better in the case of 1000
iterations. We believe this is an artifact of Tahiti-server
performance behavior, which handles the transmission
of incoming and outgoing messages. Further tests have

$JHQW�3LQJ�3RQJ�IURP�$JHQW�WR�6HUYHU

���

�����

�����

���
����

����

��� ��� ��� ����
����

�����

���

�����

�����

�����

�����

�����

�����

�����

�����

� �� �� ��� ��� ����

,WHUDWLRQV

6
H
F
R
Q
G
V

$JOHWV

&RQFRUGLD

$JHQW�3LQJ�3RQJ�IURP�$SSOHW�WR�6HUYHU

������

������

�����

�����
��������

������

�����

�����
�����������

�

���

����

����

����

����

����

� �� �� ��� ��� ����

,WHUDWLRQV

6
H
F
R
Q
G
V

),-,�$SSOHW

&RQFRUGLD�$SSOHW

Figure 7. [ROAM] Benchmark; results from Tests 5 and 6.

shown that Tahiti saturates under heavy load. Con-
cordia, on the other hand, separates the handling of
messages (events) from the handling of agents and,
apparently, Concordia's Event Manager is better op-
timized to sustain higher messaging loads than Tahiti.
Turning to Test 7 (Figure 8), we observe a signi�cant
degradation of Aglets performance under the [SYNC]
benchmark, with an increasing number of benchmark
iterations. We believe this degradation is related to
the implementation of message reply under Aglets, and
with the erratic performance of the Tahiti server un-
der heavier loads. We are currently investigating this
hypothesis.

Interestingly, Concordia outperforms Aglets in mes-
sage transmission from an applet, and in message ex-
change between an applet and an agent (see Tests 4
and 8, Figures 6 and 8). In our experiments, the use
of applets under the Aglets platform has an additional
overhead factor, which is due to security limitations:
for a FijiApplet to communicate with an agent server
(Tahiti), it has to make an extra hop and go through
the Web server, where from the applet was downloaded
to the client machine. This is not the case with the
Concordia work-around we employed to dispatch and
receive agents from an applet.

Another interesting observation from microbench-
mark measurements is that, in contrast to Aglets, Con-
cordia performance scales impressively well as we in-
crease the number of benchmark iterations. This is
attributed to the way Concordia handles agent trans-
portation by creating and maintaining a persistent im-
age of an agent before dispatching it to another ma-
chine. Hence, Concordia avoids class loading on subse-
quent transfers, whereas Aglets must continuously load
the needed classes on every Aglet transfer. We are cur-

rently investigating this further.

5.2 Web database Application Kernels

In this paper we focus on application frameworks
that use mobile agents to provide database access over
the Web and correspond to the computational mod-
els presented earlier. We propose an application ker-

nel consisting of a short transaction (three queries) be-
tween a client and a remote database. The queries se-
lect all entries of a small student database. We measure
the time required to launch an agent (or a message)
from the client site, the time to carry this agent to the
database server, the time to connect to the database
and execute the query, and the time to bring the re-
sults back to the client. We measure the time to query
the remote database for the �rst time and for any sub-
sequent request. We expect these two measurements
to be di�erent, as the time of the �rst query includes
the connection to the database and the downloading of
the JDBC drivers from the client or its surrogates.

The kernel is implemented with mobile agents fol-
lowing the computing models C/A/S and C/A/S-
MA. We also implement the kernel according to the
\mobile" client-server model (C/S-MA). Concordia
Service Bridges represent an alternative non-dynamic
way to materialize the server-side of the C/A/S and
C/A/S-MA models. Therefore, we implement our
Web-database kernel with Service Bridges, adding an-
other two frameworks in our benchmark suite. Ta-
ble 2 summarizes the application frameworks employed
in our tests and the notation we use for them subse-
quently.
Tests: We ran tests to evaluate the �ve frameworks

presented in Table 2. Details about the tests are given

0HVVDJH�([FKDQJH�IURP�$JHQW�WR�$JHQW

���

�����

�����

��
����

���

����

����

������������
�

��

���

���

���

���

� �� �� ��� ��� ����

,WHUDWLRQV

6
H
F
R
Q
G
V

$JOHWV

&RQFRUGLD

0HVVDJH�([FKDQJH�IURP�$SSOHW�WR�$JHQW

����

�����

�����

��
������

����
����

����������
�

���

���

���

���

���

���

� �� �� ��� ��� ����

,WHUDWLRQV

6
H
F
R
Q
G
V

),-,�$SSOHW

&RQFRUGLD�$SSOHW

Figure 8. [SYNC] Benchmark; results from Tests 7 and 8.

Computing Model Kernel Comments

C/S-MA Framework 1 Baseline

C/A/S-MA Framework 2 Using messenger agents

C/A/S Framework 3 Using messages

C/A/S-MA-CSB Framework 4 Using Service Bridges and messenger agents

C/A/S-CSB Framework 5 Using Service Bridges and messages

Table 2. Application Kernel materialized with Mobile Agents.

below. The measurements are presented in Figure 9.

Framework 1 implements the C/S-MA model for
Web-database connectivity. The client-side is imple-
mented as an applet, which is downloaded by a client
machine with a Java-enabled Web browser. Communi-
cation between the client and the server is done through
the DBMS-agent launched by the applet. Upon ar-
rival to the server, the DBMS-agent downloads the ap-
propriate JDBC driver and connects to the database.
Subsequently, it carries client queries and query results
between the client and the remote database.

Framework 2 implements the C/A/S-MA model.
The client-side is again implemented as an applet,
which is downloaded to a client machine with a Java-
enabled Web browser. The applet launches two agents
to the database server. One of these agents \parks" to
the server and is responsible for downloading the nec-
essary JDBC driver, connecting to the database and
querying it. The other agent is the messenger that un-
dertakes the responsibility of transferring the results to
the client and the new client requests to the \parked"
agent. The \parked" agent is transported and con-
nected to the database server only for the �rst query.

Framework 3 implements the C/A/S model. Imple-
mentation is similar to Framework 2 except for the
communication between the client and the database

server, which employs messages instead of agents.

Framework 4 implements the C/A/S-MA-CSB
model: we created a Concordia Service Bridge that per-
forms the Web access on behalf of an incoming agent.
The incoming agent carries the SQL statement from
the applet client to the Service Bridge, and returns the
results back to the client.

Framework 5: This framework uses events for the
communication between the applet and the Service
Bridge. Both the applet and the Service Bridge are
connected to the Event Manager of the Concordia
Server at the database machine and they exchange Ac-
cess Request events and Access Results events.

Discussion: Figure 9 presents our measurements
from the frameworks presented above. A �rst remark is
that the Aglets Workbench outperforms Concordia for
the �rst query, as shown in the left diagram of Figure 9.
This observation is consistent with the results of Test 2,
and with our remarks on applet-performance under
Concordia (Figure 5, right diagram). Concordia, how-
ever, outperforms Aglets in subsequent queries. For
Frameworks 1 and 2, this observation is consistent with
our results fromTest 6 (see Figure 7, right diagram). In
the case of Framework 3, the improvement of Concor-
dia's performance over Aglets agrees with our [SYNC]
microbenchmark (see Figure 8).

:HE�$FFHVV�)UDPHZRUNV

���

���

���

���
���

���
���

���

�

�

�

�

�

�

�

�

�

)UDPHZRUN��)UDPHZRUN��)UDPHZRUN��)UDPHZRUN��)UDPHZRUN��

6
H
F
R
Q
G
V

$JOHWV��VW�4XHU\

&RQFRUGLD��VW�4XHU\

:HE�$FFHVV�)UDPHZRUNV

���

���

���

���

�

���

���

���

�

���

�

���

�

���

�

���

)UDPHZRUN

�

)UDPHZRUN

�

)UDPHZRUN

�

)UDPHZRUN

�

)UDPHZRUN

�

6
H
F
R
Q
G
V

$JOHWV�6XEVHTXHQW�4XHU\

&RQFRUGLD�6XEVHTXHQW
4XHU\

Figure 9. Performance of Web-database kernel.

The better performance displayed by Framework 1
with respect to Framework 2 for the �rst query, is due
to the extra overhead incurred by the dispatch of a
second agent under Framework 2. This agent parks
at the server and results in the improved performance
displayed by subsequent queries under Framework 2
over Framework 1.

It is also interesting to point out that the small per-
formance di�erence between Frameworks 1 and 3 for
the �rst query, is due to the more limited functional-
ity of the agent sent to park at the server-side under
Framework 3 (C/A/S model). This agent is \lighter"
than the agent dispatched under Framework 1 (C/S-
MA model), as it does not have to cope with dispatch-
ing itself back and forth to the client.

Another interesting point is the performance bene-
�t of using messages over messenger agents. This is
expected, though, as messenger agents are "heavier"
objects than messages, both in Aglets and Concordia.
Messenger agents, however, o�er greater exibility as
they can roam the network collecting more information
before reaching their destination.

Finally, Concordia's Service Bridges represent a very
e�cient approach for providing services to incoming
agents at the server side. This approach, however, lacks
the exibility of dynamically \parking" a mobile agent
at the server-side, at run-time, and having this agent
negotiate with the server the services it will provide to
incoming agents.

6 Conclusions

In this paper we describe practical experiences gath-
ered from the employment of two popular Java-based
mobile-agent platforms, IBM's Aglets and Mitsubishi's

Concordia, to provide distributed database access over
the World-Wide Web. To this end, we formulate some
basic distributed computing models and describe their
adaptation to the mobile-agent paradigm. Upon these
models we develop a set of frameworks for distributed
database access over the World-WideWeb, using IBM's
Aglets and Mitsubishi's Concordia platforms. We com-
pare the two platforms and the frameworks both quan-
titatively and qualitatively.

For the quantitative comparison, we propose and ap-
ply an approach to evaluate and analyze mobile-agent
performance, based on simple microbenchmarks and
more elaborate application kernels. Results from mi-
crobenchmark tests reveal interesting aspects of Aglets
and Concordia performance, and enable us to inter-
pret the performance of application kernels. On the
other hand, application-kernel-performance measure-
ments help us assess the distributed computing models
examined. Furthermore, these measurements con�rm
the validity and usefulness of the proposed microbench-
marks. For the qualitative assessment, we present our
practical observations from the point of view of pro-
grammability, robustness and mobility provided by the
two platforms.

As expected, both platforms have their pros and
cons, with Concordia providing better performance and
robustness and Aglets o�ering improved exibility. We
are currently developing further benchmarks to extend
our approach for assessing the performance of mobile-
agent-based distributed applications.

Acknowledgments

The authors wish to thank David Kotz for his con-
structive comments and suggestions on this paper.

References

[1] B. Badrinath, A. Bakre, T. Imielinski, and
R. Marantz. Handling Mobile Clients: A Case for In-
direct Interaction. In Proceedings of the 4th Workshop
on Workstation Operating Systems, October 1993.

[2] A. Castillo, M. Kawaguchi, N. Paciorek, and D. Wong.
Concordia as Enabling Technology for Coopera-
tive Information Gathering. In Japanese Society
for Arti�cial Intelligence Conference, June 1998.
http://www.meitca.com/HSL/Projects/Concordia/.

[3] D. Culler, J. Singh, and A. Gupta. Parallel Computer
Architecture. A Hardware/SoftwareApproach. Morgan
Kaufman, 1999.

[4] D. Lange and M. Oshima. Programming and Deploy-
ing Java Mobile Agents with Aglets. Addison Wesley,
1998.

[5] M. D. Dikaiakos and D. Gunopoulos. FIGI: The
Architecture of an Internet-based Financial Infor-
mation Gathering Infrastructure. In Proceedings of
the International Workshop on Advanced Issues of
E-Commerce and Web-based Information Systems.
IEEE-Computer Society, April 1999.

[6] M. D. Dikaiakos, A. Rogers, and K. Steiglitz. Perfor-
mance Modeling through Functional Algorithm Simu-
lation. In G. Zobrist, K. Bagchi, and K. Trivedi, ed-
itors, Advanced Computer System Design, chapter 3,
pages 43{62. Gordon and Breach, 1998.

[7] J. Dongarra and W. Gentzsch, editors. Computer
Benchmarks. North Holland, 1993.

[8] A. Fox, S. Gribble, E. Brewer, and E. Amir. Adapt-
ing to Network and Client Variability via On-Demand
Dynamic Distillation. In Proceedings of the ASPLOS-
VII, 1996.

[9] J. Gosling and H. McGilton. The Java Language
Environment. A White Paper. Sun Microsystems.
http://java.sun.com/docs/white/index.html.

[10] B. Housel, G. Samaras, and D. Lindquist. WebEx-
press: A Client/Intercept Based System for Optimiz-
ing Web Browsing. ACM/Baltzer Journal of Mobile
Neworking and Applications (MONET), Special Is-
sue on Mobile Networking on Internet, pages 419{431,
1999.

[11] J. Farley, editor. Java Distributed Computing. O'
Reilly, 1998.

[12] J. Kiniry and D. Zimmerman. A Hands-on Look
at Java Mobile Agents. IEEE Internet Computing,
1(4):21{30, July-August 1997.

[13] R. Koblick. Concordia. Communications of the ACM,
42(3):96{99, March 1999.

[14] D. Lange and Y. Aridor. Agent Transfer Protocol {
ATP/0.1. IBM Tokyo Research Laboratory, March
1997. http://www.trl.ibm.co.jp/aglets/.

[15] D. B. Lange and M. Oshima. Seven Good Reasons
for Mobile Agents. Communications of the ACM,
42(3):88{91, March 1999.

[16] S. Microsystems. Java Remote Method Invocation -
Distributed Computing for Java. Sun Microsystems.
http://java.sun.com/docs/white/index.html.

[17] Oracle. Oracle Mobile Agents Technical Product Sum-
mary. Oracle., June 1997.
http://www.oracle.com/products/networking/mobile/agents/html/.

[18] C. Panayiotou, G. Samaras, E. Pitoura, and P. Evripi-
dou. Parallel Computing Using Java Mobile Agents.
In 25th Euromicro Conference, Workshop on Network
Computing., September 1999.

[19] S. Papastavrou, G. Samaras, and E. Pitoura. Mobile
Agents for WWW Distributed Database Access. In
Proceedings of the Fifteenth International Conference
on Data Engineering, pages 228{237. IEEE, March
1999.

[20] E. Pitoura and G. Samaras. Data Management for
Mobile Computing. Kluwer Academic Publishers,
1998.

[21] F. Raab, W. Kohler, and A. Shah. Overview of
the TPC Benchmark C: The Order-Entry Benchmark.
http://www.tpc.org/cdetail.html.

[22] G. Samaras, E. Pitoura, and P. Evripidou. Soft-
ware Models for Wireless and Mobile Computing: Sur-
vey and Case Study. Technical Report TR-99-5, De-
partment of Computer Science, University of Cyprus,
March 1999.

[23] G. Samaras and A. Pitsillides. Client/Intercept:
A Computational Model for Wireless Environments.
In Proceedings of the 4th International Conference
on Telecommunications (ICT '97), pages 1205{1210,
April 1997.

[24] C. Spyrou, G. Samaras, E. Pitoura, and P. Evripi-
dou. Wireless Computational Models: Mobile Agents
to the Rescue. In 2nd International Workshop on Mo-
bility in Databases & Distributed Systems. DEXA '99,
September 1999.

[25] D. Tennenhouse, J. Smith, W. D. Sincoskie, and
G. Minden. Itinerant Agents for Mobile Computing.
Journal of IEEE Personal Communications, 2(5), Oc-
tober 1995.

[26] D. Tennenhouse, J. Smith, W. D. Sincoskie, and
G. Minden. A Survey of Active Network Research.
Journal of IEEE Communication Magazine, 35(1):80{
86, January 1996.

[27] J. White. General Magic White Paper.
http://www.genmagic.com/agents, 1996.

[28] D. Wong, N. Paciorek, and D. Moore. Java-based Mo-
bile Agents. Communications of the ACM, 42(3):92{
95, March 1999.

[29] D. Wong, N. Paciorek, T. Walsh, J. DiCelie,
M. Young, and B. Peet. Concordia: An Infras-
tructure for Collaborating Mobile Agents. Lec-
ture Notes in Computer Science, 1219, 1997.
http://www.meitca.com/HSL/Projects/Concordia/.

[30] G. Yamamoto and Y. Nakamura. Architecture and
Performance Evaluation of a Massive Multi-Agent Sys-
tem. In Proceedings of the 3rd Annual Conference on
Autonomous Agents, pages 319{325, May 1999.

